

Question & Answers

STRUCTURES

Sercan Külcü | Operating Systems | 10.04.2023

PAGE 1

Contents

What is the structure of an operating system? ... 3

How does an operating system's structure impact on its performance? 3

What are some common components of an operating system's

structure? .. 3

The importance of reliability in an operating system? 4

What is the relationship between an operating system's structure and

its functionality? .. 4

Describe the objective of multi-programming. 4

What is the functionality of an Assembler? .. 5

What are interrupts? .. 5

What are a Trap and Trapdoor? ... 6

What is the difference between a trap and an interrupt? 6

What are some common design patterns used in operating system

structure? ..7

What is the difference between a monolithic and a modular operating

system structure? ... 8

How does an operating system handle system calls? 8

How does an operating system handle processes and threads? 9

What is the role of device drivers in an operating system's structure? . 9

What are techniques for improving the performance and scalability of

an operating system's structure? ... 10

How does an operating system's structure impact its ability to handle

distributed and cloud computing? .. 10

What are some common approaches to fault tolerance and error

handling? .. 11

PAGE 2

How does an operating system's structure impact its ability to handle

real-time computing and embedded systems? .. 11

What are some emerging trends and technologies in operating system

structure design and implementation? ... 12

What are the internal components of an operating system? 12

Which of the following instructions should be privileged? 13

3 hardware aids for designing an operating system and describe how

they can be used together to protect the operating system? 14

Which of the following must be system calls and why? 15

What is the difference between the supervisor mode of a microprocessor

and the administrator / root rights provided by an operating system? 16

What is the difference between a system call and a library function? . 17

What is the difference between static and dynamic library? 17

How does an operating system enforce privilege separation and access

control when using system calls? .. 18

What is the main function of the kernel in an operating system? 19

What is the difference between preemptive and cooperative

multitasking? .. 19

How does an I/O scheduler improve system performance? 20

PAGE 3

What is the structure of an operating system?

The structure of an operating system is organized hierarchically and

designed with modular components. These components, often layered,

interact to manage hardware resources and provide essential services to

applications. A well-structured OS ensures efficient performance and

simplifies debugging, maintenance, and feature extension. Common

models include monolithic kernels, microkernels, and hybrid systems,

each offering trade-offs in complexity, performance, and reliability.

How does an operating system's structure impact on its

performance?

The structure of an operating system plays a critical role in determining

its performance. A well-designed structure, such as a modular or layered

approach, enables efficient resource management and quick

communication between components, reducing overhead. Conversely,

a poorly organized structure can introduce latency, create bottlenecks,

and increase the likelihood of errors. The choice between architectures

like monolithic kernels, microkernels, or hybrid systems directly affects

factors such as speed, scalability, and fault tolerance.

What are some common components of an operating

system's structure?

An operating system's structure typically includes several key

components. The kernel is the core, responsible for managing hardware

resources and facilitating communication between hardware and

software. Device drivers act as intermediaries, enabling the OS to

interact with specific hardware devices. System libraries offer pre-

defined functions and APIs that applications use to perform system-

PAGE 4

level tasks. Other components, such as the file system and process

scheduler, ensure efficient data management and task execution within

the system.

The importance of reliability in an operating system?

Reliability is essential in operating system design because it ensures

consistent operation and minimizes the risk of failures. Unreliable

systems can lead to data loss, system crashes, and compromised security.

To achieve reliability, designers incorporate fault-tolerant mechanisms,

error detection, and recovery strategies. Techniques such as redundancy,

checkpointing, and robust exception handling help maintain system

stability even in the presence of hardware or software faults.

What is the relationship between an operating system's

structure and its functionality?

The structure of an operating system directly influences its functionality.

A modular or layered design facilitates the addition of features,

enhances compatibility with varied hardware, and simplifies

maintenance. Conversely, a monolithic structure, while less flexible, can

be optimized for performance in specific environments. The choice of

structure reflects a trade-off between factors such as performance,

scalability, security, and adaptability, shaping the OS's ability to meet

diverse requirements effectively.

Describe the objective of multi-programming.

The objective of multi-programming is to maximize CPU utilization by

ensuring that the CPU always has a task to execute. By maintaining

PAGE 5

multiple jobs in main memory, the system can switch to another job

whenever the current one is waiting for I/O operations. This approach

reduces CPU idle time and improves overall system throughput, making

more efficient use of resources.

What is the functionality of an Assembler?

An assembler is a program that translates assembly language into

machine code, allowing the CPU to execute the instructions directly.

Assembly language provides a human-readable representation of

machine instructions, making it easier to write programs that interact

with hardware. The assembler processes the source code written in

assembly, converts it into binary machine code, and generates an

executable file. This tool bridges the gap between low-level

programming and hardware, enabling developers to write efficient and

hardware-specific code while maintaining a level of abstraction above

raw machine instructions.

What are interrupts?

Interrupts are signals that temporarily halt the CPU's current execution

to address a high-priority event. Generated by hardware or software,

they allow the system to respond promptly to time-sensitive tasks, such

as I/O operations or hardware malfunctions. When an interruption

occurs, the CPU saves its current state and transfers control to an

Interrupt Service Routine (ISR), which handles the event. Afterward, the

CPU resumes its previous task. Interrupts are critical for efficient

multitasking and real-time communication between hardware and

software in modern computer systems.

PAGE 6

What are a Trap and Trapdoor?

A trap is a software-triggered interrupt that occurs in response to an

error or specific condition during program execution. When a trap is

triggered—such as by a division by zero, invalid memory access, or

illegal instruction, the CPU halts the current process and executes a

predefined interrupt handler to address the issue. Traps are commonly

used for error handling and debugging, often referred to as software

interrupts or exceptions.

In contrast, a trapdoor is a hidden entry point within a program that

bypasses normal authentication or security mechanisms. Often

introduced during development for testing or administrative access,

trapdoors pose significant security risks if exploited by attackers, as they

allow unauthorized access to systems or applications.

What is the difference between a trap and an interrupt?

In computer systems, traps and interrupts are mechanisms for handling

events during program execution, but they serve different purposes and

originate from distinct sources.

A trap, or software interrupt, is intentionally triggered by a program

through a specific instruction, such as a system call. Traps are used to

request operating system services like file I/O, memory allocation, or

process creation. They occur synchronously, meaning they are executed

as part of the program's normal flow, allowing controlled interaction

with the OS kernel.

An interrupt is a hardware-generated event that occurs asynchronously,

independent of the program's execution. Interrupts are triggered by

external events, such as user input, I/O device completion, or hardware

failures. The processor halts its current task and executes an interrupt

handler to address the event before resuming normal operation.

PAGE 7

The main distinction lies in their source and purpose: traps are initiated

by the program itself to interact with the operating system, while

interrupts are triggered by external events requiring immediate

processor attention. Traps enable controlled system calls, whereas

interrupts ensure timely responses to hardware events, making both

critical for efficient system operation.

What are some common design patterns used in

operating system structure?

Operating systems use design patterns to solve recurring structural

challenges efficiently. Common patterns include:

• Observer Pattern: Used for managing events and notifications,

allowing components to listen for and react to changes without

tight coupling.

• Factory Pattern: Simplifies object creation by centralizing it in a

factory class, commonly used for generating system resources like

processes or devices.

• Builder Pattern: Helps in constructing complex objects step-by-

step, often applied to create processes or system configurations.

• Adapter Pattern: Facilitates compatibility between incompatible

interfaces, enabling the operating system to interact with various

hardware or software components.

These patterns improve system modularity, flexibility, and

maintainability.

PAGE 8

What is the difference between a monolithic and a

modular operating system structure?

A monolithic operating system features a single, unified kernel that

handles all system services, including process management, memory

management, and device control. This approach often leads to faster

execution but can become complex and harder to maintain as the

system grows.

In contrast, a modular operating system divides the kernel into separate,

independent components, each responsible for specific tasks. This

modular design enhances flexibility, allowing components to be added,

removed, or updated without affecting the entire system, and simplifies

maintenance. However, it may introduce some overhead due to the

communication between modules.

How does an operating system handle system calls?

System calls serve as the interface between user programs and the

operating system, enabling programs to request services such as file

access, memory allocation, or process control. When a system call is

invoked, the operating system intercepts it through a well-defined

system call interface, translating the user request into the appropriate

kernel-level operation. This mechanism ensures secure, controlled

access to system resources and is central to the OS's structure,

maintaining separation between user space and kernel space.

PAGE 9

How does an operating system handle processes and

threads?

Processes and threads are fundamental components in an operating

system, representing units of execution. A process is an independent

program instance running in its own address space, while a thread is a

smaller execution unit within a process that shares the same memory

space. The operating system manages these entities by allocating

resources like CPU time and memory, ensuring that processes and

threads are scheduled efficiently. It also provides synchronization

mechanisms to prevent conflicts and facilitates communication

between them, ensuring proper coordination in multi-tasking

environments.

What is the role of device drivers in an operating

system's structure?

Device drivers are crucial software components that facilitate

communication between the operating system and hardware devices.

They act as an abstraction layer, allowing the OS to interact with devices

without needing to understand their specific hardware details. By

handling low-level operations, drivers enable devices like printers, disks,

and network interfaces to function within the system. Device drivers

work closely with the kernel and system call interface, translating high-

level OS requests into device-specific commands, ensuring seamless

integration and efficient resource management.

PAGE 10

What are techniques for improving the performance

and scalability of an operating system's structure?

Advanced techniques for enhancing the performance and scalability of

an operating system include:

Multithreading: Divides processes into parallel threads, enabling

concurrent execution and better resource utilization, thus improving

overall performance.

Kernel-level virtualization: Enables multiple virtual machines to run on

the same physical hardware, allowing efficient resource management

and isolation.

Distributed file systems: Facilitates data sharing across multiple systems,

enhancing accessibility and resource efficiency.

Load balancing: Distributes workloads across processors or nodes,

optimizing system performance and preventing bottlenecks.

Cache optimization: Enhances data retrieval speed by efficiently

managing system caches, reducing reliance on slower main memory.

How does an operating system's structure impact its

ability to handle distributed and cloud computing?

An operating system's structure significantly influences its capability to

support distributed and cloud computing. A modular and scalable

design facilitates resource management across multiple nodes, while

efficient communication and synchronization mechanisms ensure

smooth inter-process interactions. Additionally, a well-architected OS

can dynamically allocate resources, handle fault tolerance, and scale

efficiently to meet the demands of distributed and cloud environments.

PAGE 11

What are some common approaches to fault tolerance

and error handling?

Common approaches to fault tolerance and error handling in operating

system structure include:

Redundancy: Implementing duplicate hardware or software

components to ensure continued operation in case of failure.

Backup and Recovery: Maintaining copies of critical data and system

states to restore functionality after an error or crash.

Error Correction Codes (ECC): Using algorithms to detect and correct

memory errors, ensuring data integrity.

Fault Isolation: Separating components or processes to prevent a failure

in one part from affecting others, enhancing system stability and

resilience.

How does an operating system's structure impact its

ability to handle real-time computing and embedded

systems?

The structure of an operating system plays a key role in real-time

computing and embedded systems by influencing how it manages time-

sensitive tasks. A real-time OS is designed to guarantee deterministic

behavior, ensuring that critical tasks meet deadlines. This involves

priority-based scheduling, interrupt handling, and efficient resource

management, which are essential for responsive and predictable

operation in embedded environments.

PAGE 12

What are some emerging trends and technologies in

operating system structure design and implementation?

Emerging trends in operating system design include containerization,

which isolates applications in lightweight, portable environments;

serverless computing, which abstracts infrastructure management and

scales automatically; and edge computing, which processes data closer

to the source for reduced latency. Additionally, machine learning and

artificial intelligence are being integrated into OSes for dynamic

resource allocation, predictive maintenance, and performance

optimization. These technologies are reshaping OS architectures to

improve scalability, flexibility, and efficiency in handling complex

workloads.

What are the internal components of an operating

system?

The internal components of an operating system consist of the kernel,

device drivers, system libraries, and utilities. The kernel serves as the

central part, handling critical functions like memory management,

process scheduling, and I/O operations. Device drivers interface

between the OS and hardware, enabling communication with external

devices. System libraries provide APIs for application software to

interact with the OS. Utilities support system maintenance,

configuration, and performance optimization.

PAGE 13

Which of the following instructions should be

privileged?

Certain instructions in a computer system should be privileged,

meaning only the OS kernel is permitted to execute them, ensuring

secure access to critical hardware and system resources.

Among the listed instructions, the following should be privileged:

• Switch from user to monitor mode: This transitions the CPU from

user mode to a privileged mode, granting direct access to system

resources. Only the kernel should perform this action to maintain

security.

• Turn off interrupts: Disabling interrupts can prevent the CPU

from responding to external events. This should be restricted to

the kernel to avoid system instability or unauthorized

manipulation.

The remaining instructions do not require privileged access:

• Set value of timer: Modifying the timer register, typically used for

time-related tasks, is accessible to both user programs and the

kernel.

• Read the clock: Reading the clock register is a common operation

that can be performed by user programs as well as the kernel.

• Clear memory: Clearing memory can be performed by both user

applications and the kernel, depending on the context.

PAGE 14

3 hardware aids for designing an operating system and

describe how they can be used together to protect the

operating system?

Hardware aids play a crucial role in the design of an operating system

by providing mechanisms for system protection and efficiency. Here are

three key hardware aids used in OS design:

Memory Management Unit (MMU) handles virtual memory

management by mapping virtual addresses to physical addresses and

enforcing memory protection. It isolates processes by ensuring that

each has its own protected memory space, thus preventing

unauthorized access to memory areas by other processes. The MMU

ensures that processes cannot access or modify each other's memory,

preventing malicious or erroneous actions that could compromise

system integrity.

Interrupt Controller manages interrupts, prioritizing them and ensuring

they are handled correctly. By managing interrupt signals from devices,

the interrupt controller ensures that critical processes are not disrupted,

and it helps the OS maintain control over the processor. The interrupt

controller prevents device signals from overwhelming the CPU and

ensures that interrupts are processed in the correct order, safeguarding

system functions from interruptions.

Input/Output (I/O) Devices, such as keyboards, disk drives, and

network adapters, allow the operating system to interact with external

hardware. Device drivers mediate communication between the OS and

these devices, managing operations and ensuring safe and proper usage.

By controlling access to I/O devices through device drivers, the OS

ensures that devices operate within the bounds of system policies and

prevents unauthorized or unsafe device interactions.

PAGE 15

Which of the following must be system calls and why?

System calls enable user programs to request services from the

operating system, typically for operations that require privileged access

to system resources or interaction with hardware.

open (to open a file):

Opening a file requires access to the file system, which is a protected

resource. User programs cannot directly manipulate files without the

operating system’s intervention. Hence, the open function must be a

system call.

date (returns the current time):

Accessing the current time requires interaction with system resources,

such as the system clock, which is controlled by the operating system.

Therefore, the date function must be a system call.

encrypt (encrypt a stream of data):

Encryption often requires specialized system resources, including

cryptographic hardware, and may also involve security-related

operations. Consequently, encrypt should be a system call to leverage

OS-level services for encryption.

rename (rename a file):

Renaming a file alters file system metadata, which is a privileged

operation. As such, rename should be a system call to ensure proper

handling by the operating system.

sprintf, printf, and atoi, do not interact with system resources or

hardware and do not require privileged access. These functions can be

implemented as standard library functions, as they operate in user space

and are linked during compilation.

PAGE 16

What is the difference between the supervisor mode of

a microprocessor and the administrator / root rights

provided by an operating system?

The supervisor mode of a microprocessor and administrator/root rights

in an operating system both provide privileged access to system

resources, but they differ in their scope and level of control.

Supervisor Mode is a low-level processor state that allows direct access

to all system resources, including memory, I/O devices, and privileged

instructions. In this mode, the microprocessor can execute any

instruction and access any memory location, typically used by the OS

kernel and device drivers for tasks like memory management and

interrupt handling.

Administrator/Root Rights are higher-level privileges granted by the

operating system. These rights allow users to modify system

configurations, install software, and manage other administrative tasks.

While they provide extensive control, they are still subject to access

controls and permissions, which restrict the scope of the user’s actions

within the operating system.

The two concepts are linked. The operating system uses supervisor

mode to enforce administrator or root-level actions. When a user with

the proper rights requests privileged operations, the OS verifies

permissions and, if granted, utilizes supervisor mode to carry out the

task. If permissions are denied, the operation is blocked.

PAGE 17

What is the difference between a system call and a

library function?

A system call and a library function both facilitate specific operations

within a program, but they differ in how they interact with the operating

system and system resources.

System Call: A system call allows a user program to request services from

the operating system. It provides access to critical system resources like

files, memory, and hardware devices. System calls are typically invoked

to perform privileged operations, such as reading files, allocating

memory, or creating processes. When a system call is made, the

processor switches from user mode to kernel mode to execute the

operation, which incurs some overhead.

Library Function: A library function is a predefined block of code

provided in a software library, designed to perform common tasks such

as string manipulation or mathematical operations. These functions are

executed entirely within user mode, meaning no context switch is

needed. A library function is directly invoked by the program and does

not involve the operating system.

The key difference is that system calls require a context switch to kernel

mode, as they involve accessing protected system resources, whereas

library functions execute entirely within user mode, without invoking

the operating system.

What is the difference between static and dynamic

library?

Static Library: A static library is a collection of object files that are linked

directly into a program at compile time. The linker copies the necessary

object files from the static library into the final executable, embedding

PAGE 18

all the required code within the program. This results in a larger

executable but faster execution at runtime, as all functions are already

part of the program. Static libraries are not dependent on external files

once the program is compiled.

Dynamic Library: A dynamic library, or shared library, contains object

files that are linked at runtime. Instead of embedding code into the

executable, the program loads the dynamic library into memory and

accesses functions only when needed. This reduces the size of the

executable but requires the library to be present on the system during

execution. Dynamic libraries can be shared among multiple programs,

optimizing memory usage and enabling updates without recompiling

the programs.

The main distinction lies in the linking process: static libraries are linked

at compile time and included in the executable, while dynamic libraries

are linked at runtime and must be available during execution. Static

libraries increase the executable size but provide faster execution,

whereas dynamic libraries reduce executable size but introduce a

dependency on the library being available.

How does an operating system enforce privilege

separation and access control when using system calls?

An operating system enforces privilege separation through the use of

system calls, which act as the interface between user-space programs

and kernel-space services. The kernel operates in privileged mode

(supervisor mode), while user programs run in user mode. The key

distinction between these modes ensures that user programs cannot

directly access or modify critical system resources.

Access control is enforced using mechanisms such as user identifiers

(UIDs) and group identifiers (GIDs), which determine the permissions

for each system call. When a user process invokes a system call, the

PAGE 19

operating system checks the requesting process's privileges to

determine whether it is allowed to access the requested resource. The

kernel uses security models such as discretionary access control (DAC)

or mandatory access control (MAC) to ensure that only authorized

processes can perform sensitive operations.

In a multi-user environment, each user is assigned different access

rights. The OS may implement user-level access control lists (ACLs) to

govern which users or processes can invoke specific system calls, access

certain files, or manipulate system settings.

What is the main function of the kernel in an operating

system?

The kernel manages system resources, including the CPU, memory, and

hardware devices. It provides low-level services such as process

management, memory management, and device handling, acting as an

intermediary between user applications and hardware. It runs in

supervisor mode to have unrestricted access to system resources.

What is the difference between preemptive and

cooperative multitasking?

In preemptive multitasking, the operating system can interrupt and

suspend a running process to give CPU time to another process,

ensuring fair distribution of resources. In cooperative multitasking,

processes voluntarily yield control of the CPU, making it less efficient

and more prone to a single misbehaving process monopolizing the CPU.

PAGE 20

How does an I/O scheduler improve system

performance?

An I/O scheduler optimizes the order in which I/O requests are

processed. By rearranging requests, it can reduce seek time, improve

throughput, and prevent I/O bottlenecks. Techniques like elevator

algorithms minimize unnecessary disk arm movement, while

prioritization ensures that time-sensitive requests are handled first.

