

Virtual Memory

OPERATING SYSTEMS

Sercan Külcü | Operating Systems | 16.04.2023

PAGE 1

Contents

Contents .. 1

1 Introduction ... 4

1.1 Definition and importance of virtual memory 4

1.2 Overview of the goals of the chapter ... 6

1.3 Background ...7

1.3.1 Partially-Loaded Programs ...7

1.3.2 Benefits of Virtual Memory ... 9

1.3.3 Virtual address space ... 9

2 Paging and Segmentation ... 10

2.1 Paging ... 11

2.2 Segmentation ... 11

2.3 Combined Paging and Segmentation .. 12

2.4 Mapping virtual to physical addresses .. 16

2.4.1 Page tables... 18

2.4.2 Page table entries .. 19

2.4.3 Speeding up paging ...20

2.4.4 Translation Lookaside Buffers (TLBs).................................... 21

2.4.5 Software to manage the TLB .. 25

2.4.6 Multilevel page tables ...26

2.4.7 Inverted page tables .. 27

3 Page Fault Handling ... 28

3.1 Causes and consequences of page faults 28

3.1.1 Demand Paging ...29

3.1.2 Swapping ... 32

PAGE 2

3.1.3 Consequences of Page Faults .. 32

3.1.4 Stages in Demand Paging: Handling Page Faults.................. 33

3.2 Page fault handling mechanism .. 35

3.3 Instruction backup ...39

3.4 Locking pages .. 40

3.5 Backing store... 41

3.5.1 Paging to a static swap area: .. 42

3.5.2 Backing up pages dynamically:... 42

4 Page Replacement Algorithms ... 43

4.1 Page replacement algorithms: ... 43

4.1.1 First-In-First-Out (FIFO) ... 44

4.1.2 Least Recently Used (LRU) .. 46

4.1.3 Optimal Page Replacement (OPT) .. 49

4.1.4 Clock Page Replacement ... 51

4.1.5 Not Recently Used (NRU) ... 55

4.1.6 Second-Chance Page Replacement ...58

4.1.7 Random Page Replacement ... 60

4.1.8 WSClock Algorithm ..63

4.2 Performance evaluation of page replacement algorithms 65

4.3 Working set model and page thrashing 66

4.3.1 Working Set Model .. 67

4.3.2 Page Thrashing .. 69

5 Designing a paging system ... 73

5.1 Local vs global allocation policy .. 73

5.2 Load control ... 74

5.3 Page size .. 75

PAGE 3

5.4 Separation instruction and data spaces 76

5.5 Shared pages ... 77

5.6 Shared Libraries ... 78

5.7 Memory-Mapped Files .. 79

5.8 Copy-on-write (COW) mechanism and its benefits 80

5.9 Cleaning policy .. 82

6 Case Study: Virtual Memory in Windows ...83

6.1 Overview of Windows' approach to virtual memory 84

6.2 Comparison with other operating systems 86

7 Conclusion .. 87

PAGE 4

Chapter 9:
Virtual Memory

1 Introduction

Virtual memory is an essential component of modern operating systems.

It allows a computer system to use more memory than physically

available, by temporarily transferring data from RAM to disk. This

technique allows applications to use more memory than is physically

available, leading to a more efficient and powerful computing

experience.

In this chapter, we will explore the concept of virtual memory, including

the definition and importance of the topic. We will also discuss the goals

of the chapter and what readers can expect to learn by the end. By

understanding the importance of virtual memory and how it works,

readers will have a better understanding of how modern computer

systems operate.

1.1 Definition and importance of virtual memory

In modern computing, the need for efficient memory management has

become increasingly important. With the proliferation of complex and

memory-intensive applications, it is essential that an operating system

(OS) provides an effective mechanism for managing memory. One such

mechanism is virtual memory, which allows a program to use more

memory than the system physically has available. This chapter will

discuss the definition and importance of virtual memory, its

PAGE 5

implementation, and how it improves the overall performance of a

computer system.

Virtual memory is a technique that enables a computer system to use

more memory than is physically available. It allows an operating system

to map a process's logical address space to a physical memory location.

In other words, it provides an illusion of having more memory than is

actually present in the system. Virtual memory is implemented through

a combination of hardware and software, with the hardware responsible

for translating virtual addresses into physical addresses, and the

software managing the mapping between virtual and physical addresses.

Virtual memory is crucial for the efficient operation of modern

computer systems for several reasons. Firstly, it allows multiple

processes to run concurrently, even when the total memory

requirements exceed the amount of physical memory available. This

means that a computer can run several large and complex programs

simultaneously without running out of memory. Secondly, virtual

memory reduces the amount of time it takes to load and execute a

program. When a program is executed, its code and data are loaded

from storage into memory. Without virtual memory, the entire program

and all its data would need to be loaded into memory before execution.

With virtual memory, only the necessary parts of a program are loaded

into memory, resulting in faster load times and reduced memory

requirements.

Virtual memory also provides a level of memory protection, ensuring

that each process is isolated from other processes and the operating

system itself. This protection prevents one process from accessing the

memory of another process or the operating system, which is essential

for the overall security and stability of the system. Finally, virtual

memory enables the use of advanced memory management techniques,

such as paging and segmentation, which further improve the efficiency

of memory usage.

PAGE 6

In conclusion, virtual memory is a vital component of modern computer

systems. It allows for the efficient use of memory by providing an

illusion of more memory than is physically available, reducing the

amount of time it takes to load and execute programs, and providing a

level of memory protection. Virtual memory has enabled the

development of more complex and memory-intensive applications,

allowing for the evolution of modern computing.

1.2 Overview of the goals of the chapter

Virtual memory is a crucial aspect of modern computer systems, and it

plays a critical role in ensuring optimal performance and efficient

memory management. The primary goal of virtual memory is to provide

a seamless, uninterrupted, and consistent memory management

environment for all applications and processes, regardless of their size

or memory requirements. This chapter will provide an overview of the

key goals of virtual memory and how they contribute to effective

memory management.

Goals of Virtual Memory:

 Abstraction of Physical Memory: The primary goal of virtual

memory is to provide a layer of abstraction between the physical

memory and the applications that use it. This abstraction allows

applications to access memory in a consistent and uniform way,

regardless of the underlying physical memory structure.

 Protection and Isolation: Another critical goal of virtual memory

is to provide a mechanism for protecting and isolating memory

regions. This protection ensures that applications cannot access

memory regions that they are not authorized to use. Additionally,

virtual memory allows multiple applications to run

simultaneously on the same system, without interfering with each

other's memory usage.

PAGE 7

 Efficient Memory Management: Virtual memory provides a means

for efficient memory management by allowing the operating

system to allocate memory to applications on demand. This

allocation ensures that memory is utilized efficiently, and no

memory is wasted.

 Support for Large Memory Applications: Virtual memory allows

applications to access more memory than is physically available

on the system. This support for large memory applications enables

the development of applications that require more memory than

is available on the system.

 Improved Performance: Finally, virtual memory improves system

performance by reducing the need for physical memory swaps. By

using virtual memory, the operating system can keep frequently

used data in physical memory, while less frequently used data is

swapped to disk. This swapping ensures that memory is used

efficiently, resulting in improved system performance.

In conclusion, virtual memory is an essential component of modern

computer systems, and it plays a critical role in efficient memory

management. The goals of virtual memory are to abstract physical

memory, provide protection and isolation, support efficient memory

management, enable the development of large memory applications,

and improve system performance. By achieving these goals, virtual

memory ensures that computer systems operate seamlessly and provide

optimal performance for all applications and processes.

1.3 Background

1.3.1 Partially-Loaded Programs

In a computer system, the code needs to be in memory to execute.

However, the entire program is rarely used at the same time. There are

PAGE 8

many cases where only a portion of the code is used, such as error code,

unusual routines, or large data structures. This means that the entire

program code is not needed at the same time, and there is a possibility

of executing a partially-loaded program.

Partially-loaded programs allow for the execution of a program without

loading the entire program into memory. This means that a program is

no longer constrained by the limits of physical memory. Each program

takes less memory while running, allowing more programs to run at the

same time. This results in increased CPU utilization and throughput

without any increase in response time or turnaround time.

Partially-loaded programs offer many benefits to a computer system.

First, they allow for more efficient use of memory. Rather than loading

an entire program into memory, only the necessary portions are loaded.

This reduces the amount of memory needed to run the program,

allowing more programs to run at the same time.

Second, partially-loaded programs reduce the need for I/O to load or

swap programs into memory. This means that each user program runs

faster, as there is less time spent waiting for the program to be loaded

into memory.

Third, partially-loaded programs allow for increased CPU utilization

and throughput. By allowing more programs to run at the same time,

the CPU is being utilized more efficiently, resulting in an overall

increase in system performance.

In conclusion, partially-loaded programs allow for the execution of a

program without loading the entire program into memory. They offer

many benefits, including more efficient use of memory, reduced I/O,

increased CPU utilization and throughput, and faster program

execution. By using partially-loaded programs, computer systems can

run more programs simultaneously, leading to increased productivity

and efficiency.

PAGE 9

1.3.2 Benefits of Virtual Memory

Virtual memory is the separation of user logical memory from physical

memory. It allows for only part of the program to be in memory for

execution, while the rest of the program remains on disk. The logical

address space can, therefore, be much larger than the physical address

space, allowing address spaces to be shared by several processes.

Virtual memory offers many benefits to a computer system. First, it

allows for more efficient process creation. Since the logical address

space is larger than the physical address space, more programs can run

concurrently. This leads to increased productivity, as more work can be

done in a shorter amount of time.

Second, virtual memory allows for more efficient use of memory. Since

only part of the program needs to be in memory for execution, less

memory is needed overall. This means that more programs can run at

the same time without the need for additional physical memory.

Third, virtual memory allows for less I/O needed to load or swap

processes. Since only part of the program needs to be in memory for

execution, less time is spent loading or swapping processes into memory.

This leads to faster program execution and increased productivity.

In conclusion, virtual memory allows for the separation of user logical

memory from physical memory. It offers many benefits, including more

efficient process creation, more efficient use of memory, and less I/O

needed to load or swap processes. By using virtual memory, computer

systems can run more programs simultaneously, leading to increased

productivity and efficiency.

1.3.3 Virtual address space

Virtual address space is the logical view of how a process is stored in

memory. It typically starts at address 0 and has contiguous addresses

until the end of the space. However, physical memory is organized in

PAGE 10

page frames. In order to map logical addresses to physical addresses, the

Memory Management Unit (MMU) is used.

Virtual memory can be implemented through two techniques: demand

paging and demand segmentation. Demand paging is a technique where

pages are only brought into physical memory when they are actually

needed by the process. This is in contrast to pre-paging, where pages are

brought into memory before they are needed. By using demand paging,

memory usage can be optimized, and only the necessary pages are

loaded into physical memory.

Demand segmentation is another technique that can be used to

implement virtual memory. In this technique, the logical address space

is divided into segments, each of which can be loaded into memory as

needed. This technique is useful when the size of the logical address

space is not uniform, or when the process has multiple distinct regions

that have different memory requirements.

Both demand paging and demand segmentation have their advantages

and disadvantages, and the choice of which technique to use depends

on the specific requirements of the system. However, both techniques

are designed to provide a virtual address space that is much larger than

the physical memory available, allowing for efficient use of memory and

the ability to run multiple processes simultaneously.

2 Paging and Segmentation

In this chapter, we will review the concepts of paging and segmentation

and delve deeper into the mechanisms involved in mapping virtual to

physical addresses. As you may recall, virtual memory is a vital

component of modern operating systems, allowing programs to address

more memory than physically available in the system. Paging and

segmentation are two fundamental techniques used in virtual memory

PAGE 11

management. Paging divides memory into fixed-sized pages, whereas

segmentation divides memory into variable-sized segments.

2.1 Paging

Paging is a memory management technique that allows an operating

system to allocate memory to a process in fixed-size blocks called pages.

The pages are contiguous blocks of memory that are mapped to non-

contiguous physical memory locations. The size of each page is typically

a power of two and is specified by the operating system. When a process

needs to access a memory location, the operating system translates the

virtual address into a physical address by looking up the page table. The

page table contains the mapping between virtual addresses and physical

addresses. If the page is not currently in physical memory, a page fault

occurs, and the operating system must retrieve the page from disk.

One advantage of paging is that it allows processes to use more memory

than the physical memory available on the system. This is because pages

that are not currently being used can be swapped out to disk, freeing up

physical memory for other processes. Paging also provides memory

protection by using the page table to restrict access to memory locations

that a process is not authorized to access.

2.2 Segmentation

Segmentation is another memory management technique that divides

the virtual address space of a process into logical segments, each of

which contains a related set of instructions or data. The segments are of

variable size and can be shared between processes. Each segment is

mapped to a contiguous block of physical memory.

One advantage of segmentation is that it provides a more flexible

memory management scheme than paging. Segmentation allows

PAGE 12

processes to allocate memory in larger logical units, such as code

segments, data segments, and stack segments. Segmentation can also

support shared memory between processes, where multiple processes

can access the same segment.

2.3 Combined Paging and Segmentation

In some modern operating systems, paging and segmentation are

combined to provide a more flexible and efficient memory management

scheme. In such systems, the virtual address space of a process is divided

into segments, and each segment is further divided into pages. The

segments are mapped to contiguous blocks of physical memory, and the

pages within each segment are mapped to non-contiguous physical

memory locations.

The combination of paging and segmentation provides the advantages

of both techniques. It allows processes to allocate memory in flexible

logical units, such as code segments, data segments, and stack segments,

while also allowing the operating system to swap pages in and out of

physical memory as needed.

Example: Here's a pseudocode example of how combined paging and

segmentation might be implemented in an operating system:

// Define the segment table structure

struct segment_table_entry {

int base_address; // The physical base address of the segment

int limit; // The size of the segment in bytes

int permissions; // Permissions for the segment (read, write,

execute)

page_table_entry *page_table; // Pointer to the page table for this

segment

};

PAGE 13

// Define the page table structure

struct page_table_entry {

int frame_number; // The physical frame number for this page

int permissions; // Permissions for the page (read, write, execute)

int present; // Whether or not the page is currently in physical

memory

};

// Initialize the segment table

segment_table_entry *segment_table = new

segment_table_entry[num_segments];

// Initialize the page tables for each segment

for (int i = 0; i < num_segments; i++) {

segment_table[i].page_table = new

page_table_entry[num_pages_per_segment];

}

// When a process requests memory, allocate a new segment and pages

as needed

void allocate_memory(int process_id, int size) {

// Determine the number of segments and pages needed for the

requested size

int num_segments_needed = ceil(size / segment_size);

int num_pages_needed = ceil(size / page_size);

// Allocate a new segment table entry for the process

PAGE 14

segment_table_entry new_segment;

new_segment.base_address =

allocate_physical_memory(num_segments_needed * segment_size);

new_segment.limit = num_segments_needed * segment_size;

new_segment.permissions = RWX;

new_segment.page_table = new page_table_entry[num_pages_needed];

// Allocate physical memory for each page in the new segment

for (int i = 0; i < num_pages_needed; i++) {

 int frame_number = allocate_physical_memory(page_size);

 new_segment.page_table[i].frame_number = frame_number;

 new_segment.page_table[i].permissions = RWX;

 new_segment.page_table[i].present = false;

}

// Add the new segment to the process's segment table

process_segment_table[process_id].add_segment(new_segment);

}

// When a process accesses a memory location, translate the virtual

address to a physical address

int translate_address(int process_id, int virtual_address) {

// Determine the segment and page indices from the virtual address

int segment_index = virtual_address / segment_size;

int page_index = (virtual_address % segment_size) / page_size;

// Look up the segment and page tables for the process

PAGE 15

segment_table_entry segment =

process_segment_table[process_id].get_segment(segment_index);

page_table_entry page = segment.page_table[page_index];

// If the page is not currently in physical memory, retrieve it

from disk

if (!page.present) {

 int frame_number = swap_page_in(page);

 page.frame_number = frame_number;

 page.present = true;

}

// Calculate the physical address of the memory location

int physical_address = segment.base_address + page.frame_number *

page_size + (virtual_address % page_size);

// Check that the process is authorized to access the memory

location

if (!(segment.permissions & page.permissions)) {

 throw memory_access_error();

}

return physical_address;

}

This is just a basic example of how combined paging and segmentation

might be implemented in an operating system, and the actual

implementation would likely be more complex and involve additional

features such as demand paging and page replacement algorithms.

PAGE 16

In this chapter, we reviewed the concepts of paging and segmentation

and their roles in modern operating systems. Paging allows processes to

use more memory than the physical memory available on the system

and provides memory protection. Segmentation allows processes to

allocate memory in larger logical units and supports shared memory

between processes. The combination of paging and segmentation

provides a more flexible and efficient memory management scheme that

allows processes to allocate memory in flexible logical units while also

allowing the operating system to swap pages in and out of physical

memory as needed.

2.4 Mapping virtual to physical addresses

One of the fundamental concepts of operating systems is memory

management, which involves the allocation and management of

memory resources for a computer system. One important aspect of

memory management is the ability to map virtual addresses used by a

program to the physical addresses used by the hardware. In this chapter,

we will explore the process of mapping virtual to physical addresses in

detail.

The process of mapping virtual addresses to physical addresses involves

several steps. Let's take a look at these steps in detail:

 The first step in mapping virtual addresses to physical addresses

is the generation of a virtual address by a program. The program

generates a virtual address when it accesses data in memory.

 Once a virtual address is generated, the operating system

translates it into a physical address. This translation process

involves the use of a page table or a page directory.

 Once the operating system has translated the virtual address to a

physical address, the program can access the data stored in main

memory at that physical address.

PAGE 17

Example: Here is a simple pseudocode example of how virtual to

physical address mapping might be implemented in an operating

system:

// Assume a virtual address vAddr has been generated by a program

// Step 1: Extract the virtual page number from the virtual address

vPageNum = extractPageNum(vAddr)

// Step 2: Lookup the physical page number in the page table

pPageNum = pageTableLookup(vPageNum)

// Step 3: Calculate the physical address by combining the physical

page number and the offset from the virtual address

pAddr = (pPageNum * pageSize) + extractOffset(vAddr)

// Step 4: Access the data stored in main memory at the physical

address

data = readMemory(pAddr)

// Note: Access to the page table and page directory may also

require additional translations and permissions checks

Of course, this is a simplified example and real-world implementations

may be more complex depending on the specific memory management

techniques used, the hardware architecture, and other factors.

PAGE 18

2.4.1 Page tables

In modern operating systems, the memory management unit (MMU) of

the CPU is responsible for translating virtual addresses used by a process

into physical addresses that are used by the memory. This translation

process is performed using a page table, which is a data structure that

maps virtual pages to physical pages in memory.

In a simple implementation, the virtual address space of a process is

divided into fixed-sized pages, typically 4 KB in size. Each page is

assigned a unique virtual page number. When a process accesses a

memory location, the MMU translates the virtual address into a physical

address using the page table.

The page table is a data structure that contains an entry for each virtual

page of the process. The entry includes the page frame number, which

is the physical address of the page in memory. The page table is usually

stored in memory and is maintained by the operating system.

When a process accesses a virtual address, the MMU uses the virtual

page number to look up the corresponding entry in the page table. If the

page table entry indicates that the page is not present in memory, a page

fault occurs, and the operating system must load the page from disk into

a free page frame in memory.

Page tables can be implemented using various data structures, such as

arrays, trees, or hash tables. In addition, modern CPUs include hardware

support for page tables, which enables fast and efficient address

translation.

One important consideration in page table design is the size of the page

table. If the virtual address space is large, the page table can become

very large, requiring a lot of memory to store. To address this issue,

modern operating systems use hierarchical page tables, where the page

table is divided into smaller tables that are recursively indexed to access

the page table entry.

PAGE 19

In conclusion, page tables are a critical component of modern memory

management in operating systems. They enable efficient and secure

management of memory by allowing processes to access virtual

addresses that are automatically translated to physical addresses.

2.4.2 Page table entries

Page table entries are essential in virtual memory management as they

map virtual addresses to physical addresses. The structure of a page

table entry may vary across different computer systems, but typically, it

includes several fields containing information about the virtual page,

the physical page frame, and the state of the page.

One of the most important fields in a page table entry is the Page frame

number. This field contains the physical page frame address of the page

that the virtual address refers to. The Present/Absent bit is another

significant field, which indicates whether the virtual page is currently in

memory or not. If the bit is set to 1, the page is present in memory, and

the corresponding physical address can be used. If the bit is set to 0, a

page fault occurs, indicating that the virtual page is not currently in

memory and must be retrieved from disk before it can be used.

In addition to the Page frame number and Present/Absent bit, page

table entries may contain other fields such as protection bits, dirty bits,

and reference bits. The protection bits determine the type of access

allowed to the page, such as read-only or read-write. The dirty bit is set

when the page is modified, indicating that it needs to be written back to

disk before it is replaced. The reference bit is set whenever the page is

accessed, helping the operating system determine which pages are

frequently used and which can be swapped out.

Overall, the page table entry is a crucial data structure in virtual memory

management, as it allows the operating system to efficiently manage

memory and map virtual addresses to physical addresses. The details of

its structure may differ depending on the computer system, but the

PAGE 20

essential fields remain the same, providing the necessary information

for memory access and management.

2.4.3 Speeding up paging

As we have learned earlier, virtual memory and paging are essential

components of modern operating systems. However, efficient

implementation of these concepts is crucial for optimal performance of

the system. In this chapter, we will discuss some techniques for speeding

up paging.

The first challenge faced in paging is the mapping of virtual addresses

to physical addresses. As every memory reference requires this mapping,

it needs to be done quickly. Otherwise, it can become a major

bottleneck for the system. To avoid this, various techniques have been

developed.

One common technique is to use a special cache, called the Translation

Lookaside Buffer (TLB), to store recently accessed page table entries.

The TLB is a hardware cache that is much faster than main memory, and

hence, reduces the time required for page table lookups. Whenever a

memory reference is made, the TLB is checked first. If the required page

table entry is present in the TLB, the physical address is retrieved

directly from it. Otherwise, a page table lookup is performed, and the

retrieved entry is added to the TLB for future reference.

Another technique is to use hierarchical page tables. In this technique,

instead of having a single page table containing all the entries for a

process, the entries are divided into multiple levels of smaller page

tables. The top-level page table contains entries that point to second-

level page tables, which in turn contain entries that point to third-level

page tables, and so on. This structure reduces the size of each page table,

making it easier to manage, and also reduces the time required for page

table lookups.

PAGE 21

The second challenge faced in paging is the size of the page table. As

modern virtual address spaces can be very large, the page table can

become unwieldy, making it difficult to manage. One solution to this is

to use a technique called inverted paging. In inverted paging, instead of

having a page table for each process, a single table is used to store all

the page table entries for all the processes. Each entry in the table

contains information about the process to which it belongs, along with

the virtual and physical addresses. This technique reduces the size of

the page table and simplifies its management. However, it can be slower

than traditional page tables due to the need to search through the entire

table to find a particular entry.

In conclusion, efficient implementation of virtual memory and paging

is critical for optimal performance of modern operating systems.

Techniques like TLB caching, hierarchical page tables, and inverted

paging can be used to speed up the mapping of virtual addresses to

physical addresses and manage large page tables effectively.

2.4.4 Translation Lookaside Buffers (TLBs)

Translation Lookaside Buffers (TLBs) are widely used to speed up paging.

A TLB is essentially a cache for the page table. It is a small, fast lookup

table that stores recently used virtual-to-physical address mappings. By

keeping the most commonly used mappings in the TLB, the system can

avoid having to look up the mapping in the page table every time it is

needed.

When a process makes a memory reference, the CPU first checks the

TLB to see if the virtual-to-physical mapping is already present. If it is,

the CPU can use the mapping directly and avoid the overhead of

accessing the page table. If the mapping is not present in the TLB, the

CPU must perform a page table lookup to find the mapping and then

add it to the TLB for future use.

The TLB typically has only a few hundred entries, so it cannot store the

entire page table. However, it is large enough to hold the most

PAGE 22

frequently used mappings, which is usually sufficient to provide a

significant performance boost. The exact size of the TLB is a tradeoff

between performance and cost, as a larger TLB will improve

performance but will also require more hardware and consume more

power.

One potential issue with TLBs is that they can become stale if the page

table is updated by the operating system. For example, if a page is

swapped out to disk and then later brought back into memory, the page

table will be updated to reflect the new physical address of the page.

However, the TLB may still hold the old mapping, which can cause

incorrect memory references and even crashes. To avoid this problem,

TLBs must be carefully managed by the operating system to ensure that

they are kept up-to-date with the page table.

Overall, TLBs are an important optimization technique for virtual

memory systems, as they can significantly reduce the overhead of page

table lookups and improve overall system performance.

TLBs are typically implemented as a small hardware cache that is

managed by the operating system. The size of the TLB can vary

depending on the hardware architecture and the specific operating

system.

The process of using a TLB involves several steps:

 The first step in using a TLB is the generation of a virtual address

by a program.

 Once a virtual address is generated, the TLB is checked to see if

the virtual-to-physical address translation is already stored in the

cache. If the translation is found in the TLB, the physical address

is retrieved directly from the TLB.

 If the translation is not found in the TLB, the operating system

must perform a full address translation using the page table or

page directory. The resulting physical address is then stored in the

TLB for future use.

PAGE 23

 Once the operating system has translated the virtual address to a

physical address, the program can access the data stored in main

memory at that physical address.

Example: Here is a simple pseudocode example of how a Translation

Lookaside Buffer (TLB) might be implemented in an operating system:

// Assume a virtual address vAddr has been generated by a program

// Step 1: Extract the virtual page number from the virtual address

vPageNum = extractPageNum(vAddr)

// Step 2: Lookup the physical page number in the TLB

pPageNum = tlbLookup(vPageNum)

if (pPageNum != TLB_MISS) {

 // Step 3a: Calculate the physical address by combining the

physical page number and the offset from the virtual address

 pAddr = (pPageNum * pageSize) + extractOffset(vAddr)

 // Step 4a: Access the data stored in main memory at the physical

address

 data = readMemory(pAddr)

 // Step 5a: Update the TLB with the new translation

 tlbUpdate(vPageNum, pPageNum)

}

else {

PAGE 24

 // Step 3b: Perform a full address translation using the page

table or page directory

 pPageNum = pageTableLookup(vPageNum)

 // Step 4b: Calculate the physical address by combining the

physical page number and the offset from the virtual address

 pAddr = (pPageNum * pageSize) + extractOffset(vAddr)

 // Step 5b: Access the data stored in main memory at the physical

address

 data = readMemory(pAddr)

 // Step 6b: Update the TLB with the new translation

 tlbInsert(vPageNum, pPageNum)

}

In this pseudocode, the tlbLookup function checks if the virtual-to-

physical address translation is already stored in the TLB. If the

translation is found, the physical page number is retrieved directly from

the TLB. If the translation is not found, the pageTableLookup function

is called to perform a full address translation using the page table or

page directory.

If a TLB miss occurs, the physical page number is retrieved using the

page table or page directory, and the TLB is updated with the new

translation using the tlbInsert function. If a TLB hit occurs, the physical

page number is retrieved directly from the TLB, and the TLB is updated

with the new translation using the tlbUpdate function. Finally, the

physical address is calculated and used to access the data stored in main

memory.

PAGE 25

2.4.5 Software to manage the TLB

While hardware-assisted TLB management is the norm in most modern

computer systems, some systems use software to manage the TLB. In

software TLB management, the operating system is responsible for

handling TLB faults and managing the contents of the TLB.

When a TLB fault occurs, the processor generates an exception, which

transfers control to the operating system. The operating system then

searches the page table for the required page and updates the TLB with

the new mapping. Once the TLB has been updated, control is returned

to the interrupted process, which can then continue executing.

One advantage of software TLB management is that it can provide

greater flexibility in managing the TLB. For example, the operating

system can use more complex algorithms to manage the TLB, such as

least-recently used (LRU) or clock algorithms. Additionally, the

operating system can use the TLB for other purposes, such as caching

frequently accessed pages or implementing shared memory between

processes.

However, software TLB management can also have a significant impact

on system performance. The overhead of handling TLB faults and

updating the TLB can be significant, especially in systems with high TLB

miss rates. To mitigate this overhead, some systems use a hybrid

approach, where TLB management is handled by hardware for

frequently accessed pages, and by software for less frequently accessed

pages.

In summary, software TLB management can provide greater flexibility

in managing the TLB, but can also have a significant impact on system

performance. The choice of whether to use software or hardware TLB

management depends on the specific requirements of the system and

the tradeoffs between performance and flexibility.

PAGE 26

2.4.6 Multilevel page tables

Multilevel page tables are an approach to handling large virtual address

spaces that are too big to be handled by a single-level page table. In a

multilevel page table, the page table itself is split up into multiple

smaller page tables that can be loaded into memory only when they are

needed.

To understand how multilevel page tables work, let's consider a simple

example. Here, we have a 32-bit virtual address that is divided into a 10-

bit PT1 field, a 10-bit PT2 field, and a 12-bit Offset field. Since offsets are

12 bits, pages are 4 KB, and there are a total of 220 of them.

The first-level page table, PT1, has 1024 entries that point to second-level

page tables, PT2. Each PT2 has 1024 entries, each of which points to a

physical page frame in memory.

The secret to the multilevel page table method is to avoid keeping all

the page tables in memory all the time. In particular, those that are not

needed should not be kept around. Suppose, for example, that a process

needs 12 megabytes: the bottom 4 megabytes of memory for program

text, the next 4 megabytes for data, and the top 4 megabytes for the

stack. In between the top of the data and the bottom of the stack is a

large hole that is not used.

Using a multilevel page table, we can set up the PT1 such that it only

contains entries for the pages that the process actually uses - program

text, data, and stack. When the process accesses memory, the MMU uses

the PT1 to find the appropriate PT2, and then uses the PT2 to find the

physical page frame. If the page frame is not currently in memory, a page

fault occurs, and the operating system brings the page into memory.

The advantage of using a multilevel page table is that it can reduce the

amount of memory needed to store the page tables. With a single-level

page table, all the page tables need to be kept in memory all the time,

which can be impractical for large virtual address spaces. With a

PAGE 27

multilevel page table, only the portions of the page tables that are

actually needed are kept in memory, reducing the memory overhead.

One disadvantage of a multilevel page table is that it can increase the

overhead of page table lookups. Each lookup now requires two memory

accesses instead of one, which can slow down the system. However, this

overhead can be mitigated by using TLBs to cache frequently used page

table entries.

In summary, multilevel page tables are an effective way to handle large

virtual address spaces that cannot be handled by a single-level page

table. By dividing the page table into smaller page tables, and only

keeping the portions that are needed in memory, we can reduce the

memory overhead of the page table. While multilevel page tables can

increase the overhead of page table lookups, this overhead can be

mitigated by using TLBs to cache frequently used page table entries.

2.4.7 Inverted page tables

Inverted page tables are an alternative approach to traditional page

tables used in virtual memory management. In traditional page tables,

there is one entry for each page of virtual address space, which can

become quite large and difficult to manage. However, with inverted

page tables, there is only one entry per page frame in real memory.

The basic idea behind inverted page tables is to keep track of which

(process, virtual page) pair is located in a given physical page frame. This

means that for a system with 4 GB of RAM and a 4-KB page size, an

inverted page table would only require 1,048,576 entries. This is in

contrast to traditional page tables, which would require millions of

entries to cover the entire virtual address space.

One potential advantage of inverted page tables is that they can reduce

the amount of memory needed to store page tables, which can be a

significant issue in systems with limited memory. Additionally, inverted

page tables can be faster to access, as the hardware can use a hash

PAGE 28

function to look up the correct page frame entry directly, rather than

needing to traverse a potentially large page table.

However, inverted page tables do have some downsides. For example,

they can be more complex to implement and may require additional

hardware support. Additionally, because there is only one entry per page

frame, there may be issues with fragmentation of physical memory.

Despite these potential downsides, inverted page tables have been used

in processors such as the PowerPC, the UltraSPARC, and the Itanium.

They are an interesting alternative approach to virtual memory

management, and may have advantages in certain contexts.

3 Page Fault Handling

This chapter will discuss the causes and consequences of page faults,

which occur when a program attempts to access a page that is not

currently in physical memory. It will also explore the page fault handling

mechanism, which involves interrupt handling and fault resolution.

Finally, the chapter will evaluate the performance of page fault handling

in different operating systems.

3.1 Causes and consequences of page faults

In modern computer systems, virtual memory is used to provide the

illusion of a much larger main memory than physically available. Virtual

memory systems use a combination of hardware and software to allow

programs to access more memory than is actually installed in the system.

This technique is known as paging.

One of the key concepts in paging is the use of pages. A page is a fixed-

size block of contiguous memory that can be allocated to a program.

PAGE 29

Pages are used to break up a program's memory into smaller pieces that

can be swapped in and out of main memory as needed.

However, paging introduces the concept of page faults, which occur

when a program attempts to access a page that is not currently in main

memory. This chapter will discuss the causes and consequences of page

faults.

There are several reasons why a page fault can occur:

3.1.1 Demand Paging

In demand paging, pages are loaded into main memory only when they

are needed. This means that when a program first starts, only a small

part of the program is loaded into memory, and the rest is loaded as

needed. If a program tries to access a page that has not been loaded into

memory, a page fault occurs.

In the early days of computing, programs were loaded into memory in

their entirety before execution. This meant that the entire program had

to fit in memory, and if there wasn't enough space, the program

wouldn't run. Additionally, if a program didn't use all of the memory

that it was allocated, that memory would go to waste.

To address these issues, demand paging was introduced. With demand

paging, a program is no longer loaded into memory in its entirety at load

time. Instead, only the necessary pages are brought into memory as they

are needed. This approach has several benefits:

 Less I/O is needed: Since only the necessary pages are loaded into

memory, there is no unnecessary I/O. This can result in faster

response times and better overall system performance.

 Less memory is needed: Because only the necessary pages are in

memory, less memory is required to run the program. This means

that more programs can run simultaneously, and larger programs

can be executed on systems with limited memory.

PAGE 30

 Faster response: Since only the necessary pages are in memory,

there is less time spent waiting for I/O operations to complete.

This can result in faster response times and a more responsive

system overall.

 More users: Because less memory is required per program, more

users can be accommodated on a given system. This can be

especially important in shared computing environments, where

many users may be using the same system simultaneously.

Demand paging works much like a paging system with swapping. When

a page is needed, it is referenced. If the reference is invalid, the program

aborts. If the page is not in memory, it is brought into memory. A "lazy

swapper" is used to ensure that pages are not swapped into memory

unless they are needed.

A swapper that deals with pages is known as a pager. The pager is

responsible for bringing pages into memory when they are needed and

swapping them out when they are no longer needed. The pager must

manage the available memory to ensure that the system does not run

out of memory, and it must also ensure that pages are swapped in and

out efficiently to minimize I/O operations.

In summary, demand paging is a technique used by operating systems

to manage memory efficiently. It brings pages into memory only when

they are needed, which can result in less I/O, less memory usage, faster

response times, and the ability to accommodate more users on a system.

The pager is responsible for managing memory and bringing pages into

memory when they are needed. By using demand paging, operating

systems can run more programs simultaneously and execute larger

programs on systems with limited memory.

Example: Here is a pseudocode implementation of the demand paging

algorithm:

1. Initialize the page table with all pages marked as not present.

PAGE 31

2. When a program attempts to access a page:

a. Check if the page is present in memory.

b. If the page is not present in memory, go to step 3.

3. Handle a page fault:

a. Allocate a page frame in memory to hold the requested page.

b. Load the requested page from secondary storage into the

allocated page frame.

c. Update the page table entry for the requested page to indicate

that it is now present in memory.

d. Resume the program, which can now access the requested page.

4. If all page frames in memory are in use:

a. Select a page frame to be replaced using a page replacement

algorithm.

b. Write the replaced page frame to secondary storage if it has

been modified.

c. Update the page table entry for the replaced page to indicate

that it is no longer present in memory.

Return to step 2 and repeat until all requested pages have been

loaded into memory.

This pseudocode implementation of the demand paging algorithm

outlines the steps involved in handling page faults and selecting pages

to be replaced when all page frames in memory are in use. By only

loading pages into memory when they are needed, the demand paging

algorithm can help to conserve memory resources and improve the

overall performance of the system.

PAGE 32

3.1.2 Swapping

In some cases, pages that are not needed for a long time may be swapped

out of main memory to free up space. When a program attempts to

access a swapped out page, a page fault occurs.

Example: Here is a pseudocode implementation of the swapping

algorithm:

1. When the operating system needs to free up memory, it selects a

process to be swapped out of memory.

2. Save the process's state to secondary storage, including its

registers, program counter, and memory contents.

3. Free up the memory occupied by the swapped out process.

4. Select a process to be swapped in from secondary storage.

5. Load the process's state from secondary storage into memory,

including its registers, program counter, and memory contents.

6. Update the process's page table entries to indicate that the

pages it needs are now present in memory.

7. Resume execution of the swapped in process.

8. Repeat steps 1-7 as needed to free up memory and load new

processes into memory.

This swapping algorithm allows the operating system to free up memory

by swapping processes in and out of memory as needed. By saving a

process's state to secondary storage and loading it back into memory

when needed, the system can run larger programs on systems with

limited memory. By carefully managing the swapping process, the

system can optimize memory usage and improve overall performance.

3.1.3 Consequences of Page Faults

When a page fault occurs, the operating system must take several steps

to resolve it:

 Page Fault Handler: The page fault handler is a routine in the

operating system that is responsible for handling page faults.

PAGE 33

When a page fault occurs, the processor transfers control to the

page fault handler.

 Swap In: If the requested page is not in memory, the page fault

handler must swap the required page from disk into main memory.

 Swap Out: If there is no free memory available, the page fault

handler must select a page in memory to be swapped out to disk

to make room for the new page.

 Page Replacement: If all pages are in use, the page fault handler

must select a page to be replaced with the requested page. This

process is known as page replacement.

 Interrupting the Program: During the handling of a page fault, the

program that caused the page fault is suspended until the

necessary page has been loaded into memory.

In summary, page faults occur when a program tries to access a page

that is not currently in main memory. There are several reasons why a

page fault can occur, including demand paging, swapping, and memory

management. When a page fault occurs, the operating system must take

several steps to resolve it, including swapping pages in and out of

memory and interrupting the program. Understanding the causes and

consequences of page faults is critical to designing efficient paging

systems that can provide the illusion of a much larger main memory

than is physically available.

3.1.4 Stages in Demand Paging: Handling Page Faults

Demand paging is a memory management technique used by modern

operating systems to optimize memory usage. It allows only the

necessary pages of a process to be loaded into memory when they are

needed, and not all at once. While demand paging can improve overall

system performance, it can also introduce page faults - a situation where

the required page is not in memory, and the operating system must

fetch it from the disk.

PAGE 34

In the worst-case scenario, handling a page fault involves a series of

steps that must be carried out by the operating system. These steps are

as follows:

1. Trap to the operating system: When a page fault occurs, the

processor transfers control to the operating system, which is

responsible for handling the fault.

2. Save the user registers and process state: The operating system

saves the current state of the process, including its registers and

other relevant information.

3. Determine that the interrupt was a page fault: The operating

system must determine that the interrupt was caused by a page

fault.

4. Check that the page reference was legal and determine the

location of the page on the disk: The operating system must

ensure that the page reference is legal and determine the location

of the required page on the disk.

5. Issue a read from the disk to a free frame: The operating system

must issue a read request to the disk to retrieve the required page.

This involves waiting in a queue for the device, waiting for the

device seek and/or latency time, and beginning the transfer of the

page to a free frame in memory.

6. While waiting, allocate the CPU to some other user: While waiting

for the disk I/O to complete, the operating system can allocate the

CPU to another user to maximize system utilization.

7. Receive an interrupt from the disk I/O subsystem (I/O

completed): When the page transfer from the disk to memory is

completed, the operating system receives an interrupt from the

disk I/O subsystem.

8. Save the registers and process state for the other user: The

operating system saves the state of the user that was allocated the

CPU while waiting for the I/O operation to complete.

PAGE 35

9. Determine that the interrupt was from the disk: The operating

system must determine that the interrupt was caused by the

completion of the disk I/O operation.

10. Correct the page table and other tables to show page is now in

memory: The operating system updates the page table and other

relevant tables to reflect that the required page is now in memory.

11. Wait for the CPU to be allocated to this process again: The

operating system waits for the CPU to be allocated to the process

that caused the page fault.

12. Restore the user registers, process state, and new page table, and

then resume the interrupted instruction: Finally, the operating

system restores the state of the process that caused the page fault,

including its registers and page table, and resumes the interrupted

instruction.

In conclusion, demand paging can greatly improve system performance

by loading only the necessary pages of a process into memory when they

are needed. However, it can also introduce page faults, which require

the operating system to perform a series of steps to retrieve the required

page from disk. By understanding the stages involved in demand paging

and page fault handling, operating system designers can optimize their

systems for maximum performance and efficiency.

3.2 Page fault handling mechanism

Handling page faults is a critical function of the operating system, and

the page fault handling mechanism is designed to ensure that

applications can access the memory they need efficiently and effectively.

In this chapter, we will explore the page fault handling mechanism in

detail.

PAGE 36

A page fault occurs when an application attempts to access a memory

location that is not currently in physical memory. This can happen for a

variety of reasons, including:

 The page containing the memory location has not yet been loaded

into memory.

 The page containing the memory location has been swapped out

to disk.

 The page containing the memory location has been evicted from

memory due to memory pressure.

When a page fault occurs, the operating system takes over to ensure that

the application can access the memory it needs. The page fault handling

mechanism consists of several steps that the operating system takes to

handle a page fault. These steps are:

1. Trap to the Operating System: When a page fault occurs, the

application is interrupted, and control is passed to the operating

system.

2. Determine the Cause of the Page Fault: The operating system

examines the page fault to determine the cause of the fault. This

could be because the page is not present in memory, or because

the page is present but marked as read-only, or because the

application attempted to access memory that is outside the

bounds of its allocated memory space.

3. Allocate a Page Frame: If the page is not present in memory, the

operating system needs to allocate a page frame to hold the page.

The operating system checks to see if there are any free page

frames available. If there are no free page frames, the operating

system needs to choose a page to evict from memory to make

space for the new page.

4. Load the Page: Once a page frame has been allocated, the

operating system loads the page from disk into the page frame.

5. Update the Page Table: The page table is updated to indicate that

the page is now present in memory.

PAGE 37

6. Resume the Application: Control is passed back to the application,

and the application can now access the memory it needs.

7. Retry the Faulting Instruction: The instruction that caused the

page fault is retried, and this time it should succeed because the

required page is now in memory.

When a page fault occurs and there are no free page frames available,

the operating system needs to choose a page to evict from memory to

make space for the new page. There are many different page

replacement algorithms that the operating system can use to select the

page to evict. Some of the most common algorithms are:

 Least Recently Used (LRU): This algorithm selects the page that

has not been accessed for the longest time to be evicted.

 First-In-First-Out (FIFO): This algorithm selects the page that was

loaded into memory first to be evicted.

 Clock: This algorithm uses a circular buffer to keep track of

recently accessed pages and selects the first page it encounters

that has not been recently accessed.

 Random: This algorithm selects a random page to be evicted.

Choosing the right page replacement algorithm is critical to ensure that

the system performs optimally and efficiently manages memory. The

performance of the page fault handling mechanism directly impacts the

overall performance of the system. There are several key metrics used to

evaluate the performance of the page fault handling mechanism. These

metrics include:

 Page Fault Rate: The page fault rate is the number of page faults

that occur per unit of time. This metric is an important indicator

of the performance of the system. A high page fault rate indicates

that the system is struggling to keep up with the demand for

memory, which can result in slow application performance and

decreased system responsiveness.

PAGE 38

 Page Fault Service Time: The page fault service time is the amount

of time it takes for the operating system to handle a page fault.

This metric is important because it directly impacts the

performance of the application. If the page fault service time is too

long, the application may appear unresponsive to the user.

 Effective Access Time: The effective access time is the average

time it takes to access a memory location, taking into account the

page fault rate and page fault service time. This metric is a good

indicator of the overall performance of the system.

There are several strategies that can be used to improve the performance

of the page fault handling mechanism. These strategies include:

 Increasing the Size of the Page Table: A larger page table can

reduce the page fault rate by allowing more pages to be present in

memory at any given time. However, this approach can also

increase the overhead of managing the page table.

 Using a Smarter Page Replacement Algorithm: A smarter page

replacement algorithm can reduce the page fault rate by evicting

pages that are less likely to be accessed in the future. However,

this approach can also increase the overhead of selecting the pages

to evict.

 Pre-Fetching Pages: Pre-fetching pages can reduce the page fault

rate by loading pages into memory before they are needed by the

application. However, this approach can also increase the

overhead of managing the pre-fetching mechanism.

 Using Solid State Drives (SSDs): Solid state drives can reduce the

page fault service time by providing faster access to data than

traditional hard disk drives. However, this approach can also

increase the cost of the system.

PAGE 39

Choosing the right strategy depends on the specific requirements of the

system and the resources available. The performance of the page fault

handling mechanism is critical to the overall performance of the virtual

memory system in modern operating systems. By measuring key metrics

such as the page fault rate, page fault service time, and effective access

time, we can evaluate the performance of the system and identify areas

for improvement. By using strategies such as increasing the size of the

page table, using a smarter page replacement algorithm, pre-fetching

pages, and using solid state drives, we can improve the performance of

the page fault handling mechanism and ensure that applications can

access the memory they need efficiently and effectively.

3.3 Instruction backup

Instruction backup is a technique used by some operating systems to

deal with page faults when an instruction is only partially executed

before a page fault occurs. When a program references a page that is not

in memory, the instruction causing the fault is stopped partway through,

and a trap to the operating system occurs. The operating system then

fetches the page needed, and it must restart the instruction causing the

trap.

The problem is that the instruction causing the trap may have modified

some data, and if the instruction is simply restarted, the modified data

will be lost. This can cause incorrect behavior in the program, and in

some cases, can even cause the program to crash.

One solution to this problem is to use instruction backup. When an

instruction causes a page fault, the operating system saves the partially

executed instruction and its state, including the program counter and

the values of any registers that were modified. The operating system

then fetches the page needed and restarts the instruction from the saved

state.

PAGE 40

This technique ensures that any modifications made by the partially

executed instruction are not lost and that the program continues

executing correctly. However, it does add some overhead to the

operating system, as it must save and restore the state of the partially

executed instruction.

Instruction backup is not used in all operating systems, and some

architectures make it more difficult to implement. However, for systems

that do use it, it can be an effective way to ensure correct program

behavior in the face of page faults.

3.4 Locking pages

Locking pages in memory is a technique used by some operating

systems to prevent pages from being swapped out to disk. This can be

useful in situations where certain pages need to be accessed quickly and

with low latency, such as in real-time systems or applications that

require fast access to frequently-used data.

When a page is locked in memory, it cannot be paged out to disk, even

if memory becomes scarce. This can improve the performance of

applications that rely heavily on certain pages of memory by ensuring

that those pages are always available.

To lock a page in memory, the operating system provides a system call

that allows a process to request that a specific page be locked. The

operating system then ensures that the page is never paged out to disk

while it is locked. When the process is finished with the page, it can

unlock it, allowing it to be swapped out again if necessary.

One downside to locking pages in memory is that it can reduce the

overall amount of memory available to the system. If many pages are

locked, it may be more difficult for the operating system to manage

memory effectively, potentially leading to more frequent page faults and

slower performance overall.

PAGE 41

Additionally, some operating systems may limit the number of pages

that can be locked in memory by a single process or across the entire

system to prevent one process from monopolizing system resources.

Overall, locking pages in memory can be a useful technique in certain

situations where low-latency access to frequently-used data is critical.

However, it should be used judiciously and with an understanding of

the potential trade-offs and limitations.

3.5 Backing store

When a process needs more memory than is available in physical RAM,

the operating system must find a way to store the excess data on disk.

This is called the backing store, and it is an essential part of virtual

memory management. In this chapter, we will discuss some of the issues

related to backing store management.

The first issue is where to store the pages that are being swapped out.

The simplest algorithm is to have a special swap partition on the disk,

or even better, a separate disk from the file system. This eliminates the

overhead of converting offsets in files to block addresses, and it balances

the I/O load. Most UNIX systems use this approach, where the partition

does not have a normal file system on it, and block numbers relative to

the start of the partition are used throughout.

Another issue is how to allocate space on the disk for the pages being

swapped out. The simplest approach is to allocate space sequentially, as

pages are swapped out. However, this can lead to fragmentation, where

free space becomes scattered throughout the disk. To avoid

fragmentation, some operating systems use a contiguous allocation

scheme, where a large region of the disk is reserved for the backing store.

When a page is swapped out, it is placed in the next available free block

within this region.

PAGE 42

One of the challenges of managing the backing store is deciding which

pages to swap out. If a process is not actively using a page, it is a good

candidate for swapping out. However, if the page is needed again, it will

have to be swapped back in from disk, which can be a slow process. To

minimize the number of page faults, the operating system must choose

the pages to swap out carefully, using an appropriate page replacement

algorithm.

Another important consideration is how to handle modified pages. If a

page has been modified since it was last read from disk, it must be

written back to disk before it can be swapped out. This is known as the

cleaning policy, and it is typically handled by a background process

called the paging daemon.

There are different approaches to backing store management, including

paging to a static swap area or backing up pages dynamically. Let's

explore these two approaches in more detail.

3.5.1 Paging to a static swap area:

In this approach, a portion of the disk is reserved as a static swap area,

which is used exclusively for paging. When a page of memory is evicted

from RAM, it is written to a fixed location in the swap area. When the

page is needed again, it can be read back into RAM from the same

location. This approach has the advantage of simplicity, as the operating

system always knows where to find a page that has been paged out.

However, it can also lead to fragmentation of the swap area, which can

make it harder to find contiguous space for new pages.

3.5.2 Backing up pages dynamically:

In this approach, the operating system dynamically allocates space on

the disk to store paged-out pages as they are evicted from RAM. When

a page needs to be evicted, the operating system looks for free space in

the backing store and writes the page to that location. This approach

PAGE 43

can reduce fragmentation and make more efficient use of available disk

space. However, it also requires more sophisticated bookkeeping to

keep track of which pages are stored where.

Regardless of the approach used, backing store is a critical component

of virtual memory management. Without an effective backing store

strategy, the operating system would be unable to manage memory

effectively, leading to poor performance and potentially even crashes or

system failures. As such, careful consideration must be given to the

design and implementation of backing store management in any

operating system.

4 Page Replacement Algorithms

We will start by reviewing the different types of page replacement

algorithms and their pros and cons. Then, we will discuss the working

set model and the issue of page thrashing that can occur in certain

situations. Finally, we will delve into more advanced page replacement

algorithms, including the WSClock and Second Chance algorithms.

By the end of this chapter, you will have a better understanding of how

page replacement algorithms work and how to choose the most

appropriate algorithm for your specific use case. Let's get started!

4.1 Page replacement algorithms:

There are several page replacement algorithms in memory management,

some of which are:

 First-In-First-Out (FIFO)

 Least Recently Used (LRU)

PAGE 44

 Optimal Page Replacement (OPT)

 Clock Page Replacement

 Not Recently Used (NRU)

 Second-Chance Page Replacement

 Random Page Replacement

Each algorithm has its own advantages and disadvantages, and the

choice of which one to use depends on the specific needs of the system.

4.1.1 First-In-First-Out (FIFO)

In computer science, page replacement algorithms are techniques used

by the operating system to decide which pages to remove from memory

(i.e., evict) when there is a need for more memory. The First-In-First-

Out (FIFO) algorithm is one such technique, which is simple to

implement and easy to understand. In this chapter, we will discuss the

FIFO page replacement algorithm in detail, including its advantages,

disadvantages, and performance characteristics.

The FIFO page replacement algorithm works on the principle of queue

data structure. It maintains a queue of all the pages in the main memory,

and when a page needs to be replaced, the page at the head of the queue

(i.e., the oldest page in the memory) is evicted. The new page is then

added to the tail of the queue.

The implementation of the FIFO page replacement algorithm is

straightforward. When a page fault occurs, the operating system checks

if there is any free frame available in the memory. If there is a free frame,

the new page is loaded into that frame. If no free frame is available, the

page at the head of the queue (i.e., the oldest page in the memory) is

evicted, and the new page is loaded into that frame. The evicted page is

then removed from the queue.

The FIFO page replacement algorithm is simple to implement and

requires very little overhead. It also does not require any extra data

structure to be maintained for keeping track of the age of pages. It is

PAGE 45

also very easy to understand and can be implemented in almost any

system without requiring any special hardware.

The major disadvantage of the FIFO page replacement algorithm is that

it suffers from the "Belady's Anomaly." Belady's Anomaly is a

phenomenon where increasing the number of frames in memory can

cause an increase in the number of page faults. This anomaly occurs

because the oldest pages in memory may be evicted, which are needed

more frequently than the newly added pages. Another disadvantage is

that the algorithm does not consider the access frequency or the

importance of pages. Thus, it may result in poor performance in some

cases.

The performance of the FIFO page replacement algorithm depends on

the size of the memory and the access pattern of the pages. If the

memory is small and the access pattern is random, the FIFO algorithm

performs reasonably well. However, if the memory size is large and the

access pattern is skewed (i.e., some pages are accessed more frequently

than others), the FIFO algorithm may not perform well. The reason for

this is that the oldest pages in memory may be evicted, which are needed

more frequently than the newly added pages.

In conclusion, the FIFO page replacement algorithm is simple to

implement and requires very little overhead. However, it suffers from

the "Belady's Anomaly" and may not perform well in certain scenarios.

In the next chapter, we will discuss the Least Recently Used (LRU) page

replacement algorithm, which is one of the most widely used page

replacement algorithms and addresses some of the limitations of the

FIFO algorithm.

Example: Sure, here is the pseudocode for the First-In-First-Out (FIFO)

page replacement algorithm:

initialize FIFO queue;

initialize page table;

PAGE 46

for each page request do:

 if the requested page is not in the page table then

 if the page table is not full then

 add the requested page to the page table;

 add the page number to the FIFO queue;

 else

 remove the page number at the front of the FIFO queue

from the page table;

 add the requested page to the page table;

 add the page number to the back of the FIFO queue;

 else

 /* page hit, do nothing */;

end for

In this algorithm, the page table is a data structure that maps virtual

page numbers to physical page frames. The FIFO queue is a data

structure that maintains the order in which pages were brought into the

page table. When a page fault occurs, the FIFO algorithm removes the

page at the front of the queue, which is the oldest page in the page table,

and replaces it with the requested page. The page number of the

requested page is then added to the back of the queue, becoming the

newest page in the page table.

4.1.2 Least Recently Used (LRU)

In the previous chapter, we discussed the First-In-First-Out (FIFO) page

replacement algorithm. While it is simple and easy to implement, it

suffers from a major drawback - it does not take into account the

frequency of page usage. This can lead to poor performance if a heavily

used page is replaced with a new page that is rarely used. In order to

overcome this issue, we need a page replacement algorithm that is more

PAGE 47

sophisticated and intelligent. One such algorithm is the Least Recently

Used (LRU) page replacement algorithm.

The LRU page replacement algorithm works on the principle that the

page that has not been used for the longest time in the memory should

be replaced. In other words, the page that was least recently used should

be removed from the memory.

To implement the LRU algorithm, the operating system keeps track of

the time when each page is accessed. When a page fault occurs, the

operating system scans through the page table to determine which page

has not been accessed for the longest time. This page is then replaced

with the new page that is being brought into the memory.

The LRU page replacement algorithm has several advantages over the

FIFO algorithm:

 Efficient use of memory: Since the LRU algorithm replaces the

least recently used page, it ensures that the most frequently used

pages remain in the memory. This results in more efficient use of

memory.

 Improved performance: By keeping frequently used pages in the

memory, the LRU algorithm reduces the number of page faults

and hence improves the performance of the system.

Despite its advantages, the LRU page replacement algorithm has some

disadvantages:

 High overhead: The LRU algorithm requires additional hardware

or software support to keep track of the time when each page is

accessed. This increases the overhead of the system.

 Complexity: The LRU algorithm is more complex than the FIFO

algorithm and requires more processing power.

PAGE 48

Example: Here is the pseudocode for the LRU page replacement

algorithm:

Create a counter to keep track of the time when each page is

accessed.

When a page fault occurs:

a. Increment the counter.

b. Scan through the page table to find the page with the lowest

counter value. This page is the least recently used.

c. Replace the least recently used page with the new page.

d. Reset the counter for the newly brought-in page to the current

time.

In this chapter, we discussed the Least Recently Used (LRU) page

replacement algorithm. We saw how it works, its advantages and

disadvantages, and the pseudocode for its implementation. The LRU

algorithm is more efficient than the FIFO algorithm since it takes into

account the frequency of page usage. However, it requires additional

hardware or software support and is more complex than the FIFO

algorithm. The choice of the page replacement algorithm depends on

the specific requirements of the system and the available hardware

resources.

Example: Sure, here's the pseudocode for LRU page replacement

algorithm:

for each page reference:

 if page in memory:

 move page to the front of the list

 else:

 if memory is not full:

 add page to the front of the list and allocate a frame

PAGE 49

 else:

 evict the page at the back of the list and replace it

with the new page

 add the new page to the front of the list

In this algorithm, a list of pages is maintained in the order of their most

recent usage. When a page is referenced, it is moved to the front of the

list. If a page fault occurs and there is a free frame in memory, the new

page is allocated a frame and added to the front of the list. If there is no

free frame, the page at the back of the list (i.e., the least recently used

page) is evicted and replaced with the new page, which is then added to

the front of the list.

4.1.3 Optimal Page Replacement (OPT)

The optimal page replacement algorithm is an optimal algorithm that

replaces the page that will not be used for the longest period. It requires

knowledge of the future page requests, which is not possible in practice.

In other words, this algorithm requires perfect knowledge of the future,

which is not realistic. However, the optimal page replacement algorithm

provides a theoretical upper bound on the performance of a page

replacement algorithm.

The OPT algorithm keeps track of the future references of each page and

selects the page with the longest time before the next reference as the

replacement candidate. The page with the longest time before the next

reference is the one that will be unused for the longest period. The OPT

algorithm requires knowledge of future page requests, which is not

possible in real-world scenarios.

The OPT algorithm is optimal in the sense that it always selects the page

that will not be used for the longest time period, resulting in a minimum

number of page faults. The OPT algorithm also provides a theoretical

upper bound on the performance of page replacement algorithms.

PAGE 50

The major disadvantage of the OPT algorithm is that it requires

knowledge of future page requests, which is not possible in real-world

scenarios. Moreover, the OPT algorithm is computationally expensive

and requires a significant amount of memory to store the future page

requests.

The optimal page replacement algorithm is an ideal algorithm that

always selects the page that will not be used for the longest time period.

However, it requires perfect knowledge of future page requests, which

is not possible in real-world scenarios. The OPT algorithm provides a

theoretical upper bound on the performance of page replacement

algorithms, but it is not practical for real-world use due to its high

computational cost and memory requirements. Nonetheless, the OPT

algorithm remains a fundamental concept in page replacement

algorithms and is essential for developing more practical and efficient

algorithms.

Example: Here is the pseudocode for the Optimal Page Replacement

Algorithm:

for each page P in the page table

 find the furthest occurrence of P in the future page references

 store the distance of that occurrence in an array DISTANCE

end for

while (there are pages to be replaced)

 find the page P in the page table with the maximum distance in

DISTANCE

 remove P from memory

 replace it with the new page

 update DISTANCE for the remaining pages in memory

end while

PAGE 51

In this algorithm, we first scan through the entire page table and record

the distance of each page's furthest occurrence in the future. Then,

whenever a page needs to be replaced, we select the page with the

maximum distance in the DISTANCE array, indicating that it will not be

needed for the longest time in the future. We remove that page from

memory, replace it with the new page, and update the DISTANCE array

for the remaining pages in memory.

4.1.4 Clock Page Replacement

In the previous chapters, we discussed three page replacement

algorithms: FIFO, LRU, and OPT. In this chapter, we will discuss the

Clock Page Replacement algorithm, which is another widely used page

replacement algorithm in modern operating systems. This algorithm is

also known as the Second-Chance algorithm, as it gives a second chance

to pages that have been accessed recently.

The Clock Page Replacement algorithm is an improvement over the

FIFO algorithm, which suffers from the Belady's anomaly. The main idea

behind the Clock algorithm is to keep a circular list of all the pages in

the main memory, similar to the clock hand moving around the clock.

The algorithm uses a "use bit" to keep track of whether a page has been

accessed or not. When a page is first loaded into memory, the use bit is

set to 0. If the page is accessed before it is replaced, the use bit is set to

1.

When a page fault occurs, the algorithm searches for the first page with

a use bit of 0. If such a page is found, it is replaced. However, if all the

pages have a use bit of 1, the algorithm gives a second chance to the first

page with a use bit of 1 that it encounters during its circular traversal of

the list. The use bit of this page is set back to 0, and the algorithm

continues its search for a page with a use bit of 0. This process continues

until a page with a use bit of 0 is found.

Advantages of Clock Page Replacement Algorithm:

PAGE 52

 The Clock algorithm is easy to implement and does not require a

lot of memory to keep track of page accesses.

 The algorithm provides a second chance to pages that have been

recently accessed, which can reduce the number of page faults.

 The Clock algorithm is less susceptible to the Belady's anomaly

compared to the FIFO algorithm.

Disadvantages of Clock Page Replacement Algorithm:

 The Clock algorithm may not be optimal, and there may be cases

where it performs worse than other page replacement algorithms.

 The performance of the algorithm depends on the number of

frames allocated to a process, and the optimal number of frames

may vary from process to process.

Example: Pseudocode for Clock Page Replacement Algorithm:

for each page in memory:

 page.useBit = 0

nextReplaceIndex = 0

while true:

 if nextReplaceIndex >= numberOfPages:

 nextReplaceIndex = 0

 if memory[nextReplaceIndex].useBit == 0:

 replacePage(nextReplaceIndex)

 nextReplaceIndex += 1

PAGE 53

 else:

 memory[nextReplaceIndex].useBit = 0

 nextReplaceIndex += 1

The Clock Page Replacement algorithm is an improvement over the

FIFO algorithm and provides a second chance to pages that have been

recently accessed. It is easy to implement and requires minimal memory

to keep track of page accesses. However, the algorithm may not be

optimal in all cases, and its performance depends on the number of

frames allocated to a process.

Example: Here's a pseudocode for the Clock Page Replacement

algorithm:

clock_head = 0 // initialize clock hand to the beginning of

the circular buffer

clock_ref_bits = {} // initialize the reference bits for all pages

to 0

clock_hand_used = false

// This function returns the index of a page in memory to replace

using the Clock algorithm

function clock_page_replacement():

 while true:

 // check if the current page is not referenced

 if clock_ref_bits[clock_head] == 0:

 // return the index of the page to be replaced

 return clock_head

 // if the current page is referenced, set its reference

bit to 0

PAGE 54

 clock_ref_bits[clock_head] = 0

 // move the clock hand to the next page in the circular

buffer

 clock_head = (clock_head + 1) % num_pages

 // if the clock hand has made a full circle without finding

an unreferenced page,

 // start using the reference bits to evict pages

 if clock_hand_used and clock_head == 0:

 // search for the first page with a reference bit of 0

 for i in range(num_pages):

 if clock_ref_bits[i] == 0:

 // return the index of the page to be replaced

 return i

 // if all pages have a reference bit of 1, reset all

reference bits to 0

 clock_ref_bits = [0] * num_pages

 // start the search again from the beginning of the

circular buffer

 clock_head = 0

 clock_hand_used = false

 else:

 clock_hand_used = true

PAGE 55

In this algorithm, the clock_ref_bits array keeps track of the reference

bit for each page in memory, and the clock_head variable points to the

current page being examined. The algorithm starts by iterating through

the circular buffer of pages, checking if the current page has a reference

bit of 0. If it does, that page is returned as the page to be replaced. If the

current page has a reference bit of 1, its reference bit is set to 0 and the

clock hand moves to the next page in the buffer.

Once the clock hand has made a full circle without finding an

unreferenced page, the algorithm starts using the reference bits to evict

pages. It searches for the first page with a reference bit of 0 and returns

that page as the page to be replaced. If all pages have a reference bit of

1, the algorithm resets all reference bits to 0 and starts the search again

from the beginning of the circular buffer.

4.1.5 Not Recently Used (NRU)

The Not Recently Used (NRU) page replacement algorithm is a variation

of the Clock page replacement algorithm. This algorithm is based on the

concept of dividing the page frames into four categories based on the

reference bit and the modify bit of each page. The categories are:

 Category 0: Pages with reference and modify bits set to 0.

 Category 1: Pages with reference bit set to 0 and modify bit set to

1.

 Category 2: Pages with reference bit set to 1 and modify bit set to

0.

 Category 3: Pages with reference and modify bits set to 1.

The algorithm selects a random page from the lowest numbered non-

empty category. If there are no pages in the lowest numbered non-

empty category, the algorithm selects a random page from the next

higher numbered non-empty category.

The NRU algorithm is relatively simple and easy to implement. It can be

effective in situations where pages that are not frequently accessed can

PAGE 56

be swapped out quickly. However, it may not always be the most

efficient algorithm, especially in situations where there is a high degree

of locality of reference.

Example: Pseudocode for NRU page replacement algorithm:

Create an array of four lists, one for each category of pages.

For each page fault:

a. If the list for category 0 is not empty, remove a random page

from the list and replace it.

b. Else, if the list for category 1 is not empty, remove a random

page from the list and replace it.

c. Else, if the list for category 2 is not empty, remove a random

page from the list and replace it.

d. Else, remove a random page from the list for category 3 and

replace it.

For each page access:

a. Set the reference bit for the accessed page to 1.

b. If the accessed page has been modified, set the modify bit to 1

as well.

Periodically reset the reference bits for all pages to 0.

In conclusion, the NRU algorithm is a simple page replacement

algorithm that can be effective in some scenarios, but may not always

be the most efficient. It is a good option when there is a mix of

frequently and infrequently accessed pages, and there is no clear pattern

to the access of pages.

Example: Here is a pseudocode for NRU (Not Recently Used) page

replacement algorithm:

1. Initialize the reference bit and modify bit for each page frame

to 0.

2. When a page fault occurs:

PAGE 57

 a. Search for a page frame with reference bit and modify bit

set to 0.

 b. If a page frame with reference bit and modify bit set to 0

is found, replace it with the new page.

 c. If no page frame with reference bit and modify bit set to 0

is found, search for a page frame with reference bit 0 and modify

bit 1.

 d. If a page frame with reference bit 0 and modify bit 1 is

found, replace it with the new page.

 e. If no page frame with reference bit 0 and modify bit 1 is

found, search for a page frame with reference bit 1 and modify bit

0.

 f. If a page frame with reference bit 1 and modify bit 0 is

found, replace it with the new page.

 g. If no page frame with reference bit 1 and modify bit 0 is

found, search for a page frame with reference bit and modify bit

both set to 1.

 h. If a page frame with reference bit and modify bit both set

to 1 is found, replace it with the new page, but first set the

reference bit to 0.

3. Set the reference bit of the page table entry corresponding to

the new page to 1.

4. When a clock interrupt occurs:

 a. Set the reference bit of each page frame to 0.

5. When a page is modified:

 a. Set the modify bit of the page table entry corresponding to

the page to 1.

In this algorithm, pages are classified into four categories based on the

value of their reference and modify bits. The algorithm tries to select a

page for replacement from the lowest priority category. If no page is

found in a category, it moves to the next category with higher priority.

PAGE 58

The algorithm also periodically resets the reference bit of each page

frame to 0.

4.1.6 Second-Chance Page Replacement

In the field of operating systems, page replacement algorithms play a

crucial role in managing memory resources efficiently. There are many

page replacement algorithms available, and one such algorithm is the

Second-Chance algorithm. This algorithm is also known as the Clock

algorithm and was first proposed by P. M. Bellady.

The Second-Chance algorithm is a modification of the FIFO algorithm.

In this algorithm, each page is assigned a reference bit that is set to 1

every time the page is referenced. The algorithm then maintains a

circular queue of all the pages in memory. The queue is ordered

according to the page's arrival time in memory, with the oldest page

being at the front of the queue.

When a page fault occurs, the algorithm examines the page at the front

of the queue. If its reference bit is 0, the page is removed from memory

and the new page is added to the back of the queue. However, if the

reference bit is 1, the page is given a "second chance" and is moved to

the back of the queue with its reference bit set to 0. The algorithm then

repeats the process until it finds a page with a reference bit of 0.

One of the advantages of the Second-Chance algorithm is that it gives

recently referenced pages a higher chance of remaining in memory. This

is because the algorithm gives each page a "second chance" before

removing it from memory. This makes it a better choice than the FIFO

algorithm in situations where there is a high demand for recently

referenced pages.

Another advantage of the Second-Chance algorithm is that it requires

less overhead than other algorithms, such as the LRU algorithm, since

it only needs to maintain a single reference bit for each page.

PAGE 59

One of the main disadvantages of the Second-Chance algorithm is that

it can result in a situation known as "thrashing." This occurs when the

algorithm repeatedly selects pages that are being referenced frequently,

but are too large to fit in memory. As a result, the algorithm spends most

of its time swapping pages in and out of memory, leading to a significant

decrease in system performance.

Another disadvantage of the Second-Chance algorithm is that it may not

be suitable for all types of workloads. For example, in a workload that

exhibits high temporal locality, the LRU algorithm may be more

appropriate.

In conclusion, the Second-Chance page replacement algorithm is a

modification of the FIFO algorithm that provides a "second chance" to

recently referenced pages before they are removed from memory. The

algorithm has advantages over other algorithms such as the LRU

algorithm in terms of overhead and is suitable for workloads that exhibit

a high demand for recently referenced pages. However, it can lead to

thrashing and may not be suitable for all types of workloads.

Example: Sure, here's an example pseudocode for the Second-Chance

page replacement algorithm:

while (true) {

 // Check if current page is present in page table

 if (page_table[current_page] == 1) {

 // If yes, set its reference bit to 1

 reference_bits[current_page] = 1;

 } else {

 // If no, find a page with reference bit = 0

 while (true) {

 // If reference bit is 0, replace the page

 if (reference_bits[current_page] == 0) {

PAGE 60

 replace_page(current_page);

 // Set the reference bit of new page to 1

 reference_bits[new_page] = 1;

 break;

 } else {

 // Set reference bit of current page to 0

 reference_bits[current_page] = 0;

 // Move to next page in circular list

 current_page = (current_page + 1) % num_pages;

 }

 }

 }

 // Move to next page in circular list

 current_page = (current_page + 1) % num_pages;

}

Note that page_table is an array that stores whether a particular page is

currently in physical memory, while reference_bits is an array that

stores the reference bit for each page. The replace_page function is

responsible for actually replacing the current page with a new page. In

this algorithm, the circular list of pages is traversed until a page with a

reference bit of 0 is found. If no such page is found in the first pass, the

reference bits are reset and the list is traversed again until a page with a

reference bit of 0 is found. Once a page is replaced, its reference bit is

set to 1.

4.1.7 Random Page Replacement

Random page replacement algorithm is one of the simplest and most

straightforward page replacement algorithms used in memory

PAGE 61

management. This algorithm randomly selects a page from the memory

to replace, regardless of the page's usage history or frequency. In this

chapter, we will discuss the details of the random page replacement

algorithm, including its advantages and disadvantages.

The random page replacement algorithm is based on the principle of

selecting a random page from the memory to be replaced. This

algorithm does not consider the usage history or frequency of the pages

in the memory, which makes it simple and easy to implement.

Example: The pseudocode for the random page replacement algorithm

is as follows:

1. When a page needs to be replaced:

2. Select a random page from the memory

3. Replace the selected page

4. Update the page table accordingly

The random page replacement algorithm is easy to implement and does

not require any additional information or calculations. However, it has

several disadvantages that make it less efficient compared to other page

replacement algorithms. One of the main disadvantages is that it may

replace a heavily used page that is required frequently, leading to

increased page faults and decreased system performance.

Advantages of Random Page Replacement Algorithm

 Simple and easy to implement

 Does not require any additional information or calculations

 Works well for small memory systems where the page usage

history is not important

Disadvantages of Random Page Replacement Algorithm

PAGE 62

 May replace heavily used pages, leading to increased page faults

and decreased system performance

 Does not take into account the usage history or frequency of the

pages in the memory, which may result in inefficient use of the

available memory

 May not perform well in large memory systems where the page

usage history is important

The random page replacement algorithm is a simple and easy-to-

implement page replacement algorithm that selects a random page from

the memory to be replaced. Although it has some advantages, such as

simplicity and ease of implementation, it also has several disadvantages,

such as inefficient use of memory and decreased system performance.

In general, the random page replacement algorithm is not commonly

used in modern operating systems, and other more sophisticated page

replacement algorithms are preferred.

Example: Here is a pseudocode for the Random page replacement

algorithm:

1. Initialize a list of page frames to be used.

2. While processing pages, check if the current page is in a page

frame.

3. If the page is in a frame, do nothing and move to the next page.

4. If the page is not in a frame, randomly choose a page frame to

be replaced.

5. Replace the chosen page frame with the current page and update

the page table.

6. Move to the next page.

PAGE 63

4.1.8 WSClock Algorithm

The WSClock algorithm is a modification of the Clock algorithm, which

uses a circular buffer to keep track of page frames in memory. It replaces

the standard Clock algorithm's "hand" with a WSClock hand that moves

around the buffer according to the page's time of use and its priority.

The WSClock algorithm uses a two-part algorithm to determine which

page to replace. First, it scans the buffer to find the page with the lowest

priority. The priority of a page is determined by its time of use and its

working set size. The working set size is the number of pages accessed

by the process in the recent past. The longer the page has not been

accessed, the lower its priority. The smaller the working set size, the

lower the priority.

Once the WSClock algorithm identifies the lowest-priority page, it

examines the page's reference bit. If the reference bit is set to one, the

algorithm gives the page a second chance and sets the reference bit to

zero. The WSClock algorithm then continues scanning the buffer for the

next lowest-priority page until it finds a page with a reference bit of zero.

If no pages have a reference bit of zero, the algorithm selects the page

with the lowest priority and removes it from memory.

Example: Here's a pseudocode for the WSClock Algorithm:

while (memory is not full) {

 load page into memory;

 set reference bit to 1;

 set WSClock bit to 1;

}

while (true) {

 for (each page in memory) {

PAGE 64

 if (page has not been referenced in a while) {

 if (page has WSClock bit set to 1) {

 set WSClock bit to 0;

 set reference bit to 0;

 } else {

 remove page from memory;

 load new page;

 set reference bit to 1;

 set WSClock bit to 1;

 }

 }

 }

}

This pseudocode initializes memory by loading pages and setting their

reference and WSClock bits to 1. The algorithm then enters an infinite

loop to continuously scan the memory and replace the page with the

lowest priority. The priority is determined by the page's reference and

WSClock bits, with pages that have not been referenced in a while

having lower priority.

If the page with the lowest priority has its WSClock bit set to 1, the

algorithm gives it a second chance by setting its reference and WSClock

bits to 0. Otherwise, the algorithm removes the page from memory,

loads a new page, and sets its reference and WSClock bits to 1.

PAGE 65

4.2 Performance evaluation of page replacement

algorithms

Performance evaluation is an essential aspect of operating system design,

especially in memory management. It helps to determine the

effectiveness of various page replacement algorithms in managing

memory efficiently. In this chapter, we will explore various performance

evaluation metrics and techniques for evaluating the efficiency of page

replacement algorithms.

Several metrics can be used to evaluate the performance of page

replacement algorithms. The most common ones are:

 Page Fault Rate is the number of page faults per unit of time. It

measures the frequency at which the operating system must

replace pages that are currently in use with new pages from the

disk. A higher page fault rate indicates a less efficient page

replacement algorithm.

 Memory Access Time is the time required to access a page in

memory. It includes the time required to retrieve a page from the

disk and the time required to access it in memory. A faster

memory access time indicates a more efficient page replacement

algorithm.

 CPU Utilization measures the amount of time the CPU spends

executing processes. A higher CPU utilization indicates that the

page replacement algorithm is efficient at providing the CPU with

the necessary pages.

 Throughput is the number of processes that can be completed in

a given amount of time. A higher throughput indicates that the

page replacement algorithm is efficient at completing processes.

Several techniques can be used to evaluate the performance of page

replacement algorithms. The most common ones are:

PAGE 66

 Simulation involves using a computer program to simulate the

execution of a set of processes and their associated page references.

The program records the number of page faults and other

performance metrics, allowing us to compare the efficiency of

different page replacement algorithms.

 Analytical modeling involves creating a mathematical model of

the memory system and using it to predict the performance of

different page replacement algorithms. This technique is useful

when simulating large memory systems becomes computationally

expensive.

 Benchmarking involves running a set of standardized programs

and measuring their performance using various page replacement

algorithms. This technique is useful for comparing the efficiency

of page replacement algorithms under real-world conditions.

Performance evaluation is crucial in determining the effectiveness of

page replacement algorithms in managing memory efficiently. By using

the metrics and techniques discussed in this chapter, operating system

designers can select the most suitable page replacement algorithm for

their system.

4.3 Working set model and page thrashing

In virtual memory systems, one of the most important goals is to avoid

page thrashing, which occurs when the system spends more time

swapping pages in and out of memory than executing useful work. In

this chapter, we will explore the working set model, a technique for

managing page thrashing, and the consequences of page thrashing.

PAGE 67

4.3.1 Working Set Model

The working set model is a concept used to manage page thrashing in

virtual memory systems. The working set of a process is defined as the

set of pages that the process is currently actively using. The size of the

working set can be thought of as the minimum number of pages that

the process needs to keep in memory to avoid page thrashing. If the size

of the working set exceeds the available physical memory, page

thrashing will occur.

To manage page thrashing using the working set model, the operating

system must periodically analyze the memory usage of each process and

adjust the allocation of physical memory accordingly. If the size of the

working set of a process exceeds the available physical memory, the

operating system can either increase the size of physical memory or

reduce the size of the working set. Conversely, if the size of the working

set is smaller than the available physical memory, the operating system

can increase the allocation of physical memory or reduce the frequency

of page swaps.

Example: Here is a possible pseudocode for implementing the working

set model:

function update_working_set(process):

 // Get the current time

 current_time = get_current_time()

 // Compute the process's page fault rate over the last time

interval

 page_fault_rate = count_page_faults(process) / (current_time -

process.last_update_time)

 // Update the process's working set size based on its page fault

rate

PAGE 68

 if page_fault_rate > process.page_fault_threshold:

 // Increase the working set size

 process.working_set_size += process.working_set_growth

 else if page_fault_rate < process.page_fault_threshold -

process.page_fault_hysteresis:

 // Decrease the working set size

 process.working_set_size -= process.working_set_shrinkage

 // Limit the working set size to the process's physical memory

limit

 process.working_set_size = min(process.working_set_size,

process.physical_memory_limit)

 // Update the process's last update time

 process.last_update_time = current_time

function count_page_faults(process):

 // Iterate over the process's pages and count the number of page

faults

 count = 0

 for page in process.pages:

 if page.is_present == false:

 count += 1

 return count

This pseudocode defines a function update_working_set that takes a

process as input and updates its working set size based on its page fault

rate over a certain time interval. The function first computes the page

fault rate by counting the number of page faults that occurred since the

PAGE 69

last update and dividing it by the time elapsed. It then adjusts the

working set size based on the page fault rate: if the rate is above a certain

threshold, the working set size is increased; if it is below the threshold

minus a hysteresis factor, the working set size is decreased. The function

also limits the working set size to the process's physical memory limit.

Finally, the function updates the process's last update time.

The pseudocode also defines a helper function count_page_faults that

counts the number of page faults for a given process by iterating over its

pages and checking if each page is present in physical memory.

4.3.2 Page Thrashing

Page thrashing occurs when the operating system spends more time

swapping pages in and out of memory than executing useful work. This

can occur when the size of the working set of a process exceeds the

available physical memory, causing the operating system to constantly

swap pages in and out of memory to keep up with the demand. Page

thrashing can cause severe performance degradation and can make the

system unresponsive.

The consequences of page thrashing include reduced system

throughput, increased response time, and decreased overall

performance. The system may also experience excessive disk I/O,

leading to premature disk failure. To avoid page thrashing, it is

important to carefully manage the allocation of physical memory and

adjust the working set size of each process as needed.

Example: Here is a possible pseudocode for avoiding page thrashing:

function avoid_page_thrashing(process):

 // Initialize variables

 page_faults = 0

 consecutive_page_faults = 0

 max_consecutive_page_faults = 0

PAGE 70

 last_working_set_size = 0

 working_set_size = process.initial_working_set_size

 // Loop until the process finishes

 while process.is_running:

 // Check if the process has exceeded its working set size

 if process.current_page_count > working_set_size:

 // Page out the least-recently-used pages until the working

set size is reached

 while process.current_page_count > working_set_size:

 page_out_least_recently_used_page(process)

 // Check for page faults

 if page_fault_occurs(process):

 page_faults += 1

 consecutive_page_faults += 1

 max_consecutive_page_faults =

max(max_consecutive_page_faults, consecutive_page_faults)

 else:

 consecutive_page_faults = 0

 // Check if the working set size needs to be adjusted

 if page_faults % process.page_fault_interval == 0:

 if consecutive_page_faults >=

process.consecutive_page_fault_threshold:

 // Increase the working set size

 last_working_set_size = working_set_size

PAGE 71

 working_set_size += process.working_set_growth

 else if working_set_size > last_working_set_size:

 // Decrease the working set size if there were no recent

consecutive page faults

 last_working_set_size = working_set_size

 working_set_size = max(working_set_size -

process.working_set_shrinkage, process.initial_working_set_size)

 // Clean up any remaining pages

 while process.current_page_count > 0:

 page_out_least_recently_used_page(process)

}

function page_fault_occurs(process):

 // Check if a page fault occurs by simulating the page table

lookup

 page_number = get_next_instruction(process)

 if page_number not in process.page_table:

 // Page fault

 handle_page_fault(process, page_number)

 return true

 else:

 // Page hit

 update_page_table(process, page_number)

 return false

function page_out_least_recently_used_page(process):

PAGE 72

 // Find the least-recently-used page and page it out

 page_to_page_out = get_least_recently_used_page(process)

 page_out(process, page_to_page_out)

function get_least_recently_used_page(process):

 // Find the least-recently-used page by iterating over the

process's pages

 least_recently_used_page = None

 for page in process.pages:

 if least_recently_used_page is None or page.last_access_time <

least_recently_used_page.last_access_time:

 least_recently_used_page = page

 return least_recently_used_page

This pseudocode defines a function avoid_page_thrashing that

implements the working set model to avoid page thrashing. The

function first initializes some variables, including the initial working set

size and the consecutive page fault threshold. It then enters a loop that

simulates the execution of the process, checking for page faults and

adjusting the working set size as needed.

In each iteration of the loop, the function first checks if the process has

exceeded its working set size, and if so, pages out the least-recently-used

pages until the working set size is reached. It then checks for page faults

by simulating the page table lookup and calls handle_page_fault if a

fault occurs. If a fault occurs, the function updates some variables,

including the number of consecutive page faults and the maximum

consecutive page faults seen so far.

In this chapter, we have explored the working set model, a technique for

managing page thrashing in virtual memory systems. We have also

PAGE 73

discussed the consequences of page thrashing, including reduced

system throughput, increased response time, and decreased overall

performance. Effective management of page thrashing requires careful

analysis of memory usage patterns and proactive adjustment of the

working set size of each process. The working set model is an effective

technique for managing page thrashing and can help ensure that virtual

memory systems operate at peak efficiency.

5 Designing a paging system

5.1 Local vs global allocation policy

In designing a paging system, there are several issues that must be taken

into consideration. One of the most important of these issues is whether

to use a local or global allocation policy for page replacement.

Under a local allocation policy, each process is given a fixed number of

page frames in memory. When a process needs to allocate a new page,

it can only do so from the set of page frames it has been allocated. This

means that when the system is under heavy load and all processes are

competing for memory, a process may not be able to allocate a new page

even if there are free page frames available elsewhere in the system.

However, the advantage of a local allocation policy is that it guarantees

that each process will have a certain minimum amount of memory

available to it at all times, which can help to prevent thrashing.

Under a global allocation policy, on the other hand, all processes share

a pool of available page frames. When a process needs to allocate a new

page, it can do so from any free page frame in the system. This means

that if a process needs more memory than it has been allocated, it can

take memory away from other processes if necessary. However, the

disadvantage of a global allocation policy is that it can lead to thrashing,

PAGE 74

where the system spends all its time swapping pages in and out of

memory rather than executing useful work.

Choosing between a local and global allocation policy depends on the

specific needs of the system. In general, a local allocation policy is better

suited for systems where each process has a fixed memory requirement,

while a global allocation policy is better suited for systems where

memory requirements can vary widely between processes. However,

there are many other factors that must be taken into consideration, such

as the size of the available memory, the number of processes running on

the system, and the workload of each process. Ultimately, the choice of

allocation policy will depend on the specific requirements and

constraints of the system being designed.

5.2 Load control

Load control is an important aspect of memory management in

operating systems, especially in systems that use paging. When the

working set of a process exceeds the available physical memory, the

system may begin to thrash, causing a severe degradation in

performance. In this situation, the system needs to free up memory to

reduce the number of competing processes.

One effective way to free up memory is to swap some of the processes

to disk. This frees up all the pages that the swapped process was holding

and makes them available for other processes. For instance, one process

can be swapped out to the disk and its page frames can be divided

among other processes that are thrashing. If the thrashing stops, the

system can run for a while this way. If it does not stop, another process

has to be swapped out, and so on, until the thrashing stops.

Load control can be implemented using various techniques, including

static allocation, dynamic allocation, and hybrid allocation. Static

allocation involves dividing the physical memory equally among all

PAGE 75

processes at the time of process creation. This approach can lead to

uneven allocation of memory, with some processes receiving more

memory than they need, while others receive less. Dynamic allocation,

on the other hand, involves monitoring the memory usage of each

process and adjusting the allocation dynamically as needed. This

approach requires more overhead but can lead to more efficient use of

memory.

Another important consideration for load control is the choice of page

replacement algorithm. The choice of algorithm can significantly

impact the system's ability to handle thrashing. For instance, some

algorithms are more effective at reducing thrashing, while others may

perform better under different conditions.

In summary, load control is a critical aspect of memory management in

operating systems, especially in systems that use paging. To reduce

thrashing, the system can swap some processes to disk and free up their

page frames for other processes. The choice of allocation policy and page

replacement algorithm can also significantly impact the system's ability

to handle thrashing. Operating system designers must carefully

consider these factors when designing paging systems.

5.3 Page size

Choosing an appropriate page size is an important design decision for

the operating system. A larger page size means fewer entries in the page

table and fewer page table lookups, reducing memory overhead and

improving performance. On the other hand, a smaller page size means

less internal fragmentation, better memory utilization, and the ability

to allocate memory more efficiently.

The most common page size used today is 4 KB, which is also the default

page size for most operating systems. However, some operating systems

allow the page size to be set to different values. For example, Linux

PAGE 76

supports page sizes of 4 KB, 2 MB, and 1 GB, while Windows supports

page sizes of 4 KB, 2 MB, and 1 GB on x64 platforms.

Choosing a page size that is too small can result in a large page table and

an increase in page table lookups, causing performance degradation. On

the other hand, choosing a page size that is too large can result in

increased internal fragmentation, wasted memory, and decreased

memory utilization.

In general, a larger page size is beneficial for applications that have a

large working set size and exhibit good spatial locality, while a smaller

page size is better for applications with a small working set size and poor

spatial locality. The optimal page size depends on the characteristics of

the application and the hardware, and it is often determined empirically.

In addition, some processors, such as the PowerPC, support multiple

page sizes, allowing the operating system to choose the appropriate

page size for each application based on its memory access patterns.

In conclusion, choosing an appropriate page size is an important design

decision for the operating system, and it depends on the characteristics

of the application and the hardware. A larger page size can improve

performance by reducing memory overhead, while a smaller page size

can improve memory utilization by reducing internal fragmentation.

5.4 Separation instruction and data spaces

A solution to the problem of limited address space is to separate the

program and data spaces. This approach, called separate instruction and

data spaces, provides two distinct address spaces, one for instructions

and one for data. This way, the programmer can write code and data as

if they had an unlimited address space, as shown in Fig. 3-24(b).

Separate instruction and data spaces also provide several other

advantages. One advantage is that it can prevent accidental data

PAGE 77

modification by code. In a single address space system, if a program

accesses data as if it were an instruction, it could modify the data,

causing program failure or unpredictable behavior. In a separate

instruction and data space system, such accidents are less likely to occur

since the hardware enforces the distinction between the two address

spaces.

Another advantage of separate instruction and data spaces is that it

allows for better protection and sharing of memory. With separate

address spaces, it is possible to allocate different permissions to the

instruction and data spaces. For example, the instruction space can be

marked as read-only, while the data space can be marked as read-write.

This prevents code from modifying itself and protects against certain

types of malicious attacks.

Overall, separate instruction and data spaces provide a more flexible

and secure memory management approach, particularly in systems

where the address space is limited.

5.5 Shared pages

Sharing of pages is an important design issue in multiprogramming

systems. In such systems, it is common for several users to be running

the same program at the same time, or for a single user to be running

several programs that use the same library. Sharing pages can lead to

more efficient use of memory, as it avoids having two copies of the same

page in memory at the same time.

However, not all pages are sharable. For example, pages that contain

program text (i.e., code) are typically read-only and can be shared. This

is because the same program code is executed by different processes,

and there is no need to have multiple copies of the same code in memory.

On the other hand, data pages are often not sharable because they

contain process-specific data.

PAGE 78

To enable sharing of data pages, some operating systems provide a

mechanism called copy-on-write (COW). With COW, when a process

requests a page, the operating system makes a copy of the page only if

the page is about to be modified. Otherwise, the process shares the page

with other processes that are using the same page. This can significantly

reduce the amount of memory required by a system, especially in cases

where several processes are running the same program.

Shared pages can also be used for interprocess communication (IPC).

For example, a shared memory segment can be created and shared by

several processes, allowing them to communicate and share data more

efficiently than through other IPC mechanisms such as pipes or message

queues.

In summary, sharing of pages is an important design issue in

multiprogramming systems, and can lead to more efficient use of

memory. While not all pages are sharable, techniques such as copy-on-

write can enable sharing of data pages. Shared pages can also be used

for interprocess communication.

5.6 Shared Libraries

Shared libraries are code libraries that can be loaded into a process's

virtual address space at runtime. Unlike static libraries, which are linked

with the executable file at compile time, shared libraries are loaded on

demand, which reduces the size of the executable file and allows for

more efficient use of memory. Shared libraries are commonly used in

operating systems and other software systems to provide a standard set

of functions that can be used by multiple processes.

Example: The following is an example of how to load a shared library:

// Load the library

void *handle = dlopen("libexample.so", RTLD_LAZY);

PAGE 79

// Get a function pointer

void (*func)(void) = dlsym(handle, "example_function");

// Call the function

func();

// Unload the library

dlclose(handle);

In this example, the dlopen function loads the shared library

"libexample.so". The dlsym function gets a function pointer for the

function "example_function", which is defined in the shared library. The

func variable contains the function pointer, and the function is called

using the () operator. Finally, the dlclose function unloads the shared

library.

5.7 Memory-Mapped Files

A memory-mapped file is a file that is mapped to a portion of a process's

virtual address space. When a process accesses the memory region

corresponding to the memory-mapped file, the operating system

transparently reads or writes data to the file. Memory-mapped files are

often used for accessing large files, such as databases or multimedia files,

without having to load the entire file into memory.

Example: The following is an example of how to create a memory-

mapped file:

// Open the file

int fd = open("file.txt", O_RDWR);

PAGE 80

// Determine the file size

off_t length = lseek(fd, 0, SEEK_END);

// Create a memory mapping for the file

char *addr = mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_SHARED,

fd, 0);

In this example, the open function opens the file "file.txt" for both

reading and writing. The lseek function determines the file size, and the

mmap function creates a memory mapping for the file. The addr variable

contains a pointer to the mapped memory region.

5.8 Copy-on-write (COW) mechanism and its benefits

In modern operating systems, processes often share the same resources,

such as memory, files, and other system resources. When multiple

processes access the same resource simultaneously, it can lead to issues

such as contention and data inconsistency. One way to address these

issues is through a technique called Copy-on-Write (COW). In this

chapter, we will explore the COW mechanism, its benefits, and its

implementation in operating systems.

The Copy-on-Write mechanism is a technique used to manage memory

efficiently in a system that shares memory resources among multiple

processes. When a process requests to access a shared resource, the

operating system creates a copy of the resource only if necessary.

Otherwise, the process is given read-only access to the shared resource.

The copy is created only when the process attempts to modify the

shared resource. This copy is then made private to the process, and the

process can make changes to it without affecting the original shared

resource.

PAGE 81

The Copy-on-Write mechanism provides several benefits to an

operating system:

 Memory Management: The Copy-on-Write mechanism reduces

memory usage by allowing multiple processes to share the same

resource. This sharing of resources reduces the number of copies

of the resource, which leads to efficient memory management.

 Performance: The Copy-on-Write mechanism reduces the

overhead associated with creating copies of a resource. When a

process attempts to modify a shared resource, the operating

system only creates a copy of the resource when necessary, which

reduces the overhead of copying the resource unnecessarily.

 Data Consistency: The Copy-on-Write mechanism ensures data

consistency among multiple processes that share the same

resource. Each process has its own copy of the resource, which it

can modify independently. Therefore, the original resource

remains unchanged, and data consistency is maintained.

 Improved Security: The Copy-on-Write mechanism provides

improved security by ensuring that each process has its own copy

of the resource, which it can modify independently. This reduces

the risk of unauthorized access to the original shared resource.

The Copy-on-Write mechanism is implemented in various ways in

different operating systems. One common approach is to use a

technique called page sharing. In this approach, the operating system

assigns the same physical memory page to multiple processes that

request to access the same resource. When a process attempts to modify

the shared page, the operating system creates a copy of the page and

assigns it to the process. The process can then make changes to the copy

without affecting the original shared page.

Another approach to implementing the Copy-on-Write mechanism is to

use a technique called fork-on-write. In this approach, the operating

system creates a copy of a process when the process attempts to modify

PAGE 82

a shared resource. The new process shares the same memory resources

as the original process, except for the resource that is being modified.

The new process then modifies the resource independently, and the

original resource remains unchanged.

The Copy-on-Write mechanism is a technique used to manage memory

efficiently in a system that shares memory resources among multiple

processes. It provides several benefits, including efficient memory

management, improved performance, data consistency, and improved

security. The mechanism is implemented in various ways in different

operating systems, including page sharing and fork-on-write. The Copy-

on-Write mechanism is an important tool for managing resources

efficiently in modern operating systems.

5.9 Cleaning policy

When a process needs a page that is not in memory, the operating

system must find a free page frame for it. If no free frame is available,

the system must make room by replacing one of the existing pages in

memory. This process of selecting pages to be replaced is called the page

replacement policy. However, the process of actually removing the page

from memory and writing it back to disk is called the cleaning policy.

To ensure a plentiful supply of free page frames, paging systems

generally have a background process, called the paging daemon, that

sleeps most of the time but is awakened periodically to inspect the state

of memory. If too few page frames are free, it begins selecting pages to

evict using some page replacement algorithm. If these pages have been

modified since being loaded, they are written to disk. This is known as

the cleaning policy.

The goal of the cleaning policy is to free up memory so that new pages

can be brought in as needed. The cleaning policy is different from the

page replacement policy, which determines which pages should be

PAGE 83

replaced. In general, the cleaning policy tries to write pages back to disk

in a way that minimizes the number of disk writes and maximizes the

availability of free page frames.

One common approach to cleaning is called the demand cleaning policy.

In this approach, pages are written back to disk only when they are

needed. When a page needs to be evicted from memory, the system first

checks whether it has been modified. If it has not been modified, the

page can be simply discarded, without being written back to disk. If it

has been modified, it must be written back to disk before it can be

discarded.

Another approach to cleaning is called the precleaning policy. In this

approach, the system writes modified pages back to disk before they are

evicted from memory. This can be useful when the system has many

modified pages, and there is a risk of running out of free page frames

before the paging daemon has a chance to write them all back to disk.

In summary, the cleaning policy is an important part of the paging

system. It ensures that free page frames are available for new pages to

be brought in as needed. There are different approaches to cleaning,

including demand cleaning and precleaning, and the choice of approach

depends on the characteristics of the system and the workload.

6 Case Study: Virtual Memory in Windows

One popular operating system that utilizes virtual memory is Microsoft

Windows. Windows implements a complex virtual memory

management system that is optimized for its graphical user interface

and multi-tasking capabilities. In this chapter, we will explore Windows'

approach to virtual memory, comparing it to other operating systems

and discussing its impact on performance and reliability.

The chapter will begin with a brief overview of the definition and

importance of virtual memory. We will then review the concepts of

PAGE 84

paging and segmentation and how they are used to map virtual to

physical addresses. This will be followed by a discussion of page fault

handling, including the causes and consequences of page faults and the

mechanism for handling them.

Next, we will revisit page replacement algorithms, examining their role

in managing memory and discussing advanced algorithms such as

WSClock and Second Chance. We will then turn our attention to

memory mapping and copy-on-write, exploring their benefits and

comparing them to other sharing mechanisms.

Finally, we will examine Windows' approach to virtual memory in detail,

discussing its unique features and comparing it to other operating

systems. We will also analyze the impact of Windows' virtual memory

management system on performance and reliability.

6.1 Overview of Windows' approach to virtual memory

Like most modern operating systems, Windows uses virtual memory to

manage the available system memory. The virtual memory is divided

into fixed-size pages, which are used to store the code and data of

running processes. Each page is assigned a unique virtual address, which

is used by the process to access the memory. The virtual addresses are

mapped to physical memory locations by the operating system, allowing

multiple processes to run simultaneously without interfering with each

other.

The Windows memory manager is responsible for managing the virtual

memory of the system. It is a complex component that handles a wide

range of tasks, including page allocation and deallocation, page

replacement, and memory sharing. The memory manager operates at a

low level, interacting directly with the hardware and managing the page

tables used by the processor to translate virtual addresses into physical

addresses.

PAGE 85

When a process attempts to access a virtual address that is not currently

mapped to physical memory, a page fault occurs. The memory manager

is responsible for handling page faults and allocating the required

memory. In Windows, the memory manager uses a demand-paging

mechanism, where pages are loaded into memory only when they are

needed.

When the system runs out of physical memory, the memory manager

must decide which pages to evict from memory to make room for new

pages. Windows uses a modified version of the clock algorithm called

the "modified clock" or "second chance" algorithm to select the pages to

be evicted. This algorithm uses a combination of access bits and

modified bits to determine which pages are most likely to be needed

again in the future.

One unique feature of Windows' virtual memory management system is

its support for memory-mapped files. Memory-mapped files allow a file

to be mapped directly into the virtual address space of a process,

allowing the process to read and write the file as if it were regular

memory. This can be useful for handling large files, as it allows the file

to be read or written in small chunks, without having to load the entire

file into memory.

Windows also supports shared memory, which allows multiple

processes to share memory regions. Shared memory can be used for

interprocess communication and can improve system performance by

reducing the need for data copying between processes. Windows

provides several APIs for creating and accessing shared memory regions,

including the CreateFileMapping and MapViewOfFile functions.

In this chapter, we have explored the virtual memory management

system used by Windows. The Windows memory manager is a complex

component that plays a critical role in the performance and stability of

the operating system. The use of demand paging, page replacement

algorithms, memory-mapped files, and shared memory all contribute to

the efficient use of system resources and the seamless operation of

PAGE 86

multiple processes. Understanding how Windows manages its virtual

memory can help developers write efficient and reliable applications

that take advantage of the full potential of the system.

6.2 Comparison with other operating systems

Windows vs. Linux:

Windows and Linux are two of the most widely used operating systems

in the world, and they have different approaches to virtual memory

management. In Windows, the memory manager uses a demand-paging

algorithm to bring pages into memory as they are needed. Linux, on the

other hand, uses a demand-zeroing algorithm, which means that pages

are zeroed out before they are allocated to a process.

Windows vs. macOS:

Windows and macOS are two popular desktop operating systems.

Windows uses a pagefile to store pages that are swapped out of physical

memory, while macOS uses a swapfile. Windows also has a feature

called SuperFetch, which preloads commonly used applications into

memory to improve performance. macOS uses a technique called

memory compression, which compresses memory pages to reduce their

size and improve performance.

Windows vs. iOS:

Windows and iOS are two popular operating systems that are used on

different devices. Windows uses a pagefile for virtual memory

management, while iOS uses a swapfile. iOS also uses a technique called

"purgeable memory," which allows the operating system to quickly

reclaim memory that is not currently being used.

Linux vs. macOS:

PAGE 87

Linux and macOS are two Unix-like operating systems that have many

similarities. Both use demand-paging algorithms for virtual memory

management. However, macOS uses a technique called memory

compression, while Linux uses a technique called transparent huge

pages, which combines multiple small pages into a single large page to

reduce memory overhead.

Linux vs. Android:

Linux is the kernel used in both desktop and mobile operating systems.

Android, a popular mobile operating system, is based on the Linux

kernel. Both Linux and Android use demand-paging algorithms for

virtual memory management, but Android uses a technique called "low-

memory killer," which terminates processes that are using too much

memory to free up resources.

In conclusion, each operating system has its own unique approach to

virtual memory management, and the choice of an operating system

depends on the specific requirements of the application and the

hardware. Windows and macOS use pagefiles and swapfiles,

respectively, while Linux and Android use demand-paging algorithms

for virtual memory management. Each operating system also has its own

unique features, such as memory compression, transparent huge pages,

and low-memory killer, which provide additional benefits for specific

use cases.

7 Conclusion

In conclusion, virtual memory is a crucial component of modern

operating systems that enables efficient and flexible memory

management. By using virtual memory, programs can access more

memory than physically available on the system, resulting in better

performance and increased reliability.

PAGE 88

In this chapter, we have discussed the key concepts of virtual memory,

including paging, segmentation, page fault handling, page replacement

algorithms, memory mapping, and copy-on-write. We have also

examined how these concepts are implemented in different operating

systems, such as Linux and Windows, and compared their approaches

to virtual memory management.

Effective virtual memory management requires a careful balance

between the size of the physical memory and the demands of the

running programs. The choice of page replacement algorithm, sharing

mechanism, and memory mapping technique can significantly impact

the performance and reliability of the system. Therefore, it is important

for operating system designers and developers to understand these

concepts and make informed decisions when designing and

implementing virtual memory systems.

As computer systems continue to evolve and grow in complexity, virtual

memory will remain a critical component for efficient and effective

memory management. By understanding the key concepts and

implementation details of virtual memory, we can continue to improve

the performance and reliability of modern operating systems.

