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What is an I/O operation? 

An I/O operation (Input/Output operation) refers to the process of 

transferring data between an external device and the operating system. 

It involves reading or writing data to hardware devices such as disks, 

keyboards, or network interfaces, enabling interaction between the 

system and the outside environment. 

What are examples of external devices that can be used 

for I/O operations? 

Examples of external devices used for I/O operations include input 

devices like keyboards and mice, output devices such as monitors and 

printers, storage devices like USB drives and disk drives, as well as 

network interfaces like network adapters and scanners for data capture. 

These devices facilitate the exchange of data between the operating 

system and the external world. 

What is the purpose of I/O operations? 

The purpose of I/O operations is to enable data exchange between 

computers and external devices. This communication allows users to 

interact with the system, while the computer performs tasks like 

printing, file access, or data transfer to and from storage devices. I/O 

operations are essential for system functionality and user interaction. 

What is a device driver? 

A device driver is a software module that enables the operating system 

to interact with external hardware. It acts as a bridge, translating 
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operating system commands into device-specific instructions, and vice 

versa, ensuring proper communication between the system and the 

hardware. 

What are common I/O errors and failure modes? 

I/O errors and failure modes include communication breakdowns, 

device failures, and resource conflicts. Operating systems often respond 

by displaying error messages, retrying failed operations, or reallocating 

resources to resolve conflicts. In more critical cases, the system may stop 

or shut down the device to prevent data corruption or other system 

issues. 

Enumerate the different RAID levels? 

RAID (Redundant Array of Independent Disks) is a storage technology 

that combines multiple disks to improve performance, reliability, and 

capacity. The most common RAID levels are: 

RAID 0: Offers no redundancy but maximizes performance by striping 

data across multiple disks. 

RAID 1: Provides redundancy through mirroring, ensuring data is 

duplicated on two disks, but at the cost of performance. 

RAID 5: Uses striping with parity, offering a balance of performance, 

redundancy, and storage efficiency. It can withstand a single disk failure. 

RAID 6: Like RAID 5, but with dual parity, allowing for the failure of two 

disks without data loss. 
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What is the Direct Access Method? 

The Direct Access Method allows data to be accessed directly by its 

location on the disk, treating the file as a series of numbered blocks or 

records. This method supports random access to any block for reading 

or writing, making it efficient for large data sets. 

Direct Memory Access (DMA) is a related technique where I/O devices 

transfer data directly to or from memory, bypassing the CPU. Managed 

by a DMA controller, DMA frees the CPU to perform other tasks while 

data is transferred, improving overall system performance. 

What is Cycle Stealing? 

Cycle stealing is a technique where I/O devices gain access to memory 

or the system bus without interrupting the CPU's operation. It functions 

similarly to Direct Memory Access (DMA) by allowing data transfers 

between I/O devices and memory with minimal CPU involvement. 

During cycle stealing, the CPU is briefly paused for a few clock cycles to 

give the I/O device time to access memory. This method minimizes the 

impact on CPU performance. It was commonly used in early systems 

without DMA controllers and is still found in embedded systems lacking 

dedicated DMA hardware. 

What is rotational latency? 

Rotational latency refers to the time it takes for the disk's desired sector 

to rotate into position for access by the read/write heads. It is a key 

component of overall disk access time, with faster disk rotation reducing 

latency. Disk scheduling algorithms help minimize rotational latency by 

determining the optimal order of request processing. The scheduler 

aims to position the head closest to the next requested sector, reducing 
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both head movement and rotational delay. By optimizing this process, 

disk I/O performance is enhanced, leading to quicker read/write 

operations. 

What is seek time? 

Seek time is the time required for the disk’s read/write head to move 

from its current position to the target track. It is influenced by factors 

such as the distance to travel, the speed of the disk arm, and the disk's 

mechanical properties. Efficient disk scheduling algorithms aim to 

minimize seek time by processing requests in an optimal order. 

Reducing seek time, along with rotational latency, improves disk access 

speed and overall system performance. 

What is Buffer? 

A buffer is a temporary memory area used to hold data being transferred 

between devices or between a device and an application. It helps smooth 

the data flow, allowing for more efficient transfers. For example, when 

transferring data from a hard drive to memory, a buffer stores the data 

temporarily before it reaches its final destination. This enables data to 

be processed in smaller chunks, improving transfer speed and overall 

system performance. Buffers can be implemented in both hardware and 

software, and they are crucial for optimizing data handling in modern 

computer systems. 
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What is the difference between synchronous and 

asynchronous I/O operations? 

Synchronous I/O operations are blocking, meaning the calling process 

waits for the I/O operation to finish before continuing. Asynchronous 

I/O operations are non-blocking, allowing the calling process to 

continue executing while the I/O operation is in progress. 

Synchronous I/O is simpler and more predictable, as the process can 

proceed once the I/O operation is completed. However, it can lead to 

inefficiency if the operation is slow or if multiple I/O operations need to 

be executed sequentially. 

Asynchronous I/O improves performance and responsiveness by 

allowing the process to perform other tasks during I/O. However, it 

introduces complexity, requiring careful management and 

synchronization of resources to avoid conflicts. 

How do operating systems handle I/O operations 

involving large data sets or high data transfer rates? 

Operating systems employ several techniques to optimize I/O 

operations with large data sets or high transfer rates. One method is 

buffering, which temporarily stores data in memory before it is written 

to disk or transmitted, reducing I/O operations and allowing the system 

to optimize data flow. 

Direct Memory Access (DMA) is another technique that enables devices 

to transfer data directly to and from memory, bypassing the CPU. This 

reduces CPU load and allows for parallelism between I/O tasks and 

processing. 
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Caching is also used to store frequently accessed data in faster storage, 

reducing the need for repeated disk or network access, thus improving 

I/O performance. 

What is buffering in the context of I/O operations? 

Buffering in I/O operations refers to temporarily storing data in memory 

before writing it to disk or transmitting it over a network. By using 

buffers, operating systems reduce the frequency of I/O operations and 

can optimize the sequence of data transfer. 

When a process writes data, it is first placed in a memory buffer. The 

operating system then either waits until the buffer is full or when the 

process explicitly requests the data be written or transmitted. This 

technique minimizes I/O operations and enhances overall system 

performance by efficiently managing data transfers. 

What is DMA (Direct Memory Access)? 

Direct Memory Access (DMA) is a technique that enables devices to 

transfer data directly to and from memory without CPU intervention. 

This is particularly useful in high-speed I/O operations like disk or 

network transfers, where involving the CPU in every byte of data would 

slow down the process. 

Device drivers manage I/O operations and often utilize DMA to move 

data between hardware devices and memory, freeing the CPU to 

perform other tasks. DMA improves system performance by reducing 

CPU workload during large data transfers. 



PAGE 9 

How do operating systems handle I/O operations 

involving multiple devices or multiple applications? 

Interrupt-driven I/O: The operating system uses interrupts to notify the 

CPU when an I/O operation finishes, enabling the CPU to perform other 

tasks while waiting. 

I/O Scheduling: Scheduling algorithms prioritize I/O requests based on 

factors like request type, device priority, and system load, determining 

the order of processing. 

Buffering: Buffers temporarily store data during transfers between I/O 

devices and applications, facilitating smoother data movement. 

Caching: Frequently accessed data is stored in faster cache memory, 

reducing reliance on slower storage devices and speeding up I/O 

operations. 

I/O Completion Ports: Used in Windows, this technique allows multiple 

applications to share a single completion queue, reducing overhead and 

improving scalability. 

Multiplexing: The operating system allocates time slices to different 

applications, allowing them to share access to I/O devices. 

What are techniques for optimizing I/O performance? 

Parallel I/O: By splitting I/O operations into smaller tasks that can run 

simultaneously, parallel I/O reduces latency and enhances throughput. 

Caching: Frequently accessed data is stored in memory, minimizing the 

need for slower disk access and boosting performance. 
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Prefetching: This technique loads data into memory before it is 

requested, anticipating future I/O operations and further reducing 

latency. 

I/O Scheduling: I/O requests are prioritized based on their importance, 

ensuring critical operations are processed promptly and efficiently. 

Compression: By compressing data before it is transferred, the amount 

of data being moved between devices or applications is reduced, leading 

to faster transfers and less I/O strain. 

Direct I/O: This bypasses the system's cache, allowing data to be written 

directly to the disk, which can be beneficial for large transfers where 

caching would be inefficient. 

How do operating systems handle I/O operations 

involving non-traditional devices or interfaces, such as 

GPUs or network interfaces? 

Operating systems manage I/O operations for non-traditional devices, 

such as GPUs or network interfaces, using specialized device drivers and 

APIs tailored to the unique capabilities of these devices. These drivers 

abstract hardware details, enabling applications to interact with the 

devices without needing in-depth knowledge of their architecture. 

For GPUs, operating systems often leverage frameworks like CUDA or 

OpenCL, which are optimized for parallel processing and high data 

throughput. These frameworks handle tasks such as memory allocation, 

kernel execution, and data transfer between the GPU and main memory. 

Optimizing I/O performance for GPUs often involves techniques like 

overlapping computation and data transfer, minimizing latency while 

maximizing throughput. 

Network interfaces, on the other hand, rely on network stacks and 

protocols managed by the operating system. Advanced techniques, such 
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as zero-copy networking, allow data to be transferred directly between 

the application and the network interface without intermediate copying, 

reducing CPU overhead. 

Both device types pose challenges due to their distinct performance 

characteristics. GPUs require efficient handling of high bandwidth and 

parallelism, while network interfaces demand low-latency 

communication and efficient packet processing. Operating systems 

address these challenges with hardware-specific optimizations and 

scheduling strategies to ensure seamless integration and performance. 

What is the role of virtualization in I/O operations? 

Virtualization plays a critical role in managing I/O operations in 

environments where multiple operating systems or applications share 

the same physical hardware. A virtualization layer, often called a 

hypervisor, abstracts the underlying hardware and provides virtual 

devices to guest operating systems, enabling them to perform I/O 

operations as if they had direct access to the hardware. 

One key challenge in virtualized environments is contention for 

physical I/O resources. For instance, multiple virtual machines (VMs) 

may attempt to access the same storage device or network interface 

simultaneously, leading to potential bottlenecks. To address this, the 

hypervisor employs techniques such as I/O scheduling, which 

prioritizes and organizes I/O requests to ensure fair and efficient 

resource usage. 

Additionally, virtualization introduces overhead due to the need to 

translate virtual I/O operations into physical ones. Advanced 

optimizations, like paravirtualized drivers, help mitigate this by 

providing direct communication between guest systems and the 

hypervisor, bypassing some layers of abstraction. 
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What are some emerging trends and technologies in I/O 

operations? 

Non-Volatile Memory (NVM): Technologies like NAND flash and 3D 

XPoint provide high-speed storage with low latency. These memory 

types are increasingly used in solid-state drives (SSDs) to improve data 

access times compared to traditional spinning disks. 

Persistent Memory: Persistent memory, such as Intel Optane, bridges 

the gap between DRAM and storage. It offers high capacity and 

durability while allowing direct access by the CPU, reducing reliance on 

slower storage devices. 

RDMA (Remote Direct Memory Access): RDMA facilitates direct 

memory-to-memory data transfers between devices across a network, 

bypassing the CPU. This significantly lowers latency and increases 

throughput in high-performance computing and distributed systems. 

NVMe (Non-Volatile Memory Express): NVMe is a protocol optimized 

for NVM devices, offering faster and more efficient communication 

compared to legacy protocols like SATA and SAS. It has become the 

standard for modern SSDs. 

How do modern operating systems optimize I/O 

management? 

Caching: Frequently accessed data is stored in memory to reduce the 

need for repeated disk or network access. Disk caching reduces seek and 

transfer times, while network caching minimizes latency by locally 

storing web pages or network resources. 

Asynchronous I/O: By allowing processes to continue executing while 

I/O operations complete, asynchronous I/O reduces idle CPU time. APIs 
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like POSIX AIO or Windows I/O Completion Ports enable non-blocking 

I/O operations for applications. 

Parallel I/O: Multi-core processors and multi-threading architectures 

are leveraged to perform I/O operations concurrently. For instance, 

RAID (Redundant Array of Independent Disks) configurations improve 

disk throughput by distributing data across multiple drives. 

I/O Scheduling: Scheduling algorithms, such as deadline scheduling or 

anticipatory scheduling, prioritizing requests to reduce latency and 

improve fairness. These techniques optimize the sequence of operations 

to avoid delays caused by mechanical or network constraints. 

Direct Memory Access (DMA): DMA reduces CPU overhead by enabling 

devices to transfer data directly to and from memory without CPU 

intervention, improving the efficiency of high-speed I/O tasks. 

I/O Offloading: Specialized hardware, such as GPUs or smart NICs 

(Network Interface Cards), handles specific I/O operations like 

encryption or data compression, freeing up the CPU for other tasks. 

Prefetching: Operating systems anticipate future I/O requests by 

loading data into memory before it is explicitly requested, reducing wait 

times for applications. 

Virtualization and Abstraction: Virtualization layers and abstraction 

techniques provide consistent I/O interfaces while optimizing access to 

physical devices in shared environments. 

How do I/O operations enable efficient and reliable data 

transfer? 

I/O operations play a critical role in ensuring the smooth transfer of data 

between applications and peripheral devices like disk drives, network 
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interfaces, and printers. The operating system achieves this through a 

combination of abstraction, management, and error handling: 

Abstraction Layer: The operating system provides a uniform interface to 

applications, allowing them to interact with hardware devices without 

needing to understand the intricacies of device-specific protocols or 

hardware implementation. This abstraction simplifies application 

development and ensures compatibility across different hardware. 

Efficient Data Management: The operating system manages data 

transfer by optimizing operations, such as batching small I/O requests, 

using buffers to store intermediate data, and scheduling I/O tasks to 

minimize latency and maximize throughput. 

Error Handling and Recovery: To ensure reliability, the operating 

system includes mechanisms for detecting and recovering from errors 

during data transfer. This might involve retries, logging errors, or using 

checksums to verify data integrity. 

What is the general behavior of device drivers? 

Device drivers act as intermediaries between hardware devices and the 

operating system, managing hardware interfaces and providing software 

access to the device. Here's an overview of how they behave for different 

types of devices: 

Keyboards: A keyboard driver registers with the operating system to 

process key events. When a key is pressed, the keyboard controller sends 

an interrupt to the CPU. The driver reads the input from the keyboard 

buffer, translates it into a character code, and forwards it to the 

operating system for further processing. 

Sound Cards: The sound card driver manages audio hardware, 

facilitating playback and recording. It interacts with the operating 

system via an audio API (e.g., ALSA or PulseAudio) and may provide 
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features like hardware acceleration, mixing, and audio effects 

processing. It converts application-level audio commands into 

hardware-specific operations. 

Speakers: Speakers rely on sound card drivers, which send audio data 

through a digital-to-analog converter (DAC). The driver ensures the 

audio signal is processed and includes controls for volume, balance, and 

equalization. 

DVD Drives: A DVD driver manages communication between the 

operating system and the drive. It uses file system drivers (e.g., ISO 9660 

or UDF) to allow access to DVD contents. The driver handles tasks like 

data caching, error correction, and ensuring smooth data retrieval from 

the disc. 

Other Devices: Drivers for hardware such as network adapters, printers, 

and cameras vary in complexity. They provide an interface for the 

operating system to interact with the hardware, perform data transfer, 

and handle errors or exceptions that occur during operation. 

What is the role of a driver? 

A driver serves as a crucial intermediary between the operating system 

and a hardware device, enabling the two to communicate effectively. Its 

primary role is to abstract the hardware-specific details and provide a 

standardized interface that the operating system can use to control the 

device. Without drivers, hardware devices would remain inaccessible to 

the operating system and applications. The specific responsibilities of a 

driver depend on the type of hardware it manages: 

Keyboard Drivers: Translate keystrokes into character codes the 

operating system can process. 

Printer Drivers: Convert print commands into a format the printer 

hardware can understand. 
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Display Drivers: Manage screen output and may include advanced 

features like hardware acceleration or support for 3D rendering. 

Sound Drivers: Handle audio playback and recording, often providing 

capabilities like audio effects and stream mixing. 

Network Drivers: Facilitate communication over networks by 

translating protocol-level operations into hardware actions. 

In many cases, drivers also extend functionality beyond basic hardware 

control. For example, a storage driver might implement caching to 

enhance performance, while a network driver could include error 

handling and retransmission mechanisms. 

Why do drivers frequently rely on buffers for managing 

devices? 

Drivers rely on buffers to handle the differences in speed and data 

transfer rates between devices and the CPU. Most devices operate 

independently and at speeds that rarely match the processing 

capabilities of the CPU. Buffers act as temporary storage areas that 

ensure smooth data transfer by bridging these speed mismatches. For 

instance: 

Input Buffers: When a device, such as a keyboard or network interface, 

sends data to the system, the CPU may not be immediately available to 

process it. The incoming data is stored in a buffer until the CPU can 

retrieve it. 

Output Buffers: When the CPU sends data to a device, such as a printer 

or disk drive, the device may not be ready to receive it. The buffer holds 

the data temporarily, allowing the device to process it at its own pace. 

Buffers also help accommodate burst data transfers. A high-speed 

device may send or receive data in bursts that exceed the CPU's capacity 
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to handle in real time. By temporarily storing this data in a buffer, the 

driver ensures no data is lost and allows the CPU to process it 

incrementally. 

Additionally, buffers are critical for managing asynchronous operations, 

where data transfers occur independently of the CPU's schedule. This is 

common in scenarios like disk I/O or network communication, where 

latency or variable speeds can disrupt performance without buffering. 

Why must a USB key be safely removed before 

unplugging it? 

When a USB key is connected to a computer, the operating system 

mounts it as a file system, enabling data to be read from or written to 

the device. If the USB key is removed without properly detaching or 

safely ejecting it, several issues may arise: 

Incomplete Write Operations: Operating systems often employ write 

caching to improve performance. Data intended for the USB key may be 

temporarily stored in memory and not immediately written to the 

device. Removing the USB key prematurely could result in incomplete 

data transfers or corrupted files. 

File System Integrity: The operating system keeps track of the mounted 

file system's state. Abrupt removal of the USB key may leave the file 

system in an inconsistent state, leading to corruption. This can render 

the device unreadable or unusable until repaired. 

Resource Cleanup: Detaching the USB key signals the operating system 

to close any open files or processes using the device. This ensures that 

no application or service is actively accessing the USB key during 

removal. 

By using the "safely remove" or "eject" option, the operating system 

flushes any pending data to the device, unmounts the file system, and 
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releases hardware resources. This prevents data loss, preserves the 

device's functionality, and ensures the file system remains intact. 

Comparison of UNIX and Windows NT Approaches to 

Kernel I/O Coordination 

In UNIX, coordination is achieved by manipulating shared in-kernel 

data structures, which offers several advantages. It is efficient because it 

avoids the overhead of message passing, which can slow down system 

performance. The approach is also relatively simple, making it easy to 

understand and maintain. Furthermore, the use of shared data 

structures provides flexibility in how I/O components are coordinated. 

However, there are significant drawbacks. The primary issue is security, 

as multiple components accessing the same data structure can create 

vulnerabilities. Additionally, as the system grows and the number of I/O 

components increases, coordinating them through shared data becomes 

more complex. This approach also struggles with scalability in large 

systems, as managing many components and data structures can 

become unmanageable. 

Windows NT, on the other hand, employs object-oriented message 

passing for kernel I/O coordination, which provides its own set of 

benefits. The primary advantage is enhanced security, as message 

passing ensures that data is transmitted securely between components. 

The method is also simple and easy to maintain, and it scales well for 

large systems, allowing it to handle many I/O components and messages 

effectively. However, this approach is not without its downsides. The 

main drawback is performance overhead, as message passing incurs 

extra processing time. Furthermore, as the system expands, the 

complexity of managing numerous messages and components can 

increase. Finally, compared to UNIX, the object-oriented message 

passing model is less flexible, potentially limiting the ways in which I/O 

components can be coordinated and managed. 
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What are the actions taken when a user program makes 

write() system call? 

When a user program makes a write() system call, the operating system 

performs a series of actions to ensure data is written correctly, 

depending on whether the file is cached in main memory or not. 

If the file is not cached in memory, the process begins when the user 

program invokes write(), passing the file descriptor, buffer, and data size. 

The operating system first checks the file descriptor to ensure the file is 

open for writing. If the file is not open, the operating system opens it 

and assigns a file descriptor. Next, the OS allocates a disk block for 

storing the data and writes the data to the block on the disk. The file 

pointer is then updated to the end of the newly written data, and control 

is returned to the user program. 

In the case where the file is cached in memory, the sequence starts 

similarly with the write() system call from the user program. The 

operating system verifies the file descriptor and opens the file if 

necessary. The OS then checks the file cache for the corresponding file 

block. If the block isn't found in memory, it reads the block from disk 

into the cache. The data from the user buffer is copied into the cache, 

and the file pointer is updated. If delayed-write techniques haven't been 

applied, the OS may immediately write the cached data back to disk to 

ensure persistence. Finally, the OS returns control to the user program. 

What is output of FCFS, SSTF, SCAN, LOOK, C-SCAN 

scheduling algorithms given input?  

Given a disk drive with 5000 cylinders, numbered 0 to 4999, and a 

current head position at cylinder 143, and the previous request was at 

cylinder 125. the following disk scheduling algorithms are applied to 
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determine the total movement in cylinders for the set of pending 

requests: 86, 1470, 913, 1774, 948, 1509, 1022, 1750, and 130. 

 

Using FCFS disk-scheduling algorithm: 

143 -> 86 -> 1470 -> 913 -> 1774 -> 948 -> 1509 -> 1022 -> 1750 -> 130 

The total distance the disk arm moves is: 

= 57 + 1384 + 557 + 861 + 826 + 561 + 487 + 728 + 1620 = 7254 cylinders 

 

Using SSTF disk-scheduling algorithm: 

143 -> 130 -> 86 -> 913 -> 948 -> 1022 -> 1470 -> 1509 -> 1750 -> 1774 

The total distance the disk arm moves is: 

= 13 + 44 + 827 + 35 + 74 + 448 + 39 + 241 + 24 = 1745 cylinders 

 

Using SCAN disk-scheduling algorithm: 

143 -> 913 -> 948 -> 1022 -> 1470 -> 1509 -> 1750 -> 1774 -> 4999 -> 130 -> 

86 

The total distance the disk arm moves is: 

770 + 35 + 74 + 448 + 39 + 241 + 24 + 3225 + 4869 + 44 = 8705 cylinders 

 

Using LOOK disk-scheduling algorithm: 

143 -> 130 -> 86 -> 913 -> 948 -> 1022 -> 1470 -> 1509 -> 1750 -> 1774 

The total distance the disk arm moves is: 

= 13 + 44 + 827 + 35+ 74 + 448 + 39 + 241 + 24 = 1741 cylinders 
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Using C-SCAN disk-scheduling algorithm: 

143 -> 913 -> 948 -> 1022 -> 1470 -> 1509 -> 1750 -> 1774 -> 4999 -> 0 -> 

86 -> 130 

The total distance the disk arm moves is: 

= 770 + 35 + 74 + 448 + 39 + 241 + 24 + 3225 + 4999 + 86 + 44 = 7910 

 

 


