

Question & Answers

SCHEDULING

Sercan Külcü | Operating Systems | 10.04.2023

PAGE 1

Contents

What is CPU scheduling? ... 3

What is the role of CPU scheduling in maximizing system throughput,

responsiveness, and fairness? .. 3

What are some common CPU scheduling algorithms? 3

How to choose CPU scheduling algorithm? .. 4

What is the relationship between CPU scheduling and process/thread

management? ... 4

Briefly explain FCFS? ... 4

What is the RR scheduling algorithm? ... 5

What is the difference between preemptive and non-preemptive

scheduling?.. 5

What are starvation and aging in OS? ... 6

What is Context Switching? .. 6

What are the goals of CPU scheduling? ... 6

How do operating systems handle priority-based scheduling and

preemption? ..7

How does the choice of time quantum impact CPU scheduling

performance? ..7

What are some common techniques used in real-time CPU scheduling?

... 8

How do operating systems handle CPU scheduling in a multi-

core/multi-processor environment? .. 8

What are some advanced techniques for improving the efficiency and

fairness of CPU scheduling? .. 8

How do operating systems handle CPU scheduling in distributed

computing and cloud computing environments? 10

PAGE 2

What is thread-level speculation, and how can it be used to improve

CPU scheduling performance? .. 10

How do operating systems handle dynamic workload changes? 10

What are some emerging trends and technologies in CPU scheduling?

... 11

What is the role of CPU scheduling in an operating system? 12

What are the different types of CPU scheduling algorithms? 13

How does CPU scheduling of multi-core processors differ compared to

single-core processors? ... 15

How does the concept of "aging" help mitigate the issue of starvation in

priority-based CPU scheduling? .. 15

How do Earliest Deadline First (EDF) and Rate Monotonic Scheduling

(RMS) differ in their approach to handling deadlines?: 16

PAGE 3

What is CPU scheduling?

CPU scheduling is the method by which the operating system decides

which process or thread to execute from the ready queue. It assigns CPU

time to the selected process based on various scheduling algorithms.

The objective is to optimize system performance by ensuring efficient

CPU utilization, improving responsiveness, and maintaining fairness

across processes.

What is the role of CPU scheduling in maximizing

system throughput, responsiveness, and fairness?

CPU scheduling plays a crucial role in maximizing system throughput,

responsiveness, and fairness. It ensures the CPU is efficiently utilized by

prioritizing processes or threads based on their importance, which

boosts throughput. By rapidly switching between tasks, the system

remains responsive to user inputs. Additionally, CPU scheduling

guarantees equitable allocation of resources, preventing any single

process from monopolizing CPU time and promoting fairness.

What are some common CPU scheduling algorithms?

First-Come, First-Served (FCFS): The process or thread that has been in

the ready queue the longest is selected for CPU allocation.

Shortest Job First (SJF): The process with the shortest expected

execution time is given CPU time next.

Priority Scheduling: Processes are assigned priorities, and the one with

the highest priority is allocated CPU resources.

PAGE 4

Round Robin: Each process is allocated a fixed time slice, or quantum,

and is preempted once the time expires, allowing other processes to

execute.

How to choose CPU scheduling algorithm?

The choice of CPU scheduling algorithm directly influences system

performance. For instance, Shortest Job First (SJF) can improve average

turnaround and response times but may cause longer processes to

experience increased waiting times. Priority Scheduling ensures high-

priority processes are handled first, but it can lead to low-priority

processes being starved of CPU time. Different algorithms offer trade-

offs in terms of efficiency, fairness, and responsiveness.

What is the relationship between CPU scheduling and

process/thread management?

CPU scheduling and process/thread management are tightly

interconnected in an operating system. The scheduler selects a process

or thread from the ready queue to allocate CPU time, while the

process/thread management system tracks the state of each process and

handles state transitions, such as from ready to running or from waiting

to ready. Both components work together to ensure efficient resource

allocation and process execution.

Briefly explain FCFS?

CFS (First Come, First Serve) is a non-preemptive CPU scheduling

algorithm where processes are executed in the order they arrive in the

ready queue. The first process in the queue is allocated CPU time,

PAGE 5

followed by the second, and so on. Once a process starts, it runs to

completion or until it performs I/O, blocking other processes. This can

lead to longer waiting times for subsequent processes, especially if a

long process is scheduled first.

What is the RR scheduling algorithm?

The Round Robin (RR) scheduling algorithm allocates a fixed time

quantum to each process, allowing it to run for a set duration before

being preempted. Processes that arrive during a quantum are placed at

the end of the queue. This ensures fair distribution of CPU time,

preventing starvation since each process is given an equal opportunity.

RR is essentially a cyclic version of FCFS, where no process has higher

priority. It is also known as time-slicing scheduling.

What is the difference between preemptive and non-

preemptive scheduling?

Preemptive and non-preemptive scheduling differ in how the CPU is

allocated to processes. In preemptive scheduling, the CPU is assigned

for a limited time and can be interrupted if a higher-priority process

arrives. This requires context switching between processes, introducing

overhead. In contrast, non-preemptive scheduling allocates CPU time

to a process until it terminates or enters a waiting state, without

interruption. This results in lower overhead but lacks flexibility, as

running processes are not preempted. Preemptive scheduling allows

critical processes to gain immediate access to the CPU, while non-

preemptive scheduling ensures that processes run to completion

without interruption.

PAGE 6

What are starvation and aging in OS?

Starvation occurs in an operating system when a process is unable to

access the resources it needs because other processes are continuously

prioritized. This leads to the process being indefinitely delayed,

reducing overall system efficiency and potentially causing deadlock.

Aging is a technique used to prevent starvation by gradually increasing

the priority of a process over time. As a process waits, its priority

increases, ensuring that it will eventually be allocated resources and not

be neglected. This mechanism helps maintain fairness and system

stability.

What is Context Switching?

Context switching is a fundamental process in multitasking operating

systems. It occurs when the CPU switches from executing one process

to another. During this switch, the operating system saves the current

process's state—such as the program counter, registers, and other

relevant data—into a Process Control Block (PCB). The PCB stores all

necessary information about the process, including its state and

memory allocation. After saving the state, the system loads the next

process's information and resumes its execution. This enables efficient

multitasking by allowing multiple processes to share the CPU.

What are the goals of CPU scheduling?

The goals of CPU scheduling are to optimize system performance based

on various factors. Maximizing CPU utilization ensures that the CPU is

fully used, minimizing idle time. Fair allocation guarantees that no

process monopolizes the CPU, and each process receives its fair share of

time. Maximizing throughput aims to complete the most processes in a

PAGE 7

given time period. Minimizing turnaround time reduces the total time

a process takes to complete; while minimizing waiting time decreases

the time a process spends in the ready queue. Lastly, minimizing

response time is crucial for interactive systems, ensuring quick feedback

to users. Different scheduling algorithms prioritize these goals based on

system needs.

How do operating systems handle priority-based

scheduling and preemption?

Operating systems manage priority-based scheduling by assigning each

process or thread a priority value. The scheduler selects the process with

the highest priority for execution. If a higher-priority process becomes

ready while another is running, it may preempt the current process. In

this case, the scheduler interrupts the execution of the lower-priority

process and allocates CPU time to the higher-priority one. This ensures

that critical tasks are given precedence.

How does the choice of time quantum impact CPU

scheduling performance?

The time quantum, or time slice, determines how long a process runs

on the CPU before being preempted. A longer time quantum reduces

the scheduling overhead but may lower system responsiveness, as

processes are interrupted less frequently. A shorter time quantum

improves responsiveness by allowing processes to be preempted more

often, but it increases the scheduling overhead due to more frequent

context switches. The choice of time quantum affects the balance

between system efficiency and responsiveness.

PAGE 8

What are some common techniques used in real-time

CPU scheduling?

Real-time CPU scheduling relies on techniques like Earliest Deadline

First (EDF), Rate Monotonic Scheduling (RMS), and Deadline

Monotonic Scheduling (DMS). These methods prioritize processes

based on their deadlines, ensuring critical tasks meet timing

requirements. Unlike general-purpose scheduling algorithms, which

focus on maximizing throughput and responsiveness, real-time

scheduling guarantees that time-sensitive processes are executed within

their specified time constraints.

How do operating systems handle CPU scheduling in a

multi-core/multi-processor environment?

In a multi-core or multi-processor environment, the operating system

distributes tasks across multiple processors. Techniques like Symmetric

Multiprocessing (SMP) and Non-Uniform Memory Access (NUMA) are

commonly used for efficient scheduling. The scheduler must account

for factors like cache affinity and processor affinity to optimize

performance. Load balancing algorithms are also employed to ensure an

even distribution of workload across all processors, preventing

bottlenecks and enhancing system efficiency.

What are some advanced techniques for improving the

efficiency and fairness of CPU scheduling?

Multi-level feedback queue scheduling: This method dynamically

adjusts process priorities based on CPU usage and behavior, improving

both fairness and responsiveness.

PAGE 9

Round-robin with dynamic time quantum: The time quantum is

adjusted based on process behavior, optimizing CPU resource allocation.

Proportional-share scheduling: Processes are allocated CPU time in

proportion to their assigned weight, ensuring fair resource distribution.

Gang scheduling: Groups of related processes are scheduled to run

simultaneously on different processors, improving system resource

utilization and performance.

Lottery scheduling: This technique assigns "tickets" to processes, where

the number of tickets correlates with the process's priority. The

scheduler randomly selects a process based on the number of tickets,

allowing for probabilistic fairness and dynamic priority adjustments.

Fair Share Scheduling: This approach ensures that each user or group of

processes gets a fair portion of the CPU time based on predefined

allocations, which helps prevent resource monopolization by individual

users or tasks.

Earliest Deadline First (EDF) with resource reservations: For real-time

systems, EDF assigns priorities based on process deadlines. Coupled

with resource reservation mechanisms, this technique guarantees that

critical processes meet their timing constraints without starving other

processes.

Hierarchical scheduling: This method organizes the scheduler into

multiple levels, where each level manages a different group of processes.

It allows for a more granular control over process management,

enabling better optimization of system resources in complex

environments.

PAGE 10

How do operating systems handle CPU scheduling in

distributed computing and cloud computing

environments?

In distributed and cloud computing environments, CPU scheduling is

typically managed by a central scheduler or resource manager that

oversees multiple nodes or instances. These systems often employ a mix

of local and global scheduling strategies to ensure efficient workload

distribution and optimal resource utilization. Virtualization

technologies, such as containers and virtual machines, further aid in

isolating and controlling resource allocation for individual applications

or services, improving overall performance and scalability.

What is thread-level speculation, and how can it be used

to improve CPU scheduling performance?

Thread-level speculation is a technique that enhances CPU scheduling

by allowing the processor to speculatively execute multiple threads in

parallel, based on predicted outcomes. By overlapping thread execution,

it makes better use of available resources, reducing idle times and

improving overall performance and efficiency. This approach is

especially beneficial in exploiting parallelism in workloads, leading to

faster processing and resource utilization.

How do operating systems handle dynamic workload

changes?

Operating systems manage dynamic workload changes by adjusting

CPU scheduling based on real-time system conditions and workload

requirements. Key strategies include:

PAGE 11

Load balancing: Distributing workloads across multiple processors or

nodes to optimize resource usage and enhance performance.

Adaptive scheduling: Modifying scheduling parameters like time

quantum and priority dynamically, based on the current workload and

system state.

Predictive scheduling: Using historical data and predictive models to

anticipate workload shifts, allowing for proactive scheduling

adjustments.

Resource reservation: Allocating specific resources (e.g., CPU, memory)

to high-priority tasks to ensure they meet deadlines or performance

goals, particularly in real-time systems.

Elastic scaling: In cloud environments, systems can dynamically scale

resources, such as adding more virtual machines or containers, to

handle increased workload demands.

Priority-based adaptation: Continuously adjusting the priority of

processes based on their importance or urgency, ensuring that critical

tasks receive more CPU time while less critical tasks are deprioritized.

What are some emerging trends and technologies in

CPU scheduling?

Machine learning-based scheduling: Leveraging machine learning

algorithms to adaptively adjust scheduling parameters, optimizing

system performance based on real-time workload and environmental

factors.

Energy-efficient scheduling: Implementing scheduling strategies that

minimize power consumption, enhancing battery life in mobile devices

and reducing overall energy usage in data centers.

PAGE 12

Neuromorphic computing: Utilizing brain-inspired hardware and

software to improve both performance and energy efficiency in CPU

scheduling, enabling more efficient parallel processing and decision-

making.

Heterogeneous scheduling: This approach focuses on efficiently

managing workloads across diverse processing units, such as CPUs,

GPUs, and specialized accelerators (e.g., FPGAs), to fully utilize the

capabilities of heterogeneous systems.

Quantum computing: As quantum computing develops, new scheduling

algorithms will be required to optimize quantum and classical resource

usage, ensuring that quantum processors integrate seamlessly with

traditional CPUs.

Virtualization-aware scheduling: Virtualization technologies, such as

containers and hypervisors, are becoming more advanced, and CPU

scheduling must take into account the dynamic nature of virtual

machine workloads to optimize resource allocation across virtualized

environments.

What is the role of CPU scheduling in an operating

system?

CPU scheduling is essential for efficient resource management in an

operating system. It determines the order in which processes are

assigned CPU time, ensuring fair distribution and optimizing system

performance. The scheduler uses algorithms like priority scheduling,

round-robin, or shortest job first to select the next process, balancing

factors like responsiveness, throughput, and fairness. Through effective

CPU scheduling, the operating system maximizes CPU utilization while

minimizing waiting times and ensuring that all processes receive

appropriate attention.

PAGE 13

What are the different types of CPU scheduling

algorithms?

First-Come, First-Serve (FCFS):

Processes are scheduled in order they arrive. It is simple to implement,

but it can lead to long waiting times for short processes if they arrive

after longer ones. This issue is known as the "convoy effect."

Shortest Job First (SJF):

This algorithm prioritizes processes with the shortest burst time

(execution time). It minimizes the average wait time, which is efficient

for workloads where job lengths are predictable. However, it requires

knowledge of the process runtime in advance, which is difficult to

obtain. Additionally, it can lead to the starvation of longer processes if

they are always preceded by shorter ones.

Priority Scheduling:

Each process is assigned a priority, and the CPU is allocated to the

process with the highest priority. This can lead to starvation, where

lower-priority processes might never get executed if higher-priority

processes continuously arrive. It is also difficult to decide on appropriate

priority levels, and the algorithm may become biased if priorities are not

adjusted dynamically.

Round-Robin Scheduling (RR):

Round-robin scheduling allocates CPU time in equal time slices or

quanta. It is fair since each process gets an equal chance to execute,

which is suitable for time-sharing systems. However, frequent context

switching can lead to high overhead, especially if the time quantum is

too small. It might also not be efficient for processes with significantly

different burst times.

Multilevel Feedback Queue Scheduling:

PAGE 14

This algorithm uses multiple queues with varying priority levels, and

processes are moved between these queues based on their behavior and

CPU burst times. It adapts dynamically, providing a good balance

between fairness and efficiency. It can prioritize processes that need

immediate attention while allowing for flexibility in handling different

types of tasks. However, it is complex to implement and may incur

significant overhead due to queue management and priority

adjustments.

Shortest Remaining Time First (SRTF):

A preemptive version of SJF, this algorithm always executes the process

with the shortest remaining time. It can result in even lower wait times

than non-preemptive SJF but requires accurate estimates of process

execution time, which is difficult to obtain. Like SJF, it can also lead to

starvation for longer processes.

Earliest Deadline First (EDF):

This real-time scheduling algorithm prioritizes processes based on their

deadlines. The process with the earliest deadline gets the CPU. EDF is

optimal for real-time systems where meeting deadlines is critical.

However, it may not be feasible for systems where deadlines are difficult

to predict, or dynamic workloads are involved.

Rate Monotonic Scheduling (RMS):

A fixed-priority algorithm used in real-time systems, RMS assigns

priorities based on the frequency of the processes (i.e., processes that

need to execute more frequently get higher priority). It’s optimal for

periodic tasks but assumes that all tasks have fixed, known periods, and

may not be effective for tasks with varying execution times.

Lottery Scheduling:

This algorithm assigns a "lottery ticket" to each process, with a higher

number of tickets corresponding to a higher priority. The scheduler

randomly selects a ticket, and the process holding that ticket gets the

PAGE 15

CPU. It offers a probabilistic method of allocating CPU time, balancing

fairness and efficiency. However, it may introduce unpredictability and

is less deterministic than other algorithms.

How does CPU scheduling of multi-core processors

differ compared to single-core processors?

In a multi-core processor environment, CPU scheduling must consider

not only process priorities but also core affinity, which is the preference

for assigning a process to the same core it previously ran on. This

reduces cache misses and improves performance due to the locality of

reference. Unlike single-core systems where only one process can run at

a time, multi-core systems can execute multiple processes concurrently,

so the scheduler must balance the load across the available cores.

Strategies like load balancing, where tasks are dynamically redistributed

among the cores to ensure even utilization, and processor affinity,

which tries to keep processes on the same core to benefit from cache

reuse, are key to optimizing performance in multi-core systems.

How does the concept of "aging" help mitigate the issue

of starvation in priority-based CPU scheduling?

"Aging" is a technique used in priority-based scheduling to prevent

starvation, where processes with lower priority levels may never get a

chance to execute. As time passes, the priority of processes waiting in

the ready queue is gradually increased, ensuring that they eventually get

CPU time. Aging can effectively prevent starvation by ensuring that no

process is indefinitely delayed due to higher-priority tasks. However,

one drawback of aging is that it introduces complexity in managing

process priorities, and if the aging rate is too aggressive, it could lead to

processes that should be prioritized being delayed unnecessarily.

PAGE 16

Additionally, if the aging mechanism is not properly tuned, it may cause

the system to oscillate between giving priority to new and old tasks,

leading to suboptimal scheduling.

How do Earliest Deadline First (EDF) and Rate

Monotonic Scheduling (RMS) differ in their approach to

handling deadlines?:

Earliest Deadline First (EDF) and Rate Monotonic Scheduling (RMS) are

both widely used in real-time systems to handle task deadlines, but they

differ in their approach. EDF is a dynamic priority scheduling algorithm,

where tasks with the earliest deadline are given the highest priority. It

guarantees optimal task scheduling, meaning that if a set of tasks can be

scheduled, EDF will always find a feasible solution. However, EDF

requires the ability to compute deadlines dynamically and is more

computationally expensive. On the other hand, RMS is a static priority

scheduling algorithm where tasks are assigned fixed priorities based on

their periods (shorter periods receive higher priority). RMS is easier to

implement but does not guarantee optimal scheduling for all task sets.

For systems with tasks of varying periods, EDF is generally more suitable,

as it dynamically adapts to changing deadlines and can handle tasks

with different periods more efficiently. However, RMS may be preferred

for systems where the task set is periodic and predictable, as it has a

lower computational overhead.

