

Question & Answers

SCHEDULING

Sercan Külcü | Operating Systems | 10.04.2023

PAGE 1

Contents

What is CPU scheduling in the context of operating systems? 3

What is the role of CPU scheduling in maximizing system throughput,

responsiveness, and fairness? .. 3

What are some common CPU scheduling algorithms used in operating

systems? ... 3

How does the choice of CPU scheduling algorithm impact system

performance? ... 4

What is the relationship between CPU scheduling and process/thread

management in an operating system?.. 4

Briefly explain FCFS? .. 5

What is the RR scheduling algorithm? ... 5

What is the difference between preemptive and non-preemptive

scheduling?... 6

What are starvation and aging in OS? ... 6

What is Context Switching? ...7

What are the goals of CPU scheduling? ..7

How do operating systems handle priority-based scheduling and

preemption? ... 8

How does the choice of time quantum impact CPU scheduling

performance? ... 8

What is the difference between preemptive and non-preemptive CPU

scheduling?... 9

What are some common techniques used in real-time CPU scheduling,

and how do they differ from general-purpose scheduling? 9

How do operating systems handle CPU scheduling in a multi-

core/multi-processor environment? .. 9

PAGE 2

What are some advanced techniques for improving the efficiency and

fairness of CPU scheduling? ... 10

How do operating systems handle CPU scheduling in distributed

computing and cloud computing environments? 11

What is thread-level speculation, and how can it be used to improve

CPU scheduling performance? ... 11

How do operating systems handle dynamic workload changes, and what

are some strategies for adapting CPU scheduling to these changes? ... 12

What are some emerging trends and technologies in CPU scheduling?

.. 12

PAGE 3

What is CPU scheduling in the context of operating

systems?

CPU scheduling is the process by which the operating system selects a

process or thread from the ready queue and allocates CPU time to it.

The goal of CPU scheduling is to maximize system throughput,

responsiveness, and fairness by efficiently utilizing the available CPU

resources.

What is the role of CPU scheduling in maximizing

system throughput, responsiveness, and fairness?

The role of CPU scheduling is to ensure that the CPU is always busy

executing the highest-priority process or thread, thus maximizing

system throughput. It also ensures that the system remains responsive

to user requests by quickly switching between processes or threads.

Finally, CPU scheduling ensures that system resources are fairly

distributed among competing processes or threads.

What are some common CPU scheduling algorithms

used in operating systems?

Some common CPU scheduling algorithms used in operating systems

include:

- First-Come, First-Served (FCFS): This algorithm selects the

process/thread that has been in the ready queue for the longest time

and allocates the CPU to it.

PAGE 4

- Shortest Job First (SJF): This algorithm selects the process/thread

with the shortest estimated execution time and allocates the CPU to it.

- Priority Scheduling: This algorithm assigns a priority to each

process/thread and selects the one with the highest priority to allocate

the CPU to.

- Round Robin: This algorithm allocates a fixed time quantum to each

process/thread in turn, allowing them to execute for a specified amount

of time before being preempted.

How does the choice of CPU scheduling algorithm

impact system performance?

The choice of CPU scheduling algorithm can have a significant impact

on system performance. For example, SJF can result in better average

turnaround time and response time, but may lead to long waiting times

for longer processes/threads. Priority scheduling can ensure that high-

priority processes/threads are given precedence, but can lead to lower-

priority processes/threads being starved of CPU time.

What is the relationship between CPU scheduling and

process/thread management in an operating system?

CPU scheduling is closely related to process/thread management in an

operating system, as the scheduler must select a process/thread from

the ready queue to allocate the CPU to. The process/thread

management system must also keep track of the state of each

process/thread and manage the transitions between states.

PAGE 5

Briefly explain FCFS?

The term FCFS denotes First Come First Serve. In the scheduling

algorithm of FCFS, the job that appears first in the ready queue is given

to the CPU for execution, followed by the job that arrived second and so

on. FCFS is a non-preemptive scheduling algorithm, meaning that a

process will hold the CPU until it terminates or performs I/O. Therefore,

if a long job is assigned to the CPU, many shorter jobs after it will have

to wait.

What is the RR scheduling algorithm?

The round-robin scheduling algorithm is employed to ensure that

processes are scheduled fairly by assigning each job a time slot or

quantum and interrupting it if it is not finished by then. Jobs that arrive

during the quantum time are placed after the other jobs, making the

scheduling fair. Since round-robin is cyclic, starvation does not occur. It

is a variant of the first-come, first-served scheduling algorithm, with no

priority given to any process or task. Round-robin scheduling is also

referred to as time-slicing scheduling.

PAGE 6

What is the difference between preemptive and non-

preemptive scheduling?

Preemptive scheduling and non-preemptive scheduling are two

scheduling techniques used in operating systems. In preemptive

scheduling, the CPU is allocated to processes for a limited time, and the

executing process is interrupted in the middle of execution when a

higher-priority process arrives. On the other hand, in non-preemptive

scheduling, the CPU is allocated to the process till it terminates or

switches to waiting for state, and the executing process is not

interrupted in the middle of execution. Preemptive scheduling incurs

overhead in switching processes between the ready and running state

and maintaining the ready queue. In comparison, non-preemptive

scheduling has no overhead in switching processes between the running

and ready state. Preemptive scheduling offers flexibility by allowing

critical processes to access the CPU as they arrive in the ready queue,

whereas non-preemptive scheduling is considered rigid as the process

running CPU is not disturbed. Preemptive scheduling is also cost-

associative, as it must maintain the integrity of shared data, whereas this

is not the case with non-preemptive scheduling.

What are starvation and aging in OS?

Starvation is a common problem in resource management that can

occur in a scheduling system when a process does not receive the

resources it needs for a prolonged period. This can happen when the

resources are continually being allocated to other processes, leaving the

affected process unable to make progress. Starvation can lead to reduced

system performance, deadlock, and other issues. To avoid starvation in

a scheduling system, a technique called aging can be used. Aging

involves adding an aging factor to the priority of each request, which

PAGE 7

increases the priority of the request as time passes. This ensures that a

request will eventually become the highest priority request and will be

serviced by the system, preventing it from being starved of resources.

What is Context Switching?

Context switching is a critical component of modern multitasking

operating systems. When the CPU is shared among multiple processes,

the operating system must quickly and efficiently switch between

executing processes. This process is called context switching. During a

context switch, the CPU saves the current state of the process, including

the program counter, registers, and other relevant information, to a data

structure called the Process Control Block (PCB). The PCB holds all the

necessary information about a process, including its current state,

memory allocation, and other important metadata. Once the old

process's state is saved, the operating system can load the state of the

next process and begin executing its instructions. This is an essential

function for operating systems and enables the seamless execution of

multiple processes concurrently.

What are the goals of CPU scheduling?

CPU scheduling algorithms are designed to optimize the performance

of the system in terms of various objectives. Max CPU utilization aims

to keep the CPU as busy as possible, utilizing it to its fullest capacity.

Fair allocation of CPU is important to ensure that no process

monopolizes the CPU, and all processes are given a fair share of CPU

time. Max throughput focuses on maximizing the number of processes

that complete their execution per time unit. Min turnaround time aims

PAGE 8

to minimize the time taken by a process to finish execution, whereas

min waiting time focuses on minimizing the time a process spends in

the ready queue waiting for CPU time. Finally, min response time

targets minimizing the time when a process produces the first response,

which is important in interactive systems where users expect quick

responses. Different scheduling algorithms prioritize these objectives

differently based on the system requirements and workload.

How do operating systems handle priority-based

scheduling and preemption?

Operating systems typically implement priority-based scheduling by

assigning a priority value to each process or thread. The scheduler then

selects the process or thread with the highest priority for execution. If a

higher-priority process becomes ready to run, it may preempt the

currently running process, meaning the scheduler will interrupt the

running process and start executing the higher-priority process instead.

How does the choice of time quantum impact CPU

scheduling performance?

The time quantum, also known as the time slice, is the amount of time

a process is allowed to run on the CPU before being preempted by the

scheduler. A longer time quantum can reduce the overhead of the

scheduler, but may decrease system responsiveness. A shorter time

quantum can increase system responsiveness, but may increase the

overhead of the scheduler.

PAGE 9

What is the difference between preemptive and non-

preemptive CPU scheduling?

Preemptive CPU scheduling allows a running process to be interrupted

and replaced with another process if a higher-priority process becomes

ready to run. Non-preemptive CPU scheduling does not allow a running

process to be interrupted, and the current process must voluntarily

relinquish the CPU.

What are some common techniques used in real-time

CPU scheduling, and how do they differ from general-

purpose scheduling?

Real-time CPU scheduling typically uses techniques such as earliest

deadline first (EDF), rate monotonic scheduling (RMS), and deadline

monotonic scheduling (DMS). These techniques prioritize processes

based on their deadlines and guarantee that critical processes meet their

deadlines. General-purpose scheduling algorithms, on the other hand,

focus on maximizing system throughput and responsiveness, without

necessarily providing real-time guarantees.

How do operating systems handle CPU scheduling in a

multi-core/multi-processor environment?

In a multi-core/multi-processor environment, the operating system

must distribute the workload among the available processors. This can

be done using techniques such as symmetric multiprocessing (SMP) or

PAGE 10

non-uniform memory access (NUMA) scheduling. The scheduler must

also consider factors such as cache affinity and processor affinity when

making scheduling decisions. Additionally, load balancing algorithms

may be used to distribute the workload evenly across all available

processors.

What are some advanced techniques for improving the

efficiency and fairness of CPU scheduling?

Some advanced techniques for improving CPU scheduling in operating

systems include:

- Multi-level feedback queue scheduling: This technique assigns

processes to different priority levels based on their CPU usage and other

factors, allowing for better fairness and responsiveness.

- Round-robin scheduling with dynamic time quantum: This

approach dynamically adjusts the time quantum given to each process

based on its CPU usage and other factors, allowing for more efficient use

of system resources.

- Proportional-share scheduling: This technique assigns CPU time to

processes based on their relative weight, allowing for better resource

allocation and fairness.

- Gang scheduling: This technique schedules a group of related

processes to run simultaneously on different processors, allowing for

better utilization of system resources and improved performance.

PAGE 11

How do operating systems handle CPU scheduling in

distributed computing and cloud computing

environments?

In distributed computing and cloud computing environments, CPU

scheduling is typically handled by a central scheduler or resource

manager that manages resources across multiple nodes or instances.

These systems often use a combination of local and global scheduling

algorithms to balance workload and optimize resource usage.

Additionally, virtualization technologies such as containers and virtual

machines can be used to isolate and manage resource usage for

individual applications or services.

What is thread-level speculation, and how can it be used

to improve CPU scheduling performance?

Thread-level speculation is a technique used to improve CPU

scheduling performance by allowing the processor to speculatively

execute multiple threads in parallel, based on predicted outcomes. This

allows the processor to overlap the execution of multiple threads and

better utilize available resources, leading to improved performance and

efficiency.

PAGE 12

How do operating systems handle dynamic workload

changes, and what are some strategies for adapting CPU

scheduling to these changes?

Operating systems handle dynamic workload changes by dynamically

adjusting CPU scheduling parameters based on current system

conditions and workload demands. Some strategies for adapting CPU

scheduling to these changes include:

- Load balancing: This involves redistributing workloads across

multiple processors or nodes to balance resource usage and optimize

performance.

- Adaptive scheduling: This involves dynamically adjusting scheduling

parameters such as time quantum and priority based on workload

demands and system conditions.

- Predictive scheduling: This involves using historical data and

predictive models to anticipate future workload changes and adjust

scheduling accordingly.

What are some emerging trends and technologies in

CPU scheduling?

Some emerging trends and technologies in CPU scheduling and

performance optimization include:

PAGE 13

- Machine learning-based scheduling: This involves using machine

learning algorithms to dynamically adjust scheduling parameters based

on workload demands and system conditions.

- Energy-efficient scheduling: This involves optimizing CPU

scheduling to reduce energy consumption and improve battery life on

mobile devices.

- Neuromorphic computing: This involves using hardware and

software inspired by the structure and function of the brain to improve

performance and energy efficiency in CPU scheduling and other areas

of computing.

