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Chapter 9:  
Virtual Memory 

 

1 Introduction 

Virtual memory is an essential component of modern operating systems. 

It allows a computer system to use more memory than physically 

available, by temporarily transferring data from RAM to disk. This 

technique allows applications to use more memory than is physically 

available, leading to a more efficient and powerful computing 

experience. 

In this chapter, we will explore the concept of virtual memory, including 

the definition and importance of the topic. We will also discuss the goals 

of the chapter and what readers can expect to learn by the end. By 

understanding the importance of virtual memory and how it works, 

readers will have a better understanding of how modern computer 

systems operate. 

1.1 Definition and importance of virtual memory 

In modern computing, the need for efficient memory management has 

become increasingly important. With the proliferation of complex and 

memory-intensive applications, it is essential that an operating system 

(OS) provides an effective mechanism for managing memory. One such 

mechanism is virtual memory, which allows a program to use more 

memory than the system physically has available. This chapter will 

discuss the definition and importance of virtual memory, its 
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implementation, and how it improves the overall performance of a 

computer system. 

Virtual memory is a technique that enables a computer system to use 

more memory than is physically available. It allows an operating system 

to map a process's logical address space to a physical memory location. 

In other words, it provides an illusion of having more memory than is 

actually present in the system. Virtual memory is implemented through 

a combination of hardware and software, with the hardware responsible 

for translating virtual addresses into physical addresses, and the 

software managing the mapping between virtual and physical addresses. 

Virtual memory is crucial for the efficient operation of modern 

computer systems for several reasons. Firstly, it allows multiple 

processes to run concurrently, even when the total memory 

requirements exceed the amount of physical memory available. This 

means that a computer can run several large and complex programs 

simultaneously without running out of memory. Secondly, virtual 

memory reduces the amount of time it takes to load and execute a 

program. When a program is executed, its code and data are loaded 

from storage into memory. Without virtual memory, the entire program 

and all its data would need to be loaded into memory before execution. 

With virtual memory, only the necessary parts of a program are loaded 

into memory, resulting in faster load times and reduced memory 

requirements. 

Virtual memory also provides a level of memory protection, ensuring 

that each process is isolated from other processes and the operating 

system itself. This protection prevents one process from accessing the 

memory of another process or the operating system, which is essential 

for the overall security and stability of the system. Finally, virtual 

memory enables the use of advanced memory management techniques, 

such as paging and segmentation, which further improve the efficiency 

of memory usage. 
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In conclusion, virtual memory is a vital component of modern computer 

systems. It allows for the efficient use of memory by providing an 

illusion of more memory than is physically available, reducing the 

amount of time it takes to load and execute programs, and providing a 

level of memory protection. Virtual memory has enabled the 

development of more complex and memory-intensive applications, 

allowing for the evolution of modern computing. 

1.2 Overview of the goals of the chapter 

Virtual memory is a crucial aspect of modern computer systems, and it 

plays a critical role in ensuring optimal performance and efficient 

memory management. The primary goal of virtual memory is to provide 

a seamless, uninterrupted, and consistent memory management 

environment for all applications and processes, regardless of their size 

or memory requirements. This chapter will provide an overview of the 

key goals of virtual memory and how they contribute to effective 

memory management. 

Goals of Virtual Memory: 

 Abstraction of Physical Memory: The primary goal of virtual 

memory is to provide a layer of abstraction between the physical 

memory and the applications that use it. This abstraction allows 

applications to access memory in a consistent and uniform way, 

regardless of the underlying physical memory structure. 

 Protection and Isolation: Another critical goal of virtual memory 

is to provide a mechanism for protecting and isolating memory 

regions. This protection ensures that applications cannot access 

memory regions that they are not authorized to use. Additionally, 

virtual memory allows multiple applications to run 

simultaneously on the same system, without interfering with each 

other's memory usage. 
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 Efficient Memory Management: Virtual memory provides a means 

for efficient memory management by allowing the operating 

system to allocate memory to applications on demand. This 

allocation ensures that memory is utilized efficiently, and no 

memory is wasted. 

 Support for Large Memory Applications: Virtual memory allows 

applications to access more memory than is physically available 

on the system. This support for large memory applications enables 

the development of applications that require more memory than 

is available on the system. 

 Improved Performance: Finally, virtual memory improves system 

performance by reducing the need for physical memory swaps. By 

using virtual memory, the operating system can keep frequently 

used data in physical memory, while less frequently used data is 

swapped to disk. This swapping ensures that memory is used 

efficiently, resulting in improved system performance. 

 

In conclusion, virtual memory is an essential component of modern 

computer systems, and it plays a critical role in efficient memory 

management. The goals of virtual memory are to abstract physical 

memory, provide protection and isolation, support efficient memory 

management, enable the development of large memory applications, 

and improve system performance. By achieving these goals, virtual 

memory ensures that computer systems operate seamlessly and provide 

optimal performance for all applications and processes. 

1.3 Background 

1.3.1 Partially-Loaded Programs 

In a computer system, the code needs to be in memory to execute. 

However, the entire program is rarely used at the same time. There are 
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many cases where only a portion of the code is used, such as error code, 

unusual routines, or large data structures. This means that the entire 

program code is not needed at the same time, and there is a possibility 

of executing a partially-loaded program. 

Partially-loaded programs allow for the execution of a program without 

loading the entire program into memory. This means that a program is 

no longer constrained by the limits of physical memory. Each program 

takes less memory while running, allowing more programs to run at the 

same time. This results in increased CPU utilization and throughput 

without any increase in response time or turnaround time. 

Partially-loaded programs offer many benefits to a computer system. 

First, they allow for more efficient use of memory. Rather than loading 

an entire program into memory, only the necessary portions are loaded. 

This reduces the amount of memory needed to run the program, 

allowing more programs to run at the same time. 

Second, partially-loaded programs reduce the need for I/O to load or 

swap programs into memory. This means that each user program runs 

faster, as there is less time spent waiting for the program to be loaded 

into memory. 

Third, partially-loaded programs allow for increased CPU utilization 

and throughput. By allowing more programs to run at the same time, 

the CPU is being utilized more efficiently, resulting in an overall 

increase in system performance. 

In conclusion, partially-loaded programs allow for the execution of a 

program without loading the entire program into memory. They offer 

many benefits, including more efficient use of memory, reduced I/O, 

increased CPU utilization and throughput, and faster program 

execution. By using partially-loaded programs, computer systems can 

run more programs simultaneously, leading to increased productivity 

and efficiency. 



PAGE 9 

1.3.2 Benefits of Virtual Memory 

Virtual memory is the separation of user logical memory from physical 

memory. It allows for only part of the program to be in memory for 

execution, while the rest of the program remains on disk. The logical 

address space can, therefore, be much larger than the physical address 

space, allowing address spaces to be shared by several processes. 

Virtual memory offers many benefits to a computer system. First, it 

allows for more efficient process creation. Since the logical address 

space is larger than the physical address space, more programs can run 

concurrently. This leads to increased productivity, as more work can be 

done in a shorter amount of time. 

Second, virtual memory allows for more efficient use of memory. Since 

only part of the program needs to be in memory for execution, less 

memory is needed overall. This means that more programs can run at 

the same time without the need for additional physical memory. 

Third, virtual memory allows for less I/O needed to load or swap 

processes. Since only part of the program needs to be in memory for 

execution, less time is spent loading or swapping processes into memory. 

This leads to faster program execution and increased productivity. 

In conclusion, virtual memory allows for the separation of user logical 

memory from physical memory. It offers many benefits, including more 

efficient process creation, more efficient use of memory, and less I/O 

needed to load or swap processes. By using virtual memory, computer 

systems can run more programs simultaneously, leading to increased 

productivity and efficiency. 

1.3.3 Virtual address space 

Virtual address space is the logical view of how a process is stored in 

memory. It typically starts at address 0 and has contiguous addresses 

until the end of the space. However, physical memory is organized in 



PAGE 10 

page frames. In order to map logical addresses to physical addresses, the 

Memory Management Unit (MMU) is used. 

Virtual memory can be implemented through two techniques: demand 

paging and demand segmentation. Demand paging is a technique where 

pages are only brought into physical memory when they are actually 

needed by the process. This is in contrast to pre-paging, where pages are 

brought into memory before they are needed. By using demand paging, 

memory usage can be optimized, and only the necessary pages are 

loaded into physical memory. 

Demand segmentation is another technique that can be used to 

implement virtual memory. In this technique, the logical address space 

is divided into segments, each of which can be loaded into memory as 

needed. This technique is useful when the size of the logical address 

space is not uniform, or when the process has multiple distinct regions 

that have different memory requirements. 

Both demand paging and demand segmentation have their advantages 

and disadvantages, and the choice of which technique to use depends 

on the specific requirements of the system. However, both techniques 

are designed to provide a virtual address space that is much larger than 

the physical memory available, allowing for efficient use of memory and 

the ability to run multiple processes simultaneously. 

2 Paging and Segmentation 

In this chapter, we will review the concepts of paging and segmentation 

and delve deeper into the mechanisms involved in mapping virtual to 

physical addresses. As you may recall, virtual memory is a vital 

component of modern operating systems, allowing programs to address 

more memory than physically available in the system. Paging and 

segmentation are two fundamental techniques used in virtual memory 
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management. Paging divides memory into fixed-sized pages, whereas 

segmentation divides memory into variable-sized segments. 

2.1 Paging 

Paging is a memory management technique that allows an operating 

system to allocate memory to a process in fixed-size blocks called pages. 

The pages are contiguous blocks of memory that are mapped to non-

contiguous physical memory locations. The size of each page is typically 

a power of two and is specified by the operating system. When a process 

needs to access a memory location, the operating system translates the 

virtual address into a physical address by looking up the page table. The 

page table contains the mapping between virtual addresses and physical 

addresses. If the page is not currently in physical memory, a page fault 

occurs, and the operating system must retrieve the page from disk. 

One advantage of paging is that it allows processes to use more memory 

than the physical memory available on the system. This is because pages 

that are not currently being used can be swapped out to disk, freeing up 

physical memory for other processes. Paging also provides memory 

protection by using the page table to restrict access to memory locations 

that a process is not authorized to access. 

2.2 Segmentation 

Segmentation is another memory management technique that divides 

the virtual address space of a process into logical segments, each of 

which contains a related set of instructions or data. The segments are of 

variable size and can be shared between processes. Each segment is 

mapped to a contiguous block of physical memory. 

One advantage of segmentation is that it provides a more flexible 

memory management scheme than paging. Segmentation allows 
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processes to allocate memory in larger logical units, such as code 

segments, data segments, and stack segments. Segmentation can also 

support shared memory between processes, where multiple processes 

can access the same segment. 

2.3 Combined Paging and Segmentation 

In some modern operating systems, paging and segmentation are 

combined to provide a more flexible and efficient memory management 

scheme. In such systems, the virtual address space of a process is divided 

into segments, and each segment is further divided into pages. The 

segments are mapped to contiguous blocks of physical memory, and the 

pages within each segment are mapped to non-contiguous physical 

memory locations. 

The combination of paging and segmentation provides the advantages 

of both techniques. It allows processes to allocate memory in flexible 

logical units, such as code segments, data segments, and stack segments, 

while also allowing the operating system to swap pages in and out of 

physical memory as needed. 

Example: Here's a pseudocode example of how combined paging and 

segmentation might be implemented in an operating system: 

// Define the segment table structure 

struct segment_table_entry { 

int base_address; // The physical base address of the segment 

int limit; // The size of the segment in bytes 

int permissions; // Permissions for the segment (read, write, 

execute) 

page_table_entry *page_table; // Pointer to the page table for this 

segment 

}; 



PAGE 13 

 

// Define the page table structure 

struct page_table_entry { 

int frame_number; // The physical frame number for this page 

int permissions; // Permissions for the page (read, write, execute) 

int present; // Whether or not the page is currently in physical 

memory 

}; 

 

// Initialize the segment table 

segment_table_entry *segment_table = new 

segment_table_entry[num_segments]; 

 

// Initialize the page tables for each segment 

for (int i = 0; i < num_segments; i++) { 

segment_table[i].page_table = new 

page_table_entry[num_pages_per_segment]; 

} 

 

// When a process requests memory, allocate a new segment and pages 

as needed 

void allocate_memory(int process_id, int size) { 

// Determine the number of segments and pages needed for the 

requested size 

int num_segments_needed = ceil(size / segment_size); 

int num_pages_needed = ceil(size / page_size); 

// Allocate a new segment table entry for the process 
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segment_table_entry new_segment; 

new_segment.base_address = 

allocate_physical_memory(num_segments_needed * segment_size); 

new_segment.limit = num_segments_needed * segment_size; 

new_segment.permissions = RWX; 

new_segment.page_table = new page_table_entry[num_pages_needed]; 

 

// Allocate physical memory for each page in the new segment 

for (int i = 0; i < num_pages_needed; i++) { 

    int frame_number = allocate_physical_memory(page_size); 

    new_segment.page_table[i].frame_number = frame_number; 

    new_segment.page_table[i].permissions = RWX; 

    new_segment.page_table[i].present = false; 

} 

 

// Add the new segment to the process's segment table 

process_segment_table[process_id].add_segment(new_segment); 

} 

 

// When a process accesses a memory location, translate the virtual 

address to a physical address 

int translate_address(int process_id, int virtual_address) { 

// Determine the segment and page indices from the virtual address 

int segment_index = virtual_address / segment_size; 

int page_index = (virtual_address % segment_size) / page_size; 

// Look up the segment and page tables for the process 
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segment_table_entry segment = 

process_segment_table[process_id].get_segment(segment_index); 

page_table_entry page = segment.page_table[page_index]; 

 

// If the page is not currently in physical memory, retrieve it 

from disk 

if (!page.present) { 

    int frame_number = swap_page_in(page); 

    page.frame_number = frame_number; 

    page.present = true; 

} 

 

// Calculate the physical address of the memory location 

int physical_address = segment.base_address + page.frame_number * 

page_size + (virtual_address % page_size); 

 

// Check that the process is authorized to access the memory 

location 

if (!(segment.permissions & page.permissions)) { 

    throw memory_access_error(); 

} 

 

return physical_address; 

} 

This is just a basic example of how combined paging and segmentation 

might be implemented in an operating system, and the actual 

implementation would likely be more complex and involve additional 

features such as demand paging and page replacement algorithms. 
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In this chapter, we reviewed the concepts of paging and segmentation 

and their roles in modern operating systems. Paging allows processes to 

use more memory than the physical memory available on the system 

and provides memory protection. Segmentation allows processes to 

allocate memory in larger logical units and supports shared memory 

between processes. The combination of paging and segmentation 

provides a more flexible and efficient memory management scheme that 

allows processes to allocate memory in flexible logical units while also 

allowing the operating system to swap pages in and out of physical 

memory as needed. 

2.4 Mapping virtual to physical addresses 

One of the fundamental concepts of operating systems is memory 

management, which involves the allocation and management of 

memory resources for a computer system. One important aspect of 

memory management is the ability to map virtual addresses used by a 

program to the physical addresses used by the hardware. In this chapter, 

we will explore the process of mapping virtual to physical addresses in 

detail. 

The process of mapping virtual addresses to physical addresses involves 

several steps. Let's take a look at these steps in detail: 

 The first step in mapping virtual addresses to physical addresses 

is the generation of a virtual address by a program. The program 

generates a virtual address when it accesses data in memory. 

 Once a virtual address is generated, the operating system 

translates it into a physical address. This translation process 

involves the use of a page table or a page directory. 

 Once the operating system has translated the virtual address to a 

physical address, the program can access the data stored in main 

memory at that physical address. 
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Example: Here is a simple pseudocode example of how virtual to 

physical address mapping might be implemented in an operating 

system: 

// Assume a virtual address vAddr has been generated by a program 

 

// Step 1: Extract the virtual page number from the virtual address 

vPageNum = extractPageNum(vAddr) 

 

// Step 2: Lookup the physical page number in the page table 

pPageNum = pageTableLookup(vPageNum) 

 

// Step 3: Calculate the physical address by combining the physical 

page number and the offset from the virtual address 

pAddr = (pPageNum * pageSize) + extractOffset(vAddr) 

 

// Step 4: Access the data stored in main memory at the physical 

address 

data = readMemory(pAddr) 

 

// Note: Access to the page table and page directory may also 

require additional translations and permissions checks 

Of course, this is a simplified example and real-world implementations 

may be more complex depending on the specific memory management 

techniques used, the hardware architecture, and other factors. 
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2.4.1 Page tables 

In modern operating systems, the memory management unit (MMU) of 

the CPU is responsible for translating virtual addresses used by a process 

into physical addresses that are used by the memory. This translation 

process is performed using a page table, which is a data structure that 

maps virtual pages to physical pages in memory. 

In a simple implementation, the virtual address space of a process is 

divided into fixed-sized pages, typically 4 KB in size. Each page is 

assigned a unique virtual page number. When a process accesses a 

memory location, the MMU translates the virtual address into a physical 

address using the page table. 

The page table is a data structure that contains an entry for each virtual 

page of the process. The entry includes the page frame number, which 

is the physical address of the page in memory. The page table is usually 

stored in memory and is maintained by the operating system. 

When a process accesses a virtual address, the MMU uses the virtual 

page number to look up the corresponding entry in the page table. If the 

page table entry indicates that the page is not present in memory, a page 

fault occurs, and the operating system must load the page from disk into 

a free page frame in memory. 

Page tables can be implemented using various data structures, such as 

arrays, trees, or hash tables. In addition, modern CPUs include hardware 

support for page tables, which enables fast and efficient address 

translation. 

One important consideration in page table design is the size of the page 

table. If the virtual address space is large, the page table can become 

very large, requiring a lot of memory to store. To address this issue, 

modern operating systems use hierarchical page tables, where the page 

table is divided into smaller tables that are recursively indexed to access 

the page table entry. 
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In conclusion, page tables are a critical component of modern memory 

management in operating systems. They enable efficient and secure 

management of memory by allowing processes to access virtual 

addresses that are automatically translated to physical addresses. 

2.4.2 Page table entries  

Page table entries are essential in virtual memory management as they 

map virtual addresses to physical addresses. The structure of a page 

table entry may vary across different computer systems, but typically, it 

includes several fields containing information about the virtual page, 

the physical page frame, and the state of the page. 

One of the most important fields in a page table entry is the Page frame 

number. This field contains the physical page frame address of the page 

that the virtual address refers to. The Present/Absent bit is another 

significant field, which indicates whether the virtual page is currently in 

memory or not. If the bit is set to 1, the page is present in memory, and 

the corresponding physical address can be used. If the bit is set to 0, a 

page fault occurs, indicating that the virtual page is not currently in 

memory and must be retrieved from disk before it can be used. 

In addition to the Page frame number and Present/Absent bit, page 

table entries may contain other fields such as protection bits, dirty bits, 

and reference bits. The protection bits determine the type of access 

allowed to the page, such as read-only or read-write. The dirty bit is set 

when the page is modified, indicating that it needs to be written back to 

disk before it is replaced. The reference bit is set whenever the page is 

accessed, helping the operating system determine which pages are 

frequently used and which can be swapped out. 

Overall, the page table entry is a crucial data structure in virtual memory 

management, as it allows the operating system to efficiently manage 

memory and map virtual addresses to physical addresses. The details of 

its structure may differ depending on the computer system, but the 
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essential fields remain the same, providing the necessary information 

for memory access and management. 

2.4.3 Speeding up paging  

As we have learned earlier, virtual memory and paging are essential 

components of modern operating systems. However, efficient 

implementation of these concepts is crucial for optimal performance of 

the system. In this chapter, we will discuss some techniques for speeding 

up paging. 

The first challenge faced in paging is the mapping of virtual addresses 

to physical addresses. As every memory reference requires this mapping, 

it needs to be done quickly. Otherwise, it can become a major 

bottleneck for the system. To avoid this, various techniques have been 

developed. 

One common technique is to use a special cache, called the Translation 

Lookaside Buffer (TLB), to store recently accessed page table entries. 

The TLB is a hardware cache that is much faster than main memory, and 

hence, reduces the time required for page table lookups. Whenever a 

memory reference is made, the TLB is checked first. If the required page 

table entry is present in the TLB, the physical address is retrieved 

directly from it. Otherwise, a page table lookup is performed, and the 

retrieved entry is added to the TLB for future reference. 

Another technique is to use hierarchical page tables. In this technique, 

instead of having a single page table containing all the entries for a 

process, the entries are divided into multiple levels of smaller page 

tables. The top-level page table contains entries that point to second-

level page tables, which in turn contain entries that point to third-level 

page tables, and so on. This structure reduces the size of each page table, 

making it easier to manage, and also reduces the time required for page 

table lookups. 
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The second challenge faced in paging is the size of the page table. As 

modern virtual address spaces can be very large, the page table can 

become unwieldy, making it difficult to manage. One solution to this is 

to use a technique called inverted paging. In inverted paging, instead of 

having a page table for each process, a single table is used to store all 

the page table entries for all the processes. Each entry in the table 

contains information about the process to which it belongs, along with 

the virtual and physical addresses. This technique reduces the size of 

the page table and simplifies its management. However, it can be slower 

than traditional page tables due to the need to search through the entire 

table to find a particular entry. 

In conclusion, efficient implementation of virtual memory and paging 

is critical for optimal performance of modern operating systems. 

Techniques like TLB caching, hierarchical page tables, and inverted 

paging can be used to speed up the mapping of virtual addresses to 

physical addresses and manage large page tables effectively. 

2.4.4 Translation Lookaside Buffers (TLBs)  

Translation Lookaside Buffers (TLBs) are widely used to speed up paging. 

A TLB is essentially a cache for the page table. It is a small, fast lookup 

table that stores recently used virtual-to-physical address mappings. By 

keeping the most commonly used mappings in the TLB, the system can 

avoid having to look up the mapping in the page table every time it is 

needed. 

When a process makes a memory reference, the CPU first checks the 

TLB to see if the virtual-to-physical mapping is already present. If it is, 

the CPU can use the mapping directly and avoid the overhead of 

accessing the page table. If the mapping is not present in the TLB, the 

CPU must perform a page table lookup to find the mapping and then 

add it to the TLB for future use. 

The TLB typically has only a few hundred entries, so it cannot store the 

entire page table. However, it is large enough to hold the most 
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frequently used mappings, which is usually sufficient to provide a 

significant performance boost. The exact size of the TLB is a tradeoff 

between performance and cost, as a larger TLB will improve 

performance but will also require more hardware and consume more 

power. 

One potential issue with TLBs is that they can become stale if the page 

table is updated by the operating system. For example, if a page is 

swapped out to disk and then later brought back into memory, the page 

table will be updated to reflect the new physical address of the page. 

However, the TLB may still hold the old mapping, which can cause 

incorrect memory references and even crashes. To avoid this problem, 

TLBs must be carefully managed by the operating system to ensure that 

they are kept up-to-date with the page table. 

Overall, TLBs are an important optimization technique for virtual 

memory systems, as they can significantly reduce the overhead of page 

table lookups and improve overall system performance. 

TLBs are typically implemented as a small hardware cache that is 

managed by the operating system. The size of the TLB can vary 

depending on the hardware architecture and the specific operating 

system. 

The process of using a TLB involves several steps: 

 The first step in using a TLB is the generation of a virtual address 

by a program. 

 Once a virtual address is generated, the TLB is checked to see if 

the virtual-to-physical address translation is already stored in the 

cache. If the translation is found in the TLB, the physical address 

is retrieved directly from the TLB. 

 If the translation is not found in the TLB, the operating system 

must perform a full address translation using the page table or 

page directory. The resulting physical address is then stored in the 

TLB for future use. 
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 Once the operating system has translated the virtual address to a 

physical address, the program can access the data stored in main 

memory at that physical address. 

Example: Here is a simple pseudocode example of how a Translation 

Lookaside Buffer (TLB) might be implemented in an operating system: 

// Assume a virtual address vAddr has been generated by a program 

 

// Step 1: Extract the virtual page number from the virtual address 

vPageNum = extractPageNum(vAddr) 

 

// Step 2: Lookup the physical page number in the TLB 

pPageNum = tlbLookup(vPageNum) 

 

if (pPageNum != TLB_MISS) { 

  // Step 3a: Calculate the physical address by combining the 

physical page number and the offset from the virtual address 

  pAddr = (pPageNum * pageSize) + extractOffset(vAddr) 

 

  // Step 4a: Access the data stored in main memory at the physical 

address 

  data = readMemory(pAddr) 

 

  // Step 5a: Update the TLB with the new translation 

  tlbUpdate(vPageNum, pPageNum) 

} 

else { 
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  // Step 3b: Perform a full address translation using the page 

table or page directory 

  pPageNum = pageTableLookup(vPageNum) 

 

  // Step 4b: Calculate the physical address by combining the 

physical page number and the offset from the virtual address 

  pAddr = (pPageNum * pageSize) + extractOffset(vAddr) 

 

  // Step 5b: Access the data stored in main memory at the physical 

address 

  data = readMemory(pAddr) 

 

  // Step 6b: Update the TLB with the new translation 

  tlbInsert(vPageNum, pPageNum) 

} 

In this pseudocode, the tlbLookup function checks if the virtual-to-

physical address translation is already stored in the TLB. If the 

translation is found, the physical page number is retrieved directly from 

the TLB. If the translation is not found, the pageTableLookup function 

is called to perform a full address translation using the page table or 

page directory. 

If a TLB miss occurs, the physical page number is retrieved using the 

page table or page directory, and the TLB is updated with the new 

translation using the tlbInsert function. If a TLB hit occurs, the physical 

page number is retrieved directly from the TLB, and the TLB is updated 

with the new translation using the tlbUpdate function. Finally, the 

physical address is calculated and used to access the data stored in main 

memory. 
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2.4.5 Software to manage the TLB 

While hardware-assisted TLB management is the norm in most modern 

computer systems, some systems use software to manage the TLB. In 

software TLB management, the operating system is responsible for 

handling TLB faults and managing the contents of the TLB. 

When a TLB fault occurs, the processor generates an exception, which 

transfers control to the operating system. The operating system then 

searches the page table for the required page and updates the TLB with 

the new mapping. Once the TLB has been updated, control is returned 

to the interrupted process, which can then continue executing. 

One advantage of software TLB management is that it can provide 

greater flexibility in managing the TLB. For example, the operating 

system can use more complex algorithms to manage the TLB, such as 

least-recently used (LRU) or clock algorithms. Additionally, the 

operating system can use the TLB for other purposes, such as caching 

frequently accessed pages or implementing shared memory between 

processes. 

However, software TLB management can also have a significant impact 

on system performance. The overhead of handling TLB faults and 

updating the TLB can be significant, especially in systems with high TLB 

miss rates. To mitigate this overhead, some systems use a hybrid 

approach, where TLB management is handled by hardware for 

frequently accessed pages, and by software for less frequently accessed 

pages. 

In summary, software TLB management can provide greater flexibility 

in managing the TLB, but can also have a significant impact on system 

performance. The choice of whether to use software or hardware TLB 

management depends on the specific requirements of the system and 

the tradeoffs between performance and flexibility. 
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2.4.6 Multilevel page tables  

Multilevel page tables are an approach to handling large virtual address 

spaces that are too big to be handled by a single-level page table. In a 

multilevel page table, the page table itself is split up into multiple 

smaller page tables that can be loaded into memory only when they are 

needed. 

To understand how multilevel page tables work, let's consider a simple 

example. Here, we have a 32-bit virtual address that is divided into a 10-

bit PT1 field, a 10-bit PT2 field, and a 12-bit Offset field. Since offsets are 

12 bits, pages are 4 KB, and there are a total of 220 of them. 

The first-level page table, PT1, has 1024 entries that point to second-level 

page tables, PT2. Each PT2 has 1024 entries, each of which points to a 

physical page frame in memory. 

The secret to the multilevel page table method is to avoid keeping all 

the page tables in memory all the time. In particular, those that are not 

needed should not be kept around. Suppose, for example, that a process 

needs 12 megabytes: the bottom 4 megabytes of memory for program 

text, the next 4 megabytes for data, and the top 4 megabytes for the 

stack. In between the top of the data and the bottom of the stack is a 

large hole that is not used. 

Using a multilevel page table, we can set up the PT1 such that it only 

contains entries for the pages that the process actually uses - program 

text, data, and stack. When the process accesses memory, the MMU uses 

the PT1 to find the appropriate PT2, and then uses the PT2 to find the 

physical page frame. If the page frame is not currently in memory, a page 

fault occurs, and the operating system brings the page into memory. 

The advantage of using a multilevel page table is that it can reduce the 

amount of memory needed to store the page tables. With a single-level 

page table, all the page tables need to be kept in memory all the time, 

which can be impractical for large virtual address spaces. With a 
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multilevel page table, only the portions of the page tables that are 

actually needed are kept in memory, reducing the memory overhead. 

One disadvantage of a multilevel page table is that it can increase the 

overhead of page table lookups. Each lookup now requires two memory 

accesses instead of one, which can slow down the system. However, this 

overhead can be mitigated by using TLBs to cache frequently used page 

table entries. 

In summary, multilevel page tables are an effective way to handle large 

virtual address spaces that cannot be handled by a single-level page 

table. By dividing the page table into smaller page tables, and only 

keeping the portions that are needed in memory, we can reduce the 

memory overhead of the page table. While multilevel page tables can 

increase the overhead of page table lookups, this overhead can be 

mitigated by using TLBs to cache frequently used page table entries. 

2.4.7 Inverted page tables  

Inverted page tables are an alternative approach to traditional page 

tables used in virtual memory management. In traditional page tables, 

there is one entry for each page of virtual address space, which can 

become quite large and difficult to manage. However, with inverted 

page tables, there is only one entry per page frame in real memory. 

The basic idea behind inverted page tables is to keep track of which 

(process, virtual page) pair is located in a given physical page frame. This 

means that for a system with 4 GB of RAM and a 4-KB page size, an 

inverted page table would only require 1,048,576 entries. This is in 

contrast to traditional page tables, which would require millions of 

entries to cover the entire virtual address space. 

One potential advantage of inverted page tables is that they can reduce 

the amount of memory needed to store page tables, which can be a 

significant issue in systems with limited memory. Additionally, inverted 

page tables can be faster to access, as the hardware can use a hash 
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function to look up the correct page frame entry directly, rather than 

needing to traverse a potentially large page table. 

However, inverted page tables do have some downsides. For example, 

they can be more complex to implement and may require additional 

hardware support. Additionally, because there is only one entry per page 

frame, there may be issues with fragmentation of physical memory. 

Despite these potential downsides, inverted page tables have been used 

in processors such as the PowerPC, the UltraSPARC, and the Itanium. 

They are an interesting alternative approach to virtual memory 

management, and may have advantages in certain contexts. 

3 Page Fault Handling 

This chapter will discuss the causes and consequences of page faults, 

which occur when a program attempts to access a page that is not 

currently in physical memory. It will also explore the page fault handling 

mechanism, which involves interrupt handling and fault resolution. 

Finally, the chapter will evaluate the performance of page fault handling 

in different operating systems. 

3.1 Causes and consequences of page faults 

In modern computer systems, virtual memory is used to provide the 

illusion of a much larger main memory than physically available. Virtual 

memory systems use a combination of hardware and software to allow 

programs to access more memory than is actually installed in the system. 

This technique is known as paging. 

One of the key concepts in paging is the use of pages. A page is a fixed-

size block of contiguous memory that can be allocated to a program. 
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Pages are used to break up a program's memory into smaller pieces that 

can be swapped in and out of main memory as needed. 

However, paging introduces the concept of page faults, which occur 

when a program attempts to access a page that is not currently in main 

memory. This chapter will discuss the causes and consequences of page 

faults. 

There are several reasons why a page fault can occur: 

3.1.1 Demand Paging 

In demand paging, pages are loaded into main memory only when they 

are needed. This means that when a program first starts, only a small 

part of the program is loaded into memory, and the rest is loaded as 

needed. If a program tries to access a page that has not been loaded into 

memory, a page fault occurs. 

In the early days of computing, programs were loaded into memory in 

their entirety before execution. This meant that the entire program had 

to fit in memory, and if there wasn't enough space, the program 

wouldn't run. Additionally, if a program didn't use all of the memory 

that it was allocated, that memory would go to waste. 

To address these issues, demand paging was introduced. With demand 

paging, a program is no longer loaded into memory in its entirety at load 

time. Instead, only the necessary pages are brought into memory as they 

are needed. This approach has several benefits: 

 Less I/O is needed: Since only the necessary pages are loaded into 

memory, there is no unnecessary I/O. This can result in faster 

response times and better overall system performance. 

 Less memory is needed: Because only the necessary pages are in 

memory, less memory is required to run the program. This means 

that more programs can run simultaneously, and larger programs 

can be executed on systems with limited memory. 
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 Faster response: Since only the necessary pages are in memory, 

there is less time spent waiting for I/O operations to complete. 

This can result in faster response times and a more responsive 

system overall. 

 More users: Because less memory is required per program, more 

users can be accommodated on a given system. This can be 

especially important in shared computing environments, where 

many users may be using the same system simultaneously. 

Demand paging works much like a paging system with swapping. When 

a page is needed, it is referenced. If the reference is invalid, the program 

aborts. If the page is not in memory, it is brought into memory. A "lazy 

swapper" is used to ensure that pages are not swapped into memory 

unless they are needed. 

A swapper that deals with pages is known as a pager. The pager is 

responsible for bringing pages into memory when they are needed and 

swapping them out when they are no longer needed. The pager must 

manage the available memory to ensure that the system does not run 

out of memory, and it must also ensure that pages are swapped in and 

out efficiently to minimize I/O operations. 

In summary, demand paging is a technique used by operating systems 

to manage memory efficiently. It brings pages into memory only when 

they are needed, which can result in less I/O, less memory usage, faster 

response times, and the ability to accommodate more users on a system. 

The pager is responsible for managing memory and bringing pages into 

memory when they are needed. By using demand paging, operating 

systems can run more programs simultaneously and execute larger 

programs on systems with limited memory. 

Example: Here is a pseudocode implementation of the demand paging 

algorithm: 

1. Initialize the page table with all pages marked as not present. 
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2. When a program attempts to access a page: 

a. Check if the page is present in memory. 

b. If the page is not present in memory, go to step 3. 

 

3. Handle a page fault: 

a. Allocate a page frame in memory to hold the requested page. 

b. Load the requested page from secondary storage into the 

allocated page frame. 

c. Update the page table entry for the requested page to indicate 

that it is now present in memory. 

d. Resume the program, which can now access the requested page. 

 

4. If all page frames in memory are in use: 

a. Select a page frame to be replaced using a page replacement 

algorithm. 

b. Write the replaced page frame to secondary storage if it has 

been modified. 

c. Update the page table entry for the replaced page to indicate 

that it is no longer present in memory. 

 

Return to step 2 and repeat until all requested pages have been 

loaded into memory. 

 

This pseudocode implementation of the demand paging algorithm 

outlines the steps involved in handling page faults and selecting pages 

to be replaced when all page frames in memory are in use. By only 

loading pages into memory when they are needed, the demand paging 

algorithm can help to conserve memory resources and improve the 

overall performance of the system. 
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3.1.2 Swapping 

In some cases, pages that are not needed for a long time may be swapped 

out of main memory to free up space. When a program attempts to 

access a swapped out page, a page fault occurs. 

Example: Here is a pseudocode implementation of the swapping 

algorithm: 

1. When the operating system needs to free up memory, it selects a 

process to be swapped out of memory. 

2. Save the process's state to secondary storage, including its 

registers, program counter, and memory contents. 

3. Free up the memory occupied by the swapped out process. 

4. Select a process to be swapped in from secondary storage. 

5. Load the process's state from secondary storage into memory, 

including its registers, program counter, and memory contents. 

6. Update the process's page table entries to indicate that the 

pages it needs are now present in memory. 

7. Resume execution of the swapped in process. 

8. Repeat steps 1-7 as needed to free up memory and load new 

processes into memory. 

This swapping algorithm allows the operating system to free up memory 

by swapping processes in and out of memory as needed. By saving a 

process's state to secondary storage and loading it back into memory 

when needed, the system can run larger programs on systems with 

limited memory. By carefully managing the swapping process, the 

system can optimize memory usage and improve overall performance. 

3.1.3 Consequences of Page Faults 

When a page fault occurs, the operating system must take several steps 

to resolve it: 

 Page Fault Handler: The page fault handler is a routine in the 

operating system that is responsible for handling page faults. 
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When a page fault occurs, the processor transfers control to the 

page fault handler. 

 Swap In: If the requested page is not in memory, the page fault 

handler must swap the required page from disk into main memory. 

 Swap Out: If there is no free memory available, the page fault 

handler must select a page in memory to be swapped out to disk 

to make room for the new page. 

 Page Replacement: If all pages are in use, the page fault handler 

must select a page to be replaced with the requested page. This 

process is known as page replacement. 

 Interrupting the Program: During the handling of a page fault, the 

program that caused the page fault is suspended until the 

necessary page has been loaded into memory. 

 

In summary, page faults occur when a program tries to access a page 

that is not currently in main memory. There are several reasons why a 

page fault can occur, including demand paging, swapping, and memory 

management. When a page fault occurs, the operating system must take 

several steps to resolve it, including swapping pages in and out of 

memory and interrupting the program. Understanding the causes and 

consequences of page faults is critical to designing efficient paging 

systems that can provide the illusion of a much larger main memory 

than is physically available. 

3.1.4 Stages in Demand Paging: Handling Page Faults 

Demand paging is a memory management technique used by modern 

operating systems to optimize memory usage. It allows only the 

necessary pages of a process to be loaded into memory when they are 

needed, and not all at once. While demand paging can improve overall 

system performance, it can also introduce page faults - a situation where 

the required page is not in memory, and the operating system must 

fetch it from the disk. 
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In the worst-case scenario, handling a page fault involves a series of 

steps that must be carried out by the operating system. These steps are 

as follows: 

 

1. Trap to the operating system: When a page fault occurs, the 

processor transfers control to the operating system, which is 

responsible for handling the fault. 

2. Save the user registers and process state: The operating system 

saves the current state of the process, including its registers and 

other relevant information. 

3. Determine that the interrupt was a page fault: The operating 

system must determine that the interrupt was caused by a page 

fault. 

4. Check that the page reference was legal and determine the 

location of the page on the disk: The operating system must 

ensure that the page reference is legal and determine the location 

of the required page on the disk. 

5. Issue a read from the disk to a free frame: The operating system 

must issue a read request to the disk to retrieve the required page. 

This involves waiting in a queue for the device, waiting for the 

device seek and/or latency time, and beginning the transfer of the 

page to a free frame in memory. 

6. While waiting, allocate the CPU to some other user: While waiting 

for the disk I/O to complete, the operating system can allocate the 

CPU to another user to maximize system utilization. 

7. Receive an interrupt from the disk I/O subsystem (I/O 

completed): When the page transfer from the disk to memory is 

completed, the operating system receives an interrupt from the 

disk I/O subsystem. 

8. Save the registers and process state for the other user: The 

operating system saves the state of the user that was allocated the 

CPU while waiting for the I/O operation to complete. 
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9. Determine that the interrupt was from the disk: The operating 

system must determine that the interrupt was caused by the 

completion of the disk I/O operation. 

10. Correct the page table and other tables to show page is now in 

memory: The operating system updates the page table and other 

relevant tables to reflect that the required page is now in memory. 

11. Wait for the CPU to be allocated to this process again: The 

operating system waits for the CPU to be allocated to the process 

that caused the page fault. 

12. Restore the user registers, process state, and new page table, and 

then resume the interrupted instruction: Finally, the operating 

system restores the state of the process that caused the page fault, 

including its registers and page table, and resumes the interrupted 

instruction. 

 

In conclusion, demand paging can greatly improve system performance 

by loading only the necessary pages of a process into memory when they 

are needed. However, it can also introduce page faults, which require 

the operating system to perform a series of steps to retrieve the required 

page from disk. By understanding the stages involved in demand paging 

and page fault handling, operating system designers can optimize their 

systems for maximum performance and efficiency. 

3.2 Page fault handling mechanism 

Handling page faults is a critical function of the operating system, and 

the page fault handling mechanism is designed to ensure that 

applications can access the memory they need efficiently and effectively. 

In this chapter, we will explore the page fault handling mechanism in 

detail. 
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A page fault occurs when an application attempts to access a memory 

location that is not currently in physical memory. This can happen for a 

variety of reasons, including: 

 The page containing the memory location has not yet been loaded 

into memory. 

 The page containing the memory location has been swapped out 

to disk. 

 The page containing the memory location has been evicted from 

memory due to memory pressure. 

When a page fault occurs, the operating system takes over to ensure that 

the application can access the memory it needs. The page fault handling 

mechanism consists of several steps that the operating system takes to 

handle a page fault. These steps are: 

1. Trap to the Operating System: When a page fault occurs, the 

application is interrupted, and control is passed to the operating 

system. 

2. Determine the Cause of the Page Fault: The operating system 

examines the page fault to determine the cause of the fault. This 

could be because the page is not present in memory, or because 

the page is present but marked as read-only, or because the 

application attempted to access memory that is outside the 

bounds of its allocated memory space. 

3. Allocate a Page Frame: If the page is not present in memory, the 

operating system needs to allocate a page frame to hold the page. 

The operating system checks to see if there are any free page 

frames available. If there are no free page frames, the operating 

system needs to choose a page to evict from memory to make 

space for the new page. 

4. Load the Page: Once a page frame has been allocated, the 

operating system loads the page from disk into the page frame. 

5. Update the Page Table: The page table is updated to indicate that 

the page is now present in memory. 
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6. Resume the Application: Control is passed back to the application, 

and the application can now access the memory it needs. 

7. Retry the Faulting Instruction: The instruction that caused the 

page fault is retried, and this time it should succeed because the 

required page is now in memory. 

 

When a page fault occurs and there are no free page frames available, 

the operating system needs to choose a page to evict from memory to 

make space for the new page. There are many different page 

replacement algorithms that the operating system can use to select the 

page to evict. Some of the most common algorithms are: 

 Least Recently Used (LRU): This algorithm selects the page that 

has not been accessed for the longest time to be evicted. 

 First-In-First-Out (FIFO): This algorithm selects the page that was 

loaded into memory first to be evicted. 

 Clock: This algorithm uses a circular buffer to keep track of 

recently accessed pages and selects the first page it encounters 

that has not been recently accessed. 

 Random: This algorithm selects a random page to be evicted. 

Choosing the right page replacement algorithm is critical to ensure that 

the system performs optimally and efficiently manages memory. The 

performance of the page fault handling mechanism directly impacts the 

overall performance of the system. There are several key metrics used to 

evaluate the performance of the page fault handling mechanism. These 

metrics include: 

 Page Fault Rate: The page fault rate is the number of page faults 

that occur per unit of time. This metric is an important indicator 

of the performance of the system. A high page fault rate indicates 

that the system is struggling to keep up with the demand for 

memory, which can result in slow application performance and 

decreased system responsiveness. 
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 Page Fault Service Time: The page fault service time is the amount 

of time it takes for the operating system to handle a page fault. 

This metric is important because it directly impacts the 

performance of the application. If the page fault service time is too 

long, the application may appear unresponsive to the user. 

 Effective Access Time: The effective access time is the average 

time it takes to access a memory location, taking into account the 

page fault rate and page fault service time. This metric is a good 

indicator of the overall performance of the system. 

 

There are several strategies that can be used to improve the performance 

of the page fault handling mechanism. These strategies include: 

 Increasing the Size of the Page Table: A larger page table can 

reduce the page fault rate by allowing more pages to be present in 

memory at any given time. However, this approach can also 

increase the overhead of managing the page table. 

 Using a Smarter Page Replacement Algorithm: A smarter page 

replacement algorithm can reduce the page fault rate by evicting 

pages that are less likely to be accessed in the future. However, 

this approach can also increase the overhead of selecting the pages 

to evict. 

 Pre-Fetching Pages: Pre-fetching pages can reduce the page fault 

rate by loading pages into memory before they are needed by the 

application. However, this approach can also increase the 

overhead of managing the pre-fetching mechanism. 

 Using Solid State Drives (SSDs): Solid state drives can reduce the 

page fault service time by providing faster access to data than 

traditional hard disk drives. However, this approach can also 

increase the cost of the system. 
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Choosing the right strategy depends on the specific requirements of the 

system and the resources available. The performance of the page fault 

handling mechanism is critical to the overall performance of the virtual 

memory system in modern operating systems. By measuring key metrics 

such as the page fault rate, page fault service time, and effective access 

time, we can evaluate the performance of the system and identify areas 

for improvement. By using strategies such as increasing the size of the 

page table, using a smarter page replacement algorithm, pre-fetching 

pages, and using solid state drives, we can improve the performance of 

the page fault handling mechanism and ensure that applications can 

access the memory they need efficiently and effectively. 

3.3 Instruction backup 

Instruction backup is a technique used by some operating systems to 

deal with page faults when an instruction is only partially executed 

before a page fault occurs. When a program references a page that is not 

in memory, the instruction causing the fault is stopped partway through, 

and a trap to the operating system occurs. The operating system then 

fetches the page needed, and it must restart the instruction causing the 

trap. 

The problem is that the instruction causing the trap may have modified 

some data, and if the instruction is simply restarted, the modified data 

will be lost. This can cause incorrect behavior in the program, and in 

some cases, can even cause the program to crash. 

One solution to this problem is to use instruction backup. When an 

instruction causes a page fault, the operating system saves the partially 

executed instruction and its state, including the program counter and 

the values of any registers that were modified. The operating system 

then fetches the page needed and restarts the instruction from the saved 

state. 
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This technique ensures that any modifications made by the partially 

executed instruction are not lost and that the program continues 

executing correctly. However, it does add some overhead to the 

operating system, as it must save and restore the state of the partially 

executed instruction. 

Instruction backup is not used in all operating systems, and some 

architectures make it more difficult to implement. However, for systems 

that do use it, it can be an effective way to ensure correct program 

behavior in the face of page faults. 

3.4 Locking pages  

Locking pages in memory is a technique used by some operating 

systems to prevent pages from being swapped out to disk. This can be 

useful in situations where certain pages need to be accessed quickly and 

with low latency, such as in real-time systems or applications that 

require fast access to frequently-used data. 

When a page is locked in memory, it cannot be paged out to disk, even 

if memory becomes scarce. This can improve the performance of 

applications that rely heavily on certain pages of memory by ensuring 

that those pages are always available. 

To lock a page in memory, the operating system provides a system call 

that allows a process to request that a specific page be locked. The 

operating system then ensures that the page is never paged out to disk 

while it is locked. When the process is finished with the page, it can 

unlock it, allowing it to be swapped out again if necessary. 

One downside to locking pages in memory is that it can reduce the 

overall amount of memory available to the system. If many pages are 

locked, it may be more difficult for the operating system to manage 

memory effectively, potentially leading to more frequent page faults and 

slower performance overall. 
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Additionally, some operating systems may limit the number of pages 

that can be locked in memory by a single process or across the entire 

system to prevent one process from monopolizing system resources. 

Overall, locking pages in memory can be a useful technique in certain 

situations where low-latency access to frequently-used data is critical. 

However, it should be used judiciously and with an understanding of 

the potential trade-offs and limitations. 

3.5 Backing store 

When a process needs more memory than is available in physical RAM, 

the operating system must find a way to store the excess data on disk. 

This is called the backing store, and it is an essential part of virtual 

memory management. In this chapter, we will discuss some of the issues 

related to backing store management. 

The first issue is where to store the pages that are being swapped out. 

The simplest algorithm is to have a special swap partition on the disk, 

or even better, a separate disk from the file system. This eliminates the 

overhead of converting offsets in files to block addresses, and it balances 

the I/O load. Most UNIX systems use this approach, where the partition 

does not have a normal file system on it, and block numbers relative to 

the start of the partition are used throughout. 

Another issue is how to allocate space on the disk for the pages being 

swapped out. The simplest approach is to allocate space sequentially, as 

pages are swapped out. However, this can lead to fragmentation, where 

free space becomes scattered throughout the disk. To avoid 

fragmentation, some operating systems use a contiguous allocation 

scheme, where a large region of the disk is reserved for the backing store. 

When a page is swapped out, it is placed in the next available free block 

within this region. 
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One of the challenges of managing the backing store is deciding which 

pages to swap out. If a process is not actively using a page, it is a good 

candidate for swapping out. However, if the page is needed again, it will 

have to be swapped back in from disk, which can be a slow process. To 

minimize the number of page faults, the operating system must choose 

the pages to swap out carefully, using an appropriate page replacement 

algorithm. 

Another important consideration is how to handle modified pages. If a 

page has been modified since it was last read from disk, it must be 

written back to disk before it can be swapped out. This is known as the 

cleaning policy, and it is typically handled by a background process 

called the paging daemon. 

There are different approaches to backing store management, including 

paging to a static swap area or backing up pages dynamically. Let's 

explore these two approaches in more detail. 

3.5.1 Paging to a static swap area: 

In this approach, a portion of the disk is reserved as a static swap area, 

which is used exclusively for paging. When a page of memory is evicted 

from RAM, it is written to a fixed location in the swap area. When the 

page is needed again, it can be read back into RAM from the same 

location. This approach has the advantage of simplicity, as the operating 

system always knows where to find a page that has been paged out. 

However, it can also lead to fragmentation of the swap area, which can 

make it harder to find contiguous space for new pages. 

3.5.2 Backing up pages dynamically: 

In this approach, the operating system dynamically allocates space on 

the disk to store paged-out pages as they are evicted from RAM. When 

a page needs to be evicted, the operating system looks for free space in 

the backing store and writes the page to that location. This approach 
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can reduce fragmentation and make more efficient use of available disk 

space. However, it also requires more sophisticated bookkeeping to 

keep track of which pages are stored where. 

 

Regardless of the approach used, backing store is a critical component 

of virtual memory management. Without an effective backing store 

strategy, the operating system would be unable to manage memory 

effectively, leading to poor performance and potentially even crashes or 

system failures. As such, careful consideration must be given to the 

design and implementation of backing store management in any 

operating system. 

4 Page Replacement Algorithms 

We will start by reviewing the different types of page replacement 

algorithms and their pros and cons. Then, we will discuss the working 

set model and the issue of page thrashing that can occur in certain 

situations. Finally, we will delve into more advanced page replacement 

algorithms, including the WSClock and Second Chance algorithms. 

By the end of this chapter, you will have a better understanding of how 

page replacement algorithms work and how to choose the most 

appropriate algorithm for your specific use case. Let's get started! 

4.1 Page replacement algorithms: 

There are several page replacement algorithms in memory management, 

some of which are: 

 First-In-First-Out (FIFO) 

 Least Recently Used (LRU) 
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 Optimal Page Replacement (OPT) 

 Clock Page Replacement 

 Not Recently Used (NRU) 

 Second-Chance Page Replacement 

 Random Page Replacement 

Each algorithm has its own advantages and disadvantages, and the 

choice of which one to use depends on the specific needs of the system. 

4.1.1 First-In-First-Out (FIFO) 

In computer science, page replacement algorithms are techniques used 

by the operating system to decide which pages to remove from memory 

(i.e., evict) when there is a need for more memory. The First-In-First-

Out (FIFO) algorithm is one such technique, which is simple to 

implement and easy to understand. In this chapter, we will discuss the 

FIFO page replacement algorithm in detail, including its advantages, 

disadvantages, and performance characteristics. 

The FIFO page replacement algorithm works on the principle of queue 

data structure. It maintains a queue of all the pages in the main memory, 

and when a page needs to be replaced, the page at the head of the queue 

(i.e., the oldest page in the memory) is evicted. The new page is then 

added to the tail of the queue. 

The implementation of the FIFO page replacement algorithm is 

straightforward. When a page fault occurs, the operating system checks 

if there is any free frame available in the memory. If there is a free frame, 

the new page is loaded into that frame. If no free frame is available, the 

page at the head of the queue (i.e., the oldest page in the memory) is 

evicted, and the new page is loaded into that frame. The evicted page is 

then removed from the queue. 

The FIFO page replacement algorithm is simple to implement and 

requires very little overhead. It also does not require any extra data 

structure to be maintained for keeping track of the age of pages. It is 
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also very easy to understand and can be implemented in almost any 

system without requiring any special hardware. 

The major disadvantage of the FIFO page replacement algorithm is that 

it suffers from the "Belady's Anomaly." Belady's Anomaly is a 

phenomenon where increasing the number of frames in memory can 

cause an increase in the number of page faults. This anomaly occurs 

because the oldest pages in memory may be evicted, which are needed 

more frequently than the newly added pages. Another disadvantage is 

that the algorithm does not consider the access frequency or the 

importance of pages. Thus, it may result in poor performance in some 

cases. 

The performance of the FIFO page replacement algorithm depends on 

the size of the memory and the access pattern of the pages. If the 

memory is small and the access pattern is random, the FIFO algorithm 

performs reasonably well. However, if the memory size is large and the 

access pattern is skewed (i.e., some pages are accessed more frequently 

than others), the FIFO algorithm may not perform well. The reason for 

this is that the oldest pages in memory may be evicted, which are needed 

more frequently than the newly added pages. 

In conclusion, the FIFO page replacement algorithm is simple to 

implement and requires very little overhead. However, it suffers from 

the "Belady's Anomaly" and may not perform well in certain scenarios. 

In the next chapter, we will discuss the Least Recently Used (LRU) page 

replacement algorithm, which is one of the most widely used page 

replacement algorithms and addresses some of the limitations of the 

FIFO algorithm. 

Example: Sure, here is the pseudocode for the First-In-First-Out (FIFO) 

page replacement algorithm: 

initialize FIFO queue; 

initialize page table; 
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for each page request do: 

    if the requested page is not in the page table then 

        if the page table is not full then 

            add the requested page to the page table; 

            add the page number to the FIFO queue; 

        else 

            remove the page number at the front of the FIFO queue 

from the page table; 

            add the requested page to the page table; 

            add the page number to the back of the FIFO queue; 

    else 

        /* page hit, do nothing */; 

end for 

In this algorithm, the page table is a data structure that maps virtual 

page numbers to physical page frames. The FIFO queue is a data 

structure that maintains the order in which pages were brought into the 

page table. When a page fault occurs, the FIFO algorithm removes the 

page at the front of the queue, which is the oldest page in the page table, 

and replaces it with the requested page. The page number of the 

requested page is then added to the back of the queue, becoming the 

newest page in the page table. 

4.1.2 Least Recently Used (LRU) 

In the previous chapter, we discussed the First-In-First-Out (FIFO) page 

replacement algorithm. While it is simple and easy to implement, it 

suffers from a major drawback - it does not take into account the 

frequency of page usage. This can lead to poor performance if a heavily 

used page is replaced with a new page that is rarely used. In order to 

overcome this issue, we need a page replacement algorithm that is more 



PAGE 47 

sophisticated and intelligent. One such algorithm is the Least Recently 

Used (LRU) page replacement algorithm. 

The LRU page replacement algorithm works on the principle that the 

page that has not been used for the longest time in the memory should 

be replaced. In other words, the page that was least recently used should 

be removed from the memory. 

To implement the LRU algorithm, the operating system keeps track of 

the time when each page is accessed. When a page fault occurs, the 

operating system scans through the page table to determine which page 

has not been accessed for the longest time. This page is then replaced 

with the new page that is being brought into the memory. 

The LRU page replacement algorithm has several advantages over the 

FIFO algorithm: 

 Efficient use of memory: Since the LRU algorithm replaces the 

least recently used page, it ensures that the most frequently used 

pages remain in the memory. This results in more efficient use of 

memory. 

 Improved performance: By keeping frequently used pages in the 

memory, the LRU algorithm reduces the number of page faults 

and hence improves the performance of the system. 

 

Despite its advantages, the LRU page replacement algorithm has some 

disadvantages: 

 High overhead: The LRU algorithm requires additional hardware 

or software support to keep track of the time when each page is 

accessed. This increases the overhead of the system. 

 Complexity: The LRU algorithm is more complex than the FIFO 

algorithm and requires more processing power. 
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Example: Here is the pseudocode for the LRU page replacement 

algorithm: 

Create a counter to keep track of the time when each page is 

accessed. 

When a page fault occurs: 

a. Increment the counter. 

b. Scan through the page table to find the page with the lowest 

counter value. This page is the least recently used. 

c. Replace the least recently used page with the new page. 

d. Reset the counter for the newly brought-in page to the current 

time. 

 

In this chapter, we discussed the Least Recently Used (LRU) page 

replacement algorithm. We saw how it works, its advantages and 

disadvantages, and the pseudocode for its implementation. The LRU 

algorithm is more efficient than the FIFO algorithm since it takes into 

account the frequency of page usage. However, it requires additional 

hardware or software support and is more complex than the FIFO 

algorithm. The choice of the page replacement algorithm depends on 

the specific requirements of the system and the available hardware 

resources. 

Example: Sure, here's the pseudocode for LRU page replacement 

algorithm: 

for each page reference: 

    if page in memory: 

        move page to the front of the list 

    else: 

        if memory is not full: 

            add page to the front of the list and allocate a frame 
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        else: 

            evict the page at the back of the list and replace it 

with the new page 

            add the new page to the front of the list 

In this algorithm, a list of pages is maintained in the order of their most 

recent usage. When a page is referenced, it is moved to the front of the 

list. If a page fault occurs and there is a free frame in memory, the new 

page is allocated a frame and added to the front of the list. If there is no 

free frame, the page at the back of the list (i.e., the least recently used 

page) is evicted and replaced with the new page, which is then added to 

the front of the list. 

4.1.3 Optimal Page Replacement (OPT) 

The optimal page replacement algorithm is an optimal algorithm that 

replaces the page that will not be used for the longest period. It requires 

knowledge of the future page requests, which is not possible in practice. 

In other words, this algorithm requires perfect knowledge of the future, 

which is not realistic. However, the optimal page replacement algorithm 

provides a theoretical upper bound on the performance of a page 

replacement algorithm. 

The OPT algorithm keeps track of the future references of each page and 

selects the page with the longest time before the next reference as the 

replacement candidate. The page with the longest time before the next 

reference is the one that will be unused for the longest period. The OPT 

algorithm requires knowledge of future page requests, which is not 

possible in real-world scenarios. 

The OPT algorithm is optimal in the sense that it always selects the page 

that will not be used for the longest time period, resulting in a minimum 

number of page faults. The OPT algorithm also provides a theoretical 

upper bound on the performance of page replacement algorithms. 
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The major disadvantage of the OPT algorithm is that it requires 

knowledge of future page requests, which is not possible in real-world 

scenarios. Moreover, the OPT algorithm is computationally expensive 

and requires a significant amount of memory to store the future page 

requests. 

The optimal page replacement algorithm is an ideal algorithm that 

always selects the page that will not be used for the longest time period. 

However, it requires perfect knowledge of future page requests, which 

is not possible in real-world scenarios. The OPT algorithm provides a 

theoretical upper bound on the performance of page replacement 

algorithms, but it is not practical for real-world use due to its high 

computational cost and memory requirements. Nonetheless, the OPT 

algorithm remains a fundamental concept in page replacement 

algorithms and is essential for developing more practical and efficient 

algorithms. 

Example: Here is the pseudocode for the Optimal Page Replacement 

Algorithm: 

for each page P in the page table 

    find the furthest occurrence of P in the future page references 

    store the distance of that occurrence in an array DISTANCE 

end for 

 

while (there are pages to be replaced) 

    find the page P in the page table with the maximum distance in 

DISTANCE 

    remove P from memory 

    replace it with the new page 

    update DISTANCE for the remaining pages in memory 

end while 
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In this algorithm, we first scan through the entire page table and record 

the distance of each page's furthest occurrence in the future. Then, 

whenever a page needs to be replaced, we select the page with the 

maximum distance in the DISTANCE array, indicating that it will not be 

needed for the longest time in the future. We remove that page from 

memory, replace it with the new page, and update the DISTANCE array 

for the remaining pages in memory. 

4.1.4 Clock Page Replacement 

In the previous chapters, we discussed three page replacement 

algorithms: FIFO, LRU, and OPT. In this chapter, we will discuss the 

Clock Page Replacement algorithm, which is another widely used page 

replacement algorithm in modern operating systems. This algorithm is 

also known as the Second-Chance algorithm, as it gives a second chance 

to pages that have been accessed recently. 

The Clock Page Replacement algorithm is an improvement over the 

FIFO algorithm, which suffers from the Belady's anomaly. The main idea 

behind the Clock algorithm is to keep a circular list of all the pages in 

the main memory, similar to the clock hand moving around the clock. 

The algorithm uses a "use bit" to keep track of whether a page has been 

accessed or not. When a page is first loaded into memory, the use bit is 

set to 0. If the page is accessed before it is replaced, the use bit is set to 

1. 

When a page fault occurs, the algorithm searches for the first page with 

a use bit of 0. If such a page is found, it is replaced. However, if all the 

pages have a use bit of 1, the algorithm gives a second chance to the first 

page with a use bit of 1 that it encounters during its circular traversal of 

the list. The use bit of this page is set back to 0, and the algorithm 

continues its search for a page with a use bit of 0. This process continues 

until a page with a use bit of 0 is found. 

Advantages of Clock Page Replacement Algorithm: 
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 The Clock algorithm is easy to implement and does not require a 

lot of memory to keep track of page accesses. 

 The algorithm provides a second chance to pages that have been 

recently accessed, which can reduce the number of page faults. 

 The Clock algorithm is less susceptible to the Belady's anomaly 

compared to the FIFO algorithm. 

 

Disadvantages of Clock Page Replacement Algorithm: 

 The Clock algorithm may not be optimal, and there may be cases 

where it performs worse than other page replacement algorithms. 

 The performance of the algorithm depends on the number of 

frames allocated to a process, and the optimal number of frames 

may vary from process to process. 

 

Example: Pseudocode for Clock Page Replacement Algorithm: 

for each page in memory: 

    page.useBit = 0 

 

nextReplaceIndex = 0 

 

while true: 

    if nextReplaceIndex >= numberOfPages: 

        nextReplaceIndex = 0 

     

    if memory[nextReplaceIndex].useBit == 0: 

        replacePage(nextReplaceIndex) 

        nextReplaceIndex += 1 
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    else: 

        memory[nextReplaceIndex].useBit = 0 

        nextReplaceIndex += 1 

The Clock Page Replacement algorithm is an improvement over the 

FIFO algorithm and provides a second chance to pages that have been 

recently accessed. It is easy to implement and requires minimal memory 

to keep track of page accesses. However, the algorithm may not be 

optimal in all cases, and its performance depends on the number of 

frames allocated to a process. 

Example: Here's a pseudocode for the Clock Page Replacement 

algorithm: 

clock_head = 0       // initialize clock hand to the beginning of 

the circular buffer 

clock_ref_bits = {}  // initialize the reference bits for all pages 

to 0 

clock_hand_used = false 

 

// This function returns the index of a page in memory to replace 

using the Clock algorithm 

function clock_page_replacement(): 

    while true: 

        // check if the current page is not referenced 

        if clock_ref_bits[clock_head] == 0: 

            // return the index of the page to be replaced 

            return clock_head 

         

        // if the current page is referenced, set its reference 

bit to 0 
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        clock_ref_bits[clock_head] = 0 

 

        // move the clock hand to the next page in the circular 

buffer 

        clock_head = (clock_head + 1) % num_pages 

 

        // if the clock hand has made a full circle without finding 

an unreferenced page, 

        // start using the reference bits to evict pages 

        if clock_hand_used and clock_head == 0: 

            // search for the first page with a reference bit of 0 

            for i in range(num_pages): 

                if clock_ref_bits[i] == 0: 

                    // return the index of the page to be replaced 

                    return i 

                     

            // if all pages have a reference bit of 1, reset all 

reference bits to 0 

            clock_ref_bits = [0] * num_pages 

             

            // start the search again from the beginning of the 

circular buffer 

            clock_head = 0 

            clock_hand_used = false 

        else: 

            clock_hand_used = true 
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In this algorithm, the clock_ref_bits array keeps track of the reference 

bit for each page in memory, and the clock_head variable points to the 

current page being examined. The algorithm starts by iterating through 

the circular buffer of pages, checking if the current page has a reference 

bit of 0. If it does, that page is returned as the page to be replaced. If the 

current page has a reference bit of 1, its reference bit is set to 0 and the 

clock hand moves to the next page in the buffer. 

Once the clock hand has made a full circle without finding an 

unreferenced page, the algorithm starts using the reference bits to evict 

pages. It searches for the first page with a reference bit of 0 and returns 

that page as the page to be replaced. If all pages have a reference bit of 

1, the algorithm resets all reference bits to 0 and starts the search again 

from the beginning of the circular buffer. 

4.1.5 Not Recently Used (NRU) 

The Not Recently Used (NRU) page replacement algorithm is a variation 

of the Clock page replacement algorithm. This algorithm is based on the 

concept of dividing the page frames into four categories based on the 

reference bit and the modify bit of each page. The categories are: 

 Category 0: Pages with reference and modify bits set to 0. 

 Category 1: Pages with reference bit set to 0 and modify bit set to 

1. 

 Category 2: Pages with reference bit set to 1 and modify bit set to 

0. 

 Category 3: Pages with reference and modify bits set to 1. 

The algorithm selects a random page from the lowest numbered non-

empty category. If there are no pages in the lowest numbered non-

empty category, the algorithm selects a random page from the next 

higher numbered non-empty category. 

The NRU algorithm is relatively simple and easy to implement. It can be 

effective in situations where pages that are not frequently accessed can 
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be swapped out quickly. However, it may not always be the most 

efficient algorithm, especially in situations where there is a high degree 

of locality of reference. 

Example: Pseudocode for NRU page replacement algorithm: 

Create an array of four lists, one for each category of pages. 

For each page fault: 

a. If the list for category 0 is not empty, remove a random page 

from the list and replace it. 

b. Else, if the list for category 1 is not empty, remove a random 

page from the list and replace it. 

c. Else, if the list for category 2 is not empty, remove a random 

page from the list and replace it. 

d. Else, remove a random page from the list for category 3 and 

replace it. 

For each page access: 

a. Set the reference bit for the accessed page to 1. 

b. If the accessed page has been modified, set the modify bit to 1 

as well. 

Periodically reset the reference bits for all pages to 0. 

In conclusion, the NRU algorithm is a simple page replacement 

algorithm that can be effective in some scenarios, but may not always 

be the most efficient. It is a good option when there is a mix of 

frequently and infrequently accessed pages, and there is no clear pattern 

to the access of pages. 

Example: Here is a pseudocode for NRU (Not Recently Used) page 

replacement algorithm: 

1. Initialize the reference bit and modify bit for each page frame 

to 0. 

2. When a page fault occurs: 
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    a. Search for a page frame with reference bit and modify bit 

set to 0. 

    b. If a page frame with reference bit and modify bit set to 0 

is found, replace it with the new page. 

    c. If no page frame with reference bit and modify bit set to 0 

is found, search for a page frame with reference bit 0 and modify 

bit 1. 

    d. If a page frame with reference bit 0 and modify bit 1 is 

found, replace it with the new page. 

    e. If no page frame with reference bit 0 and modify bit 1 is 

found, search for a page frame with reference bit 1 and modify bit 

0. 

    f. If a page frame with reference bit 1 and modify bit 0 is 

found, replace it with the new page. 

    g. If no page frame with reference bit 1 and modify bit 0 is 

found, search for a page frame with reference bit and modify bit 

both set to 1. 

    h. If a page frame with reference bit and modify bit both set 

to 1 is found, replace it with the new page, but first set the 

reference bit to 0. 

3. Set the reference bit of the page table entry corresponding to 

the new page to 1. 

4. When a clock interrupt occurs: 

    a. Set the reference bit of each page frame to 0. 

5. When a page is modified: 

    a. Set the modify bit of the page table entry corresponding to 

the page to 1. 

In this algorithm, pages are classified into four categories based on the 

value of their reference and modify bits. The algorithm tries to select a 

page for replacement from the lowest priority category. If no page is 

found in a category, it moves to the next category with higher priority. 
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The algorithm also periodically resets the reference bit of each page 

frame to 0. 

4.1.6 Second-Chance Page Replacement 

In the field of operating systems, page replacement algorithms play a 

crucial role in managing memory resources efficiently. There are many 

page replacement algorithms available, and one such algorithm is the 

Second-Chance algorithm. This algorithm is also known as the Clock 

algorithm and was first proposed by P. M. Bellady. 

The Second-Chance algorithm is a modification of the FIFO algorithm. 

In this algorithm, each page is assigned a reference bit that is set to 1 

every time the page is referenced. The algorithm then maintains a 

circular queue of all the pages in memory. The queue is ordered 

according to the page's arrival time in memory, with the oldest page 

being at the front of the queue. 

When a page fault occurs, the algorithm examines the page at the front 

of the queue. If its reference bit is 0, the page is removed from memory 

and the new page is added to the back of the queue. However, if the 

reference bit is 1, the page is given a "second chance" and is moved to 

the back of the queue with its reference bit set to 0. The algorithm then 

repeats the process until it finds a page with a reference bit of 0. 

One of the advantages of the Second-Chance algorithm is that it gives 

recently referenced pages a higher chance of remaining in memory. This 

is because the algorithm gives each page a "second chance" before 

removing it from memory. This makes it a better choice than the FIFO 

algorithm in situations where there is a high demand for recently 

referenced pages. 

Another advantage of the Second-Chance algorithm is that it requires 

less overhead than other algorithms, such as the LRU algorithm, since 

it only needs to maintain a single reference bit for each page. 
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One of the main disadvantages of the Second-Chance algorithm is that 

it can result in a situation known as "thrashing." This occurs when the 

algorithm repeatedly selects pages that are being referenced frequently, 

but are too large to fit in memory. As a result, the algorithm spends most 

of its time swapping pages in and out of memory, leading to a significant 

decrease in system performance. 

Another disadvantage of the Second-Chance algorithm is that it may not 

be suitable for all types of workloads. For example, in a workload that 

exhibits high temporal locality, the LRU algorithm may be more 

appropriate. 

In conclusion, the Second-Chance page replacement algorithm is a 

modification of the FIFO algorithm that provides a "second chance" to 

recently referenced pages before they are removed from memory. The 

algorithm has advantages over other algorithms such as the LRU 

algorithm in terms of overhead and is suitable for workloads that exhibit 

a high demand for recently referenced pages. However, it can lead to 

thrashing and may not be suitable for all types of workloads. 

Example: Sure, here's an example pseudocode for the Second-Chance 

page replacement algorithm: 

while (true) { 

    // Check if current page is present in page table 

    if (page_table[current_page] == 1) { 

        // If yes, set its reference bit to 1 

        reference_bits[current_page] = 1; 

    } else { 

        // If no, find a page with reference bit = 0 

        while (true) { 

            // If reference bit is 0, replace the page 

            if (reference_bits[current_page] == 0) { 
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                replace_page(current_page); 

                // Set the reference bit of new page to 1 

                reference_bits[new_page] = 1; 

                break; 

            } else { 

                // Set reference bit of current page to 0 

                reference_bits[current_page] = 0; 

                // Move to next page in circular list 

                current_page = (current_page + 1) % num_pages; 

            } 

        } 

    } 

    // Move to next page in circular list 

    current_page = (current_page + 1) % num_pages; 

} 

Note that page_table is an array that stores whether a particular page is 

currently in physical memory, while reference_bits is an array that 

stores the reference bit for each page. The replace_page function is 

responsible for actually replacing the current page with a new page. In 

this algorithm, the circular list of pages is traversed until a page with a 

reference bit of 0 is found. If no such page is found in the first pass, the 

reference bits are reset and the list is traversed again until a page with a 

reference bit of 0 is found. Once a page is replaced, its reference bit is 

set to 1. 

4.1.7 Random Page Replacement 

Random page replacement algorithm is one of the simplest and most 

straightforward page replacement algorithms used in memory 
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management. This algorithm randomly selects a page from the memory 

to replace, regardless of the page's usage history or frequency. In this 

chapter, we will discuss the details of the random page replacement 

algorithm, including its advantages and disadvantages. 

The random page replacement algorithm is based on the principle of 

selecting a random page from the memory to be replaced. This 

algorithm does not consider the usage history or frequency of the pages 

in the memory, which makes it simple and easy to implement.  

Example: The pseudocode for the random page replacement algorithm 

is as follows: 

1. When a page needs to be replaced: 

2. Select a random page from the memory 

3. Replace the selected page 

4. Update the page table accordingly 

The random page replacement algorithm is easy to implement and does 

not require any additional information or calculations. However, it has 

several disadvantages that make it less efficient compared to other page 

replacement algorithms. One of the main disadvantages is that it may 

replace a heavily used page that is required frequently, leading to 

increased page faults and decreased system performance. 

 

Advantages of Random Page Replacement Algorithm 

 Simple and easy to implement 

 Does not require any additional information or calculations 

 Works well for small memory systems where the page usage 

history is not important 

 

Disadvantages of Random Page Replacement Algorithm 
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 May replace heavily used pages, leading to increased page faults 

and decreased system performance 

 Does not take into account the usage history or frequency of the 

pages in the memory, which may result in inefficient use of the 

available memory 

 May not perform well in large memory systems where the page 

usage history is important 

The random page replacement algorithm is a simple and easy-to-

implement page replacement algorithm that selects a random page from 

the memory to be replaced. Although it has some advantages, such as 

simplicity and ease of implementation, it also has several disadvantages, 

such as inefficient use of memory and decreased system performance. 

In general, the random page replacement algorithm is not commonly 

used in modern operating systems, and other more sophisticated page 

replacement algorithms are preferred. 

 

Example: Here is a pseudocode for the Random page replacement 

algorithm: 

1. Initialize a list of page frames to be used. 

2. While processing pages, check if the current page is in a page 

frame. 

3. If the page is in a frame, do nothing and move to the next page. 

4. If the page is not in a frame, randomly choose a page frame to 

be replaced. 

5. Replace the chosen page frame with the current page and update 

the page table. 

6. Move to the next page. 
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4.1.8 WSClock Algorithm 

The WSClock algorithm is a modification of the Clock algorithm, which 

uses a circular buffer to keep track of page frames in memory. It replaces 

the standard Clock algorithm's "hand" with a WSClock hand that moves 

around the buffer according to the page's time of use and its priority. 

The WSClock algorithm uses a two-part algorithm to determine which 

page to replace. First, it scans the buffer to find the page with the lowest 

priority. The priority of a page is determined by its time of use and its 

working set size. The working set size is the number of pages accessed 

by the process in the recent past. The longer the page has not been 

accessed, the lower its priority. The smaller the working set size, the 

lower the priority. 

Once the WSClock algorithm identifies the lowest-priority page, it 

examines the page's reference bit. If the reference bit is set to one, the 

algorithm gives the page a second chance and sets the reference bit to 

zero. The WSClock algorithm then continues scanning the buffer for the 

next lowest-priority page until it finds a page with a reference bit of zero. 

If no pages have a reference bit of zero, the algorithm selects the page 

with the lowest priority and removes it from memory. 

Example: Here's a pseudocode for the WSClock Algorithm: 

while (memory is not full) { 

    load page into memory; 

    set reference bit to 1; 

    set WSClock bit to 1; 

} 

 

while (true) { 

    for (each page in memory) { 
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        if (page has not been referenced in a while) { 

            if (page has WSClock bit set to 1) { 

                set WSClock bit to 0; 

                set reference bit to 0; 

            } else { 

                remove page from memory; 

                load new page; 

                set reference bit to 1; 

                set WSClock bit to 1; 

            } 

        } 

    } 

} 

This pseudocode initializes memory by loading pages and setting their 

reference and WSClock bits to 1. The algorithm then enters an infinite 

loop to continuously scan the memory and replace the page with the 

lowest priority. The priority is determined by the page's reference and 

WSClock bits, with pages that have not been referenced in a while 

having lower priority. 

If the page with the lowest priority has its WSClock bit set to 1, the 

algorithm gives it a second chance by setting its reference and WSClock 

bits to 0. Otherwise, the algorithm removes the page from memory, 

loads a new page, and sets its reference and WSClock bits to 1. 



PAGE 65 

4.2 Performance evaluation of page replacement 

algorithms 

Performance evaluation is an essential aspect of operating system design, 

especially in memory management. It helps to determine the 

effectiveness of various page replacement algorithms in managing 

memory efficiently. In this chapter, we will explore various performance 

evaluation metrics and techniques for evaluating the efficiency of page 

replacement algorithms. 

Several metrics can be used to evaluate the performance of page 

replacement algorithms. The most common ones are: 

 Page Fault Rate is the number of page faults per unit of time. It 

measures the frequency at which the operating system must 

replace pages that are currently in use with new pages from the 

disk. A higher page fault rate indicates a less efficient page 

replacement algorithm. 

 Memory Access Time is the time required to access a page in 

memory. It includes the time required to retrieve a page from the 

disk and the time required to access it in memory. A faster 

memory access time indicates a more efficient page replacement 

algorithm. 

 CPU Utilization measures the amount of time the CPU spends 

executing processes. A higher CPU utilization indicates that the 

page replacement algorithm is efficient at providing the CPU with 

the necessary pages. 

 Throughput is the number of processes that can be completed in 

a given amount of time. A higher throughput indicates that the 

page replacement algorithm is efficient at completing processes. 

 

Several techniques can be used to evaluate the performance of page 

replacement algorithms. The most common ones are: 
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 Simulation involves using a computer program to simulate the 

execution of a set of processes and their associated page references. 

The program records the number of page faults and other 

performance metrics, allowing us to compare the efficiency of 

different page replacement algorithms. 

 Analytical modeling involves creating a mathematical model of 

the memory system and using it to predict the performance of 

different page replacement algorithms. This technique is useful 

when simulating large memory systems becomes computationally 

expensive. 

 Benchmarking involves running a set of standardized programs 

and measuring their performance using various page replacement 

algorithms. This technique is useful for comparing the efficiency 

of page replacement algorithms under real-world conditions. 

 

Performance evaluation is crucial in determining the effectiveness of 

page replacement algorithms in managing memory efficiently. By using 

the metrics and techniques discussed in this chapter, operating system 

designers can select the most suitable page replacement algorithm for 

their system. 

4.3 Working set model and page thrashing 

In virtual memory systems, one of the most important goals is to avoid 

page thrashing, which occurs when the system spends more time 

swapping pages in and out of memory than executing useful work. In 

this chapter, we will explore the working set model, a technique for 

managing page thrashing, and the consequences of page thrashing. 
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4.3.1 Working Set Model 

The working set model is a concept used to manage page thrashing in 

virtual memory systems. The working set of a process is defined as the 

set of pages that the process is currently actively using. The size of the 

working set can be thought of as the minimum number of pages that 

the process needs to keep in memory to avoid page thrashing. If the size 

of the working set exceeds the available physical memory, page 

thrashing will occur. 

To manage page thrashing using the working set model, the operating 

system must periodically analyze the memory usage of each process and 

adjust the allocation of physical memory accordingly. If the size of the 

working set of a process exceeds the available physical memory, the 

operating system can either increase the size of physical memory or 

reduce the size of the working set. Conversely, if the size of the working 

set is smaller than the available physical memory, the operating system 

can increase the allocation of physical memory or reduce the frequency 

of page swaps. 

Example: Here is a possible pseudocode for implementing the working 

set model: 

function update_working_set(process): 

  // Get the current time 

  current_time = get_current_time() 

 

  // Compute the process's page fault rate over the last time 

interval 

  page_fault_rate = count_page_faults(process) / (current_time - 

process.last_update_time) 

 

  // Update the process's working set size based on its page fault 

rate 
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  if page_fault_rate > process.page_fault_threshold: 

    // Increase the working set size 

    process.working_set_size += process.working_set_growth 

  else if page_fault_rate < process.page_fault_threshold - 

process.page_fault_hysteresis: 

    // Decrease the working set size 

    process.working_set_size -= process.working_set_shrinkage 

 

  // Limit the working set size to the process's physical memory 

limit 

  process.working_set_size = min(process.working_set_size, 

process.physical_memory_limit) 

 

  // Update the process's last update time 

  process.last_update_time = current_time 

 

function count_page_faults(process): 

  // Iterate over the process's pages and count the number of page 

faults 

  count = 0 

  for page in process.pages: 

    if page.is_present == false: 

      count += 1 

  return count 

This pseudocode defines a function update_working_set that takes a 

process as input and updates its working set size based on its page fault 

rate over a certain time interval. The function first computes the page 

fault rate by counting the number of page faults that occurred since the 
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last update and dividing it by the time elapsed. It then adjusts the 

working set size based on the page fault rate: if the rate is above a certain 

threshold, the working set size is increased; if it is below the threshold 

minus a hysteresis factor, the working set size is decreased. The function 

also limits the working set size to the process's physical memory limit. 

Finally, the function updates the process's last update time. 

The pseudocode also defines a helper function count_page_faults that 

counts the number of page faults for a given process by iterating over its 

pages and checking if each page is present in physical memory. 

4.3.2 Page Thrashing 

Page thrashing occurs when the operating system spends more time 

swapping pages in and out of memory than executing useful work. This 

can occur when the size of the working set of a process exceeds the 

available physical memory, causing the operating system to constantly 

swap pages in and out of memory to keep up with the demand. Page 

thrashing can cause severe performance degradation and can make the 

system unresponsive. 

The consequences of page thrashing include reduced system 

throughput, increased response time, and decreased overall 

performance. The system may also experience excessive disk I/O, 

leading to premature disk failure. To avoid page thrashing, it is 

important to carefully manage the allocation of physical memory and 

adjust the working set size of each process as needed. 

Example: Here is a possible pseudocode for avoiding page thrashing: 

function avoid_page_thrashing(process): 

  // Initialize variables 

  page_faults = 0 

  consecutive_page_faults = 0 

  max_consecutive_page_faults = 0 
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  last_working_set_size = 0 

  working_set_size = process.initial_working_set_size 

 

  // Loop until the process finishes 

  while process.is_running: 

    // Check if the process has exceeded its working set size 

    if process.current_page_count > working_set_size: 

      // Page out the least-recently-used pages until the working 

set size is reached 

      while process.current_page_count > working_set_size: 

        page_out_least_recently_used_page(process) 

 

    // Check for page faults 

    if page_fault_occurs(process): 

      page_faults += 1 

      consecutive_page_faults += 1 

      max_consecutive_page_faults = 

max(max_consecutive_page_faults, consecutive_page_faults) 

    else: 

      consecutive_page_faults = 0 

 

    // Check if the working set size needs to be adjusted 

    if page_faults % process.page_fault_interval == 0: 

      if consecutive_page_faults >= 

process.consecutive_page_fault_threshold: 

        // Increase the working set size 

        last_working_set_size = working_set_size 
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        working_set_size += process.working_set_growth 

      else if working_set_size > last_working_set_size: 

        // Decrease the working set size if there were no recent 

consecutive page faults 

        last_working_set_size = working_set_size 

        working_set_size = max(working_set_size - 

process.working_set_shrinkage, process.initial_working_set_size) 

 

  // Clean up any remaining pages 

  while process.current_page_count > 0: 

    page_out_least_recently_used_page(process) 

} 

 

function page_fault_occurs(process): 

  // Check if a page fault occurs by simulating the page table 

lookup 

  page_number = get_next_instruction(process) 

  if page_number not in process.page_table: 

    // Page fault 

    handle_page_fault(process, page_number) 

    return true 

  else: 

    // Page hit 

    update_page_table(process, page_number) 

    return false 

 

function page_out_least_recently_used_page(process): 
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  // Find the least-recently-used page and page it out 

  page_to_page_out = get_least_recently_used_page(process) 

  page_out(process, page_to_page_out) 

 

function get_least_recently_used_page(process): 

  // Find the least-recently-used page by iterating over the 

process's pages 

  least_recently_used_page = None 

  for page in process.pages: 

    if least_recently_used_page is None or page.last_access_time < 

least_recently_used_page.last_access_time: 

      least_recently_used_page = page 

  return least_recently_used_page 

This pseudocode defines a function avoid_page_thrashing that 

implements the working set model to avoid page thrashing. The 

function first initializes some variables, including the initial working set 

size and the consecutive page fault threshold. It then enters a loop that 

simulates the execution of the process, checking for page faults and 

adjusting the working set size as needed. 

In each iteration of the loop, the function first checks if the process has 

exceeded its working set size, and if so, pages out the least-recently-used 

pages until the working set size is reached. It then checks for page faults 

by simulating the page table lookup and calls handle_page_fault if a 

fault occurs. If a fault occurs, the function updates some variables, 

including the number of consecutive page faults and the maximum 

consecutive page faults seen so far. 

 

In this chapter, we have explored the working set model, a technique for 

managing page thrashing in virtual memory systems. We have also 
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discussed the consequences of page thrashing, including reduced 

system throughput, increased response time, and decreased overall 

performance. Effective management of page thrashing requires careful 

analysis of memory usage patterns and proactive adjustment of the 

working set size of each process. The working set model is an effective 

technique for managing page thrashing and can help ensure that virtual 

memory systems operate at peak efficiency. 

5 Designing a paging system 

5.1 Local vs global allocation policy  

In designing a paging system, there are several issues that must be taken 

into consideration. One of the most important of these issues is whether 

to use a local or global allocation policy for page replacement. 

Under a local allocation policy, each process is given a fixed number of 

page frames in memory. When a process needs to allocate a new page, 

it can only do so from the set of page frames it has been allocated. This 

means that when the system is under heavy load and all processes are 

competing for memory, a process may not be able to allocate a new page 

even if there are free page frames available elsewhere in the system. 

However, the advantage of a local allocation policy is that it guarantees 

that each process will have a certain minimum amount of memory 

available to it at all times, which can help to prevent thrashing. 

Under a global allocation policy, on the other hand, all processes share 

a pool of available page frames. When a process needs to allocate a new 

page, it can do so from any free page frame in the system. This means 

that if a process needs more memory than it has been allocated, it can 

take memory away from other processes if necessary. However, the 

disadvantage of a global allocation policy is that it can lead to thrashing, 
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where the system spends all its time swapping pages in and out of 

memory rather than executing useful work. 

Choosing between a local and global allocation policy depends on the 

specific needs of the system. In general, a local allocation policy is better 

suited for systems where each process has a fixed memory requirement, 

while a global allocation policy is better suited for systems where 

memory requirements can vary widely between processes. However, 

there are many other factors that must be taken into consideration, such 

as the size of the available memory, the number of processes running on 

the system, and the workload of each process. Ultimately, the choice of 

allocation policy will depend on the specific requirements and 

constraints of the system being designed. 

5.2 Load control  

Load control is an important aspect of memory management in 

operating systems, especially in systems that use paging. When the 

working set of a process exceeds the available physical memory, the 

system may begin to thrash, causing a severe degradation in 

performance. In this situation, the system needs to free up memory to 

reduce the number of competing processes. 

One effective way to free up memory is to swap some of the processes 

to disk. This frees up all the pages that the swapped process was holding 

and makes them available for other processes. For instance, one process 

can be swapped out to the disk and its page frames can be divided 

among other processes that are thrashing. If the thrashing stops, the 

system can run for a while this way. If it does not stop, another process 

has to be swapped out, and so on, until the thrashing stops. 

Load control can be implemented using various techniques, including 

static allocation, dynamic allocation, and hybrid allocation. Static 

allocation involves dividing the physical memory equally among all 
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processes at the time of process creation. This approach can lead to 

uneven allocation of memory, with some processes receiving more 

memory than they need, while others receive less. Dynamic allocation, 

on the other hand, involves monitoring the memory usage of each 

process and adjusting the allocation dynamically as needed. This 

approach requires more overhead but can lead to more efficient use of 

memory. 

Another important consideration for load control is the choice of page 

replacement algorithm. The choice of algorithm can significantly 

impact the system's ability to handle thrashing. For instance, some 

algorithms are more effective at reducing thrashing, while others may 

perform better under different conditions. 

In summary, load control is a critical aspect of memory management in 

operating systems, especially in systems that use paging. To reduce 

thrashing, the system can swap some processes to disk and free up their 

page frames for other processes. The choice of allocation policy and page 

replacement algorithm can also significantly impact the system's ability 

to handle thrashing. Operating system designers must carefully 

consider these factors when designing paging systems. 

5.3 Page size 

Choosing an appropriate page size is an important design decision for 

the operating system. A larger page size means fewer entries in the page 

table and fewer page table lookups, reducing memory overhead and 

improving performance. On the other hand, a smaller page size means 

less internal fragmentation, better memory utilization, and the ability 

to allocate memory more efficiently. 

The most common page size used today is 4 KB, which is also the default 

page size for most operating systems. However, some operating systems 

allow the page size to be set to different values. For example, Linux 
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supports page sizes of 4 KB, 2 MB, and 1 GB, while Windows supports 

page sizes of 4 KB, 2 MB, and 1 GB on x64 platforms. 

Choosing a page size that is too small can result in a large page table and 

an increase in page table lookups, causing performance degradation. On 

the other hand, choosing a page size that is too large can result in 

increased internal fragmentation, wasted memory, and decreased 

memory utilization. 

In general, a larger page size is beneficial for applications that have a 

large working set size and exhibit good spatial locality, while a smaller 

page size is better for applications with a small working set size and poor 

spatial locality. The optimal page size depends on the characteristics of 

the application and the hardware, and it is often determined empirically. 

In addition, some processors, such as the PowerPC, support multiple 

page sizes, allowing the operating system to choose the appropriate 

page size for each application based on its memory access patterns. 

In conclusion, choosing an appropriate page size is an important design 

decision for the operating system, and it depends on the characteristics 

of the application and the hardware. A larger page size can improve 

performance by reducing memory overhead, while a smaller page size 

can improve memory utilization by reducing internal fragmentation. 

5.4 Separation instruction and data spaces 

A solution to the problem of limited address space is to separate the 

program and data spaces. This approach, called separate instruction and 

data spaces, provides two distinct address spaces, one for instructions 

and one for data. This way, the programmer can write code and data as 

if they had an unlimited address space, as shown in Fig. 3-24(b). 

Separate instruction and data spaces also provide several other 

advantages. One advantage is that it can prevent accidental data 
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modification by code. In a single address space system, if a program 

accesses data as if it were an instruction, it could modify the data, 

causing program failure or unpredictable behavior. In a separate 

instruction and data space system, such accidents are less likely to occur 

since the hardware enforces the distinction between the two address 

spaces. 

Another advantage of separate instruction and data spaces is that it 

allows for better protection and sharing of memory. With separate 

address spaces, it is possible to allocate different permissions to the 

instruction and data spaces. For example, the instruction space can be 

marked as read-only, while the data space can be marked as read-write. 

This prevents code from modifying itself and protects against certain 

types of malicious attacks. 

Overall, separate instruction and data spaces provide a more flexible 

and secure memory management approach, particularly in systems 

where the address space is limited. 

5.5 Shared pages  

Sharing of pages is an important design issue in multiprogramming 

systems. In such systems, it is common for several users to be running 

the same program at the same time, or for a single user to be running 

several programs that use the same library. Sharing pages can lead to 

more efficient use of memory, as it avoids having two copies of the same 

page in memory at the same time. 

However, not all pages are sharable. For example, pages that contain 

program text (i.e., code) are typically read-only and can be shared. This 

is because the same program code is executed by different processes, 

and there is no need to have multiple copies of the same code in memory. 

On the other hand, data pages are often not sharable because they 

contain process-specific data. 
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To enable sharing of data pages, some operating systems provide a 

mechanism called copy-on-write (COW). With COW, when a process 

requests a page, the operating system makes a copy of the page only if 

the page is about to be modified. Otherwise, the process shares the page 

with other processes that are using the same page. This can significantly 

reduce the amount of memory required by a system, especially in cases 

where several processes are running the same program. 

Shared pages can also be used for interprocess communication (IPC). 

For example, a shared memory segment can be created and shared by 

several processes, allowing them to communicate and share data more 

efficiently than through other IPC mechanisms such as pipes or message 

queues. 

In summary, sharing of pages is an important design issue in 

multiprogramming systems, and can lead to more efficient use of 

memory. While not all pages are sharable, techniques such as copy-on-

write can enable sharing of data pages. Shared pages can also be used 

for interprocess communication. 

5.6 Shared Libraries 

Shared libraries are code libraries that can be loaded into a process's 

virtual address space at runtime. Unlike static libraries, which are linked 

with the executable file at compile time, shared libraries are loaded on 

demand, which reduces the size of the executable file and allows for 

more efficient use of memory. Shared libraries are commonly used in 

operating systems and other software systems to provide a standard set 

of functions that can be used by multiple processes. 

Example: The following is an example of how to load a shared library: 

// Load the library 

void *handle = dlopen("libexample.so", RTLD_LAZY); 
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// Get a function pointer 

void (*func)(void) = dlsym(handle, "example_function"); 

 

// Call the function 

func(); 

 

// Unload the library 

dlclose(handle); 

In this example, the dlopen function loads the shared library 

"libexample.so". The dlsym function gets a function pointer for the 

function "example_function", which is defined in the shared library. The 

func variable contains the function pointer, and the function is called 

using the () operator. Finally, the dlclose function unloads the shared 

library. 

5.7 Memory-Mapped Files 

A memory-mapped file is a file that is mapped to a portion of a process's 

virtual address space. When a process accesses the memory region 

corresponding to the memory-mapped file, the operating system 

transparently reads or writes data to the file. Memory-mapped files are 

often used for accessing large files, such as databases or multimedia files, 

without having to load the entire file into memory. 

Example: The following is an example of how to create a memory-

mapped file: 

// Open the file 

int fd = open("file.txt", O_RDWR); 
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// Determine the file size 

off_t length = lseek(fd, 0, SEEK_END); 

 

// Create a memory mapping for the file 

char *addr = mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_SHARED, 

fd, 0); 

In this example, the open function opens the file "file.txt" for both 

reading and writing. The lseek function determines the file size, and the 

mmap function creates a memory mapping for the file. The addr variable 

contains a pointer to the mapped memory region. 

5.8 Copy-on-write (COW) mechanism and its benefits 

In modern operating systems, processes often share the same resources, 

such as memory, files, and other system resources. When multiple 

processes access the same resource simultaneously, it can lead to issues 

such as contention and data inconsistency. One way to address these 

issues is through a technique called Copy-on-Write (COW). In this 

chapter, we will explore the COW mechanism, its benefits, and its 

implementation in operating systems. 

The Copy-on-Write mechanism is a technique used to manage memory 

efficiently in a system that shares memory resources among multiple 

processes. When a process requests to access a shared resource, the 

operating system creates a copy of the resource only if necessary. 

Otherwise, the process is given read-only access to the shared resource. 

The copy is created only when the process attempts to modify the 

shared resource. This copy is then made private to the process, and the 

process can make changes to it without affecting the original shared 

resource. 
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The Copy-on-Write mechanism provides several benefits to an 

operating system: 

 Memory Management: The Copy-on-Write mechanism reduces 

memory usage by allowing multiple processes to share the same 

resource. This sharing of resources reduces the number of copies 

of the resource, which leads to efficient memory management. 

 Performance: The Copy-on-Write mechanism reduces the 

overhead associated with creating copies of a resource. When a 

process attempts to modify a shared resource, the operating 

system only creates a copy of the resource when necessary, which 

reduces the overhead of copying the resource unnecessarily. 

 Data Consistency: The Copy-on-Write mechanism ensures data 

consistency among multiple processes that share the same 

resource. Each process has its own copy of the resource, which it 

can modify independently. Therefore, the original resource 

remains unchanged, and data consistency is maintained. 

 Improved Security: The Copy-on-Write mechanism provides 

improved security by ensuring that each process has its own copy 

of the resource, which it can modify independently. This reduces 

the risk of unauthorized access to the original shared resource. 

 

The Copy-on-Write mechanism is implemented in various ways in 

different operating systems. One common approach is to use a 

technique called page sharing. In this approach, the operating system 

assigns the same physical memory page to multiple processes that 

request to access the same resource. When a process attempts to modify 

the shared page, the operating system creates a copy of the page and 

assigns it to the process. The process can then make changes to the copy 

without affecting the original shared page. 

Another approach to implementing the Copy-on-Write mechanism is to 

use a technique called fork-on-write. In this approach, the operating 

system creates a copy of a process when the process attempts to modify 
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a shared resource. The new process shares the same memory resources 

as the original process, except for the resource that is being modified. 

The new process then modifies the resource independently, and the 

original resource remains unchanged. 

The Copy-on-Write mechanism is a technique used to manage memory 

efficiently in a system that shares memory resources among multiple 

processes. It provides several benefits, including efficient memory 

management, improved performance, data consistency, and improved 

security. The mechanism is implemented in various ways in different 

operating systems, including page sharing and fork-on-write. The Copy-

on-Write mechanism is an important tool for managing resources 

efficiently in modern operating systems. 

5.9 Cleaning policy 

When a process needs a page that is not in memory, the operating 

system must find a free page frame for it. If no free frame is available, 

the system must make room by replacing one of the existing pages in 

memory. This process of selecting pages to be replaced is called the page 

replacement policy. However, the process of actually removing the page 

from memory and writing it back to disk is called the cleaning policy. 

To ensure a plentiful supply of free page frames, paging systems 

generally have a background process, called the paging daemon, that 

sleeps most of the time but is awakened periodically to inspect the state 

of memory. If too few page frames are free, it begins selecting pages to 

evict using some page replacement algorithm. If these pages have been 

modified since being loaded, they are written to disk. This is known as 

the cleaning policy. 

The goal of the cleaning policy is to free up memory so that new pages 

can be brought in as needed. The cleaning policy is different from the 

page replacement policy, which determines which pages should be 
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replaced. In general, the cleaning policy tries to write pages back to disk 

in a way that minimizes the number of disk writes and maximizes the 

availability of free page frames. 

One common approach to cleaning is called the demand cleaning policy. 

In this approach, pages are written back to disk only when they are 

needed. When a page needs to be evicted from memory, the system first 

checks whether it has been modified. If it has not been modified, the 

page can be simply discarded, without being written back to disk. If it 

has been modified, it must be written back to disk before it can be 

discarded. 

Another approach to cleaning is called the precleaning policy. In this 

approach, the system writes modified pages back to disk before they are 

evicted from memory. This can be useful when the system has many 

modified pages, and there is a risk of running out of free page frames 

before the paging daemon has a chance to write them all back to disk. 

In summary, the cleaning policy is an important part of the paging 

system. It ensures that free page frames are available for new pages to 

be brought in as needed. There are different approaches to cleaning, 

including demand cleaning and precleaning, and the choice of approach 

depends on the characteristics of the system and the workload. 

6 Case Study: Virtual Memory in Windows 

One popular operating system that utilizes virtual memory is Microsoft 

Windows. Windows implements a complex virtual memory 

management system that is optimized for its graphical user interface 

and multi-tasking capabilities. In this chapter, we will explore Windows' 

approach to virtual memory, comparing it to other operating systems 

and discussing its impact on performance and reliability. 

The chapter will begin with a brief overview of the definition and 

importance of virtual memory. We will then review the concepts of 
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paging and segmentation and how they are used to map virtual to 

physical addresses. This will be followed by a discussion of page fault 

handling, including the causes and consequences of page faults and the 

mechanism for handling them. 

Next, we will revisit page replacement algorithms, examining their role 

in managing memory and discussing advanced algorithms such as 

WSClock and Second Chance. We will then turn our attention to 

memory mapping and copy-on-write, exploring their benefits and 

comparing them to other sharing mechanisms. 

Finally, we will examine Windows' approach to virtual memory in detail, 

discussing its unique features and comparing it to other operating 

systems. We will also analyze the impact of Windows' virtual memory 

management system on performance and reliability. 

6.1 Overview of Windows' approach to virtual memory 

Like most modern operating systems, Windows uses virtual memory to 

manage the available system memory. The virtual memory is divided 

into fixed-size pages, which are used to store the code and data of 

running processes. Each page is assigned a unique virtual address, which 

is used by the process to access the memory. The virtual addresses are 

mapped to physical memory locations by the operating system, allowing 

multiple processes to run simultaneously without interfering with each 

other. 

The Windows memory manager is responsible for managing the virtual 

memory of the system. It is a complex component that handles a wide 

range of tasks, including page allocation and deallocation, page 

replacement, and memory sharing. The memory manager operates at a 

low level, interacting directly with the hardware and managing the page 

tables used by the processor to translate virtual addresses into physical 

addresses. 
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When a process attempts to access a virtual address that is not currently 

mapped to physical memory, a page fault occurs. The memory manager 

is responsible for handling page faults and allocating the required 

memory. In Windows, the memory manager uses a demand-paging 

mechanism, where pages are loaded into memory only when they are 

needed. 

When the system runs out of physical memory, the memory manager 

must decide which pages to evict from memory to make room for new 

pages. Windows uses a modified version of the clock algorithm called 

the "modified clock" or "second chance" algorithm to select the pages to 

be evicted. This algorithm uses a combination of access bits and 

modified bits to determine which pages are most likely to be needed 

again in the future. 

One unique feature of Windows' virtual memory management system is 

its support for memory-mapped files. Memory-mapped files allow a file 

to be mapped directly into the virtual address space of a process, 

allowing the process to read and write the file as if it were regular 

memory. This can be useful for handling large files, as it allows the file 

to be read or written in small chunks, without having to load the entire 

file into memory. 

Windows also supports shared memory, which allows multiple 

processes to share memory regions. Shared memory can be used for 

interprocess communication and can improve system performance by 

reducing the need for data copying between processes. Windows 

provides several APIs for creating and accessing shared memory regions, 

including the CreateFileMapping and MapViewOfFile functions. 

In this chapter, we have explored the virtual memory management 

system used by Windows. The Windows memory manager is a complex 

component that plays a critical role in the performance and stability of 

the operating system. The use of demand paging, page replacement 

algorithms, memory-mapped files, and shared memory all contribute to 

the efficient use of system resources and the seamless operation of 
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multiple processes. Understanding how Windows manages its virtual 

memory can help developers write efficient and reliable applications 

that take advantage of the full potential of the system. 

6.2 Comparison with other operating systems 

Windows vs. Linux: 

Windows and Linux are two of the most widely used operating systems 

in the world, and they have different approaches to virtual memory 

management. In Windows, the memory manager uses a demand-paging 

algorithm to bring pages into memory as they are needed. Linux, on the 

other hand, uses a demand-zeroing algorithm, which means that pages 

are zeroed out before they are allocated to a process. 

Windows vs. macOS: 

Windows and macOS are two popular desktop operating systems. 

Windows uses a pagefile to store pages that are swapped out of physical 

memory, while macOS uses a swapfile. Windows also has a feature 

called SuperFetch, which preloads commonly used applications into 

memory to improve performance. macOS uses a technique called 

memory compression, which compresses memory pages to reduce their 

size and improve performance. 

Windows vs. iOS: 

Windows and iOS are two popular operating systems that are used on 

different devices. Windows uses a pagefile for virtual memory 

management, while iOS uses a swapfile. iOS also uses a technique called 

"purgeable memory," which allows the operating system to quickly 

reclaim memory that is not currently being used. 

Linux vs. macOS: 



PAGE 87 

Linux and macOS are two Unix-like operating systems that have many 

similarities. Both use demand-paging algorithms for virtual memory 

management. However, macOS uses a technique called memory 

compression, while Linux uses a technique called transparent huge 

pages, which combines multiple small pages into a single large page to 

reduce memory overhead. 

Linux vs. Android: 

Linux is the kernel used in both desktop and mobile operating systems. 

Android, a popular mobile operating system, is based on the Linux 

kernel. Both Linux and Android use demand-paging algorithms for 

virtual memory management, but Android uses a technique called "low-

memory killer," which terminates processes that are using too much 

memory to free up resources. 

In conclusion, each operating system has its own unique approach to 

virtual memory management, and the choice of an operating system 

depends on the specific requirements of the application and the 

hardware. Windows and macOS use pagefiles and swapfiles, 

respectively, while Linux and Android use demand-paging algorithms 

for virtual memory management. Each operating system also has its own 

unique features, such as memory compression, transparent huge pages, 

and low-memory killer, which provide additional benefits for specific 

use cases. 

7 Conclusion 

In conclusion, virtual memory is a crucial component of modern 

operating systems that enables efficient and flexible memory 

management. By using virtual memory, programs can access more 

memory than physically available on the system, resulting in better 

performance and increased reliability. 
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In this chapter, we have discussed the key concepts of virtual memory, 

including paging, segmentation, page fault handling, page replacement 

algorithms, memory mapping, and copy-on-write. We have also 

examined how these concepts are implemented in different operating 

systems, such as Linux and Windows, and compared their approaches 

to virtual memory management. 

Effective virtual memory management requires a careful balance 

between the size of the physical memory and the demands of the 

running programs. The choice of page replacement algorithm, sharing 

mechanism, and memory mapping technique can significantly impact 

the performance and reliability of the system. Therefore, it is important 

for operating system designers and developers to understand these 

concepts and make informed decisions when designing and 

implementing virtual memory systems. 

As computer systems continue to evolve and grow in complexity, virtual 

memory will remain a critical component for efficient and effective 

memory management. By understanding the key concepts and 

implementation details of virtual memory, we can continue to improve 

the performance and reliability of modern operating systems. 


