
 

Question & Answers 
 

VIRTUAL MEMORY 

 

 

Sercan Külcü | Operating Systems | 10.04.2023  



PAGE 1 

Contents 

What is virtual memory? ............................................................................2 

What is the purpose of virtual memory? ..................................................2 

How does virtual memory enable efficient memory allocation? .............2 

What is the difference between virtual and physical memory? .............. 3 

What is the role of the page table in virtual memory management? ..... 3 

What are the advantages of virtual memory? ........................................... 3 

How to measure the performance in virtual memory? ........................... 4 

How do operating systems handle virtual memory fragmentation?...... 4 

What is demand paging? ............................................................................ 5 

What is the role of TLB (Translation Lookaside Buffer)? ........................ 5 

How do operating systems handle memory protection? ........................ 6 

What is the role of the swap space in virtual memory management? ... 6 

Which techniques are used for virtual memory management? ..............7 

What is the impact of virtual memory on system performance? ........... 8 

How do operating systems handle virtual memory in multi-

processor/multi-core environments? ....................................................... 8 

What is the role of hypervisors in virtual memory management in 

virtualized environments? ........................................................................ 9 

What are some emerging trends and technologies in virtual memory 

management? ............................................................................................. 9 

How does a page replacement algorithm impact system performance?

.................................................................................................................... 10 

What are the advantages and disadvantages of common page 

replacement algorithms? ........................................................................... 11 

 



PAGE 2 

What is virtual memory? 

Virtual memory is a memory management technique used by operating 

systems to give each process the illusion of having access to a large, 

contiguous block of memory, even if the system's physical RAM is 

limited. It achieves this by utilizing disk space as an extension of the 

physical memory, allowing processes to run smoothly despite memory 

constraints. The operating system divides virtual memory into small 

segments called pages, which can be swapped in and out of physical 

memory as needed. This method enables efficient memory use while 

providing the necessary isolation and protection between processes. 

What is the purpose of virtual memory? 

The main purpose of virtual memory is to enable processes to access 

more memory than the system's physical RAM can provide. It achieves 

this by storing parts of the process’s memory, called pages, on disk and 

swapping them in and out of physical memory as required. This allows 

for the efficient use of memory resources, even when multiple processes 

are running simultaneously. 

How does virtual memory enable efficient memory 

allocation? 

Virtual memory facilitates efficient memory allocation and sharing by 

enabling processes to access physical memory at different times, 

without direct interference. Each process is given a separate virtual 

address space, which the operating system maps to physical memory 

through a page table. This mapping allows multiple processes to share 

memory resources, ensuring optimal use of available physical memory 

while maintaining process isolation. 
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What is the difference between virtual and physical 

memory? 

Physical memory refers to the actual RAM modules in a computer, 

where data is stored and accessed directly by the CPU. In contrast, 

virtual memory is an abstraction provided by the operating system that 

gives each process its own address space. Virtual memory allows 

processes to exceed the limits of physical memory by swapping pages of 

data between RAM and disk storage, ensuring efficient memory usage 

even when physical memory is scarce. 

What is the role of the page table in virtual memory 

management? 

The page table is a critical data structure in virtual memory 

management, used by the operating system to translate virtual 

addresses into physical addresses. Each entry in the table corresponds 

to a memory page and contains information about its location—

whether it resides in physical memory or on disk. Additionally, the table 

tracks attributes such as whether a page is writable or executable. The 

operating system uses the page table to manage memory efficiently and 

ensure correct address translation for processes. 

What are the advantages of virtual memory? 

Virtual memory offers several benefits to computer systems. It enables 

higher levels of multiprogramming by allowing processes to run 

concurrently, even if they don’t fit entirely in physical memory. By using 

virtual memory, memory allocation becomes simpler and more cost-

effective, eliminating external fragmentation. Data can be spread across 

physical memory, making it possible to load large programs. Virtual 
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memory also reduces I/O operations and speeds up process swapping. 

Moreover, it frees up physical memory for other tasks since programs 

are stored in virtual space. This leads to improved system efficiency and 

resource utilization. 

How to measure the performance in virtual memory? 

The performance of a virtual memory system is primarily influenced by 

the frequency of page faults, which depend on paging policies and frame 

allocation. Paging policies govern how pages are swapped between main 

memory and secondary storage, while frame allocation determines 

which pages to evict from physical memory. The system's performance 

is measured by effective access time, which reflects the average time to 

access data. Effective access time is a function of memory access time, 

the probability of a page fault, and the time required to handle a page 

fault. 

How do operating systems handle virtual memory 

fragmentation? 

Virtual memory fragmentation occurs when the virtual address space is 

divided into small, unused memory blocks, making it challenging to 

allocate larger contiguous blocks. Operating systems address this issue 

using several techniques: 

Compaction: This process involves rearranging memory contents to 

consolidate fragmented blocks, creating larger contiguous memory 

regions. However, compaction is resource-intensive and time-

consuming. 
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Paging: Memory is divided into fixed-size pages, which can be allocated 

more efficiently. Paging enables swapping pages to disk when not in use, 

optimizing memory availability for other processes. 

Memory Mapping: This technique allows processes to share memory 

pages, reducing overall memory usage and minimizing fragmentation. 

What is demand paging? 

Demand paging is a virtual memory management technique where 

memory pages are loaded from disk into physical memory only when 

they are needed by a process. This method optimizes memory usage by 

loading only the necessary pages, while other pages can be swapped out 

to disk to free space. The operating system uses a page table to track the 

mapping between virtual and physical memory. When a process 

accesses a page not in physical memory, a page fault occurs, prompting 

the system to load the page from disk into memory. 

What is the role of TLB (Translation Lookaside Buffer)? 

The Translation Lookaside Buffer (TLB) is a hardware cache used to 

speed up virtual memory access. It stores recently accessed page table 

entries, enabling faster translation of virtual addresses to physical 

addresses. When a process requests a virtual address, the TLB is checked 

first. If the entry is found, the corresponding physical address is 

retrieved quickly. If not, a page table lookup is performed, and the result 

is stored in the TLB for future reference. This caching of frequently used 

entries enhances system performance by reducing memory access time. 
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How do operating systems handle memory protection? 

Memory protection is vital for preventing unauthorized access to 

memory in virtual memory systems. Operating systems employ various 

methods to enforce memory protection: 

Segmentation: Memory is divided into logical segments, each with 

specific access permissions, enabling precise control over access rights. 

Page-level protection: Each memory page can be assigned specific access 

permissions, such as read-only or no access, providing more granular 

control. 

Address space randomization: The layout of a process's memory is 

randomized, making it harder for attackers to predict memory locations 

and exploit vulnerabilities. 

What is the role of the swap space in virtual memory 

management? 

Swap space is a designated area on a storage device, such as a hard drive, 

used by the operating system as an extension of physical memory. When 

physical memory becomes full, less frequently accessed pages are moved 

to swap space, freeing up RAM for active processes. This allows the 

system to handle more memory than physically available, improving 

performance by reducing the need to repeatedly load pages from disk. 

However, since disk access is slower than memory access, heavy reliance 

on swap space can degrade system performance. The operating system's 

memory management system controls the movement of pages between 

physical memory and swap space, with the size of the swap space being 

adjustable based on available RAM and system requirements. 
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Which techniques are used for virtual memory 

management? 

Memory Compression: Instead of swapping entire pages to disk, the 

operating system compresses memory pages and stores them in RAM, 

reducing disk paging and enhancing performance. 

Transparent Huge Pages: Larger pages (e.g., 2MB or 1GB) are used 

instead of smaller 4KB pages, reducing memory overhead and 

improving efficiency. 

Memory Deduplication: In virtualized environments, the operating 

system identifies and eliminates duplicate memory pages, optimizing 

memory usage. 

NUMA Awareness: In multi-socket systems, the operating system 

allocates memory to minimize latency when accessing memory from 

different sockets. 

Page Migration: This technique involves moving pages between 

different levels of memory, such as between RAM and swap space, to 

optimize access time based on usage patterns. It reduces the frequency 

of page faults and minimizes latency by keeping frequently accessed 

data in faster memory. 

Copy-on-Write (COW): Used to optimize memory usage when 

processes share memory. When one process modifies shared memory, a 

copy is made for that process, allowing the original memory to remain 

intact for others. This reduces unnecessary copying and improves 

memory efficiency. 

Cache-aware memory management: This technique optimizes memory 

placement to better align with the CPU cache architecture. By placing 

frequently accessed data closer to the CPU cache, it reduces memory 

latency and improves performance. 
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What is the impact of virtual memory on system 

performance? 

Virtual memory greatly influences system performance and efficiency 

by allowing processes to exceed the available physical memory. This 

increases concurrency, enabling more processes to run simultaneously 

and improving overall system utilization. However, improper virtual 

memory management can cause excessive paging and thrashing, which 

degrade performance. 

Modern operating systems enhance virtual memory management using 

advanced algorithms for page replacement and swapping. Techniques 

like memory compression and transparent huge pages minimize paging, 

while hardware features such as the Translation Lookaside Buffer (TLB) 

and Memory Management Unit (MMU) optimize memory access and 

protect against vulnerabilities, improving system speed and security. 

How do operating systems handle virtual memory in 

multi-processor/multi-core environments? 

In multi-processor and multi-core environments, operating systems 

must efficiently manage virtual memory across multiple processors and 

cores. This introduces challenges such as cache coherence problems and 

resource contention, especially for shared structures like the page table. 

To address these challenges, modern operating systems employ 

techniques like NUMA awareness to optimize memory allocation based 

on processor locality, and cache coloring to reduce cache conflicts. 

Hardware features, such as inter-processor interrupts and atomic 

operations, are used to maintain cache coherence and prevent data 

corruption, ensuring efficient and consistent memory access across 

multiple processors. 
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What is the role of hypervisors in virtual memory 

management in virtualized environments? 

In virtualized environments, hypervisors (or virtual machine monitors) 

manage virtual memory by enabling multiple virtual machines (VMs) to 

share the same physical hardware. The hypervisor is responsible for 

allocating and optimizing memory usage across VMs. 

It employs memory ballooning to dynamically allocate memory to each 

VM based on demand. Additionally, the hypervisor uses page sharing to 

identify and eliminate duplicate memory pages across VMs, reducing 

overall memory consumption and improving system efficiency. 

What are some emerging trends and technologies in 

virtual memory management? 

Emerging trends in virtual memory management focus on improving 

performance and resource efficiency. One such trend is the use of non-

volatile memory (NVM) as swap space. NVM provides fast, persistent 

storage, enhancing swap performance over traditional storage devices 

like hard disks or SSDs, which benefits memory-intensive applications. 

Another trend involves the integration of machine learning for dynamic 

memory management. By analyzing application usage patterns, 

machine learning algorithms can fine-tune memory allocation and page 

swapping policies, optimizing performance while reducing overhead. 

Additionally, hardware-assisted memory management is gaining 

traction, with technologies like hardware page table walkers and 

hardware-accelerated TLBs. These innovations offload some memory 

management tasks to the hardware, improving efficiency and reducing 

OS-level memory management load. 
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How does a page replacement algorithm impact system 

performance? 

Page replacement algorithms play a crucial role in managing virtual 

memory and directly impact system performance by determining which 

memory pages are swapped in and out of physical memory when a page 

fault occurs. The choice of algorithm affects the number of page faults, 

the efficiency of memory utilization, and the overall speed of the system. 

Here's how different aspects of page replacement algorithms impact 

performance: 

Page Fault Rate: The algorithm determines how often page faults occur. 

A lower page fault rate indicates better memory usage, and less time 

spent swapping data between physical memory and storage. For 

example, Optimal page replacement minimizes page faults by replacing 

the least likely-to-be-used page, though it’s impractical for real-world 

systems. LRU (Least Recently Used) and FIFO (First-In-First-Out) are 

more feasible but often result in higher page faults compared to Optimal. 

Access Time: The time it takes to access data is impacted by page faults. 

When a page fault occurs, the system must access secondary storage 

(e.g., disk or SSD), which is much slower than accessing RAM. 

Algorithms like LRU or Clock aim to reduce the number of page faults 

by keeping frequently accessed pages in memory, thus minimizing the 

impact of slower storage. 

Efficiency of Memory Utilization: The algorithm affects how well 

memory is used, especially when there is not enough physical memory 

to hold all active processes. LRU, for instance, tends to keep pages that 

are actively used in memory, whereas FIFO can result in suboptimal 

memory utilization by keeping older pages in memory, even if they are 

no longer needed. 

Thrashing: A poor page replacement algorithm can cause thrashing, a 

situation where the system spends more time swapping pages in and out 
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of memory than executing actual processes. This typically occurs when 

the page replacement strategy fails to keep the most frequently used 

pages in memory, causing excessive page faults. 

What are the advantages and disadvantages of common 

page replacement algorithms? 

The Optimal (OPT) page replacement algorithm is considered the best 

in terms of minimizing page faults. It replaces the page that will not be 

used for the longest time in the future. Since it minimizes page faults, it 

leads to optimal system performance in terms of memory usage. 

However, OPT is impractical because it requires future knowledge of 

memory references, which is not available in real-time execution. This 

makes it unsuitable for actual systems and difficult to implement. 

Additionally, tracking all future memory accesses introduces high 

computational complexity, making OPT more of a theoretical ideal than 

a usable solution. 

The Least Recently Used (LRU) algorithm aims to approximate the 

behavior of OPT by replacing the page that has not been used for the 

longest period. This strategy works well in systems that exhibit temporal 

locality, where recently accessed pages are more likely to be accessed 

again soon. However, LRU comes with significant overhead, as it 

requires keeping track of the access order for all pages, which can be 

computationally expensive, especially in large systems. Furthermore, 

LRU performs poorly when the memory access pattern is cyclical, where 

pages are used in a fixed order and repeatedly accessed after long 

intervals, making the algorithm less effective in such scenarios. 

The First-In, First-Out (FIFO) algorithm is one of the simplest page 

replacement strategies, where the oldest loaded page is replaced when 

a new page needs to be loaded into memory. Its simplicity makes FIFO 

easy to implement and understand, with low overhead and no need for 

complex data structures. However, FIFO often performs poorly because 
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it evicts pages that may still be in frequent use simply because they were 

loaded earlier. This leads to a higher number of page faults compared to 

more sophisticated algorithms. FIFO also suffers from Belady's anomaly, 

where increasing the number of available page frames can unexpectedly 

increase the page fault rate, making it counterproductive in certain 

configurations. 

The Clock (Second Chance) algorithm is a practical approximation of 

LRU that strikes a balance between performance and complexity. It 

operates using a circular buffer of pages with reference bits, where each 

page gets a "second chance" before being replaced. When a page is 

accessed, its reference bit is set, and when a page needs to be replaced, 

the algorithm checks the reference bit in a circular manner. If the bit is 

set, the page is given another chance, and if it’s not, the page is replaced. 

The Clock algorithm offers good performance and low overhead 

compared to LRU, making it suitable for systems with limited resources. 

However, it is not always optimal and may underperform in cases where 

the access pattern does not align well with the clock mechanism. 

Implementing a circular buffer also adds some complexity, especially in 

systems that are not designed for this structure. 

The Least Frequently Used (LFU) algorithm works by tracking the 

frequency of access for each page in memory, replacing the page with 

the lowest access frequency when a new page needs to be loaded. LFU 

is effective in environments where some pages are consistently accessed 

more frequently than others, as it keeps the most frequently used pages 

in memory, minimizing page faults. However, LFU comes with high 

implementation complexity since it requires maintaining frequency 

counts for all pages, increasing both space and time overhead. 

Furthermore, LFU is not adaptable to changing access patterns. If the 

frequency of access changes over time, LFU may continue to prioritize 

pages that are no longer useful, leading to inefficient memory utilization. 

Optimal (OPT) with Aging: The Aging algorithm is a modification of the 

Optimal (OPT) algorithm designed to overcome its impracticality. 
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Instead of relying on future knowledge, Aging approximates OPT by 

keeping track of the recent history of memory accesses. It shifts bits in 

a register, giving a "weight" to how recently a page was accessed. Pages 

that have not been accessed for a long time will have a lower weight and 

are thus more likely to be replaced. Aging offers a compromise between 

complexity and performance by reducing the need for future knowledge 

while still giving higher priority to more recently used pages. However, 

its performance is still suboptimal compared to OPT and may be less 

efficient in systems with irregular memory access patterns. The 

computational overhead of managing the aging process also increases 

with the number of pages. 

The Random page replacement algorithm selects a page at random to 

replace when a new page needs to be loaded into memory. While this 

algorithm is extremely simple and easy to implement, it tends to 

perform poorly because it doesn’t take advantage of any patterns in the 

access history. In situations with random or highly unpredictable 

memory access patterns, Random can perform similarly to other more 

sophisticated algorithms. However, it can cause a significant number of 

page faults when memory access exhibits temporal or spatial locality. 

The primary advantage of Random is its simplicity and minimal 

overhead, but this is also its greatest disadvantage, as it typically results 

in high page fault rates. 

The Most Recently Used (MRU) algorithm is the opposite of LRU, 

replacing the most recently accessed page when a page fault occurs. 

MRU assumes that if a page has been recently accessed, it is less likely 

to be used in the immediate future. This may work well for applications 

with cyclical access patterns, where pages are repeatedly accessed in a 

known order. However, MRU performs poorly for workloads where 

pages are used irregularly or when pages that are accessed recently are 

still frequently used. This can result in inefficient use of memory and an 

increased number of page faults. MRU is rarely used in practice due to 

its poor performance in general-purpose systems. 
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The Least Recently Used with Frequency (LRU-F) algorithm combines 

the ideas behind LRU and LFU by tracking both the recency and 

frequency of page accesses. This approach aims to balance the benefits 

of LRU’s recency-based approach with LFU’s frequency-based strategy. 

Pages that are both frequently and recently used are given higher 

priority to remain in memory. However, implementing LRU-F can be 

complex, requiring the maintenance of both frequency counts and 

access timestamps. While this algorithm can achieve better 

performance in scenarios with a mix of both temporal and spatial 

locality, it also incurs higher overhead than simpler algorithms, and its 

benefits diminish if the memory access patterns do not exhibit both 

temporal and frequency locality. 

Weighted Page Replacement is an extension of traditional algorithms 

that assign weights to pages based on specific heuristics such as access 

frequency, recency, or importance. The algorithm uses these weights to 

make replacement decisions, often combining various factors to predict 

which pages are more likely to be used soon. This allows for greater 

flexibility and can be optimized for specific workloads. While it offers 

the potential for superior performance by better tailoring the page 

replacement strategy to the access patterns of specific applications, it 

requires more sophisticated data structures and algorithms to maintain 

and update the weights. As a result, it may incur significant overhead 

and complexity in implementation, especially in large systems. 

 


