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Chapter 8:  
Memory Management 

 

1 Introduction 

Welcome to the chapter on memory management in operating systems! 

Memory management is a crucial component of any operating system 

as it involves the management of a system's primary memory. This 

chapter will provide a detailed understanding of memory management, 

its definition, and the reasons why it is significant. 

The chapter will start with an overview of the goals of the chapter, 

followed by a discussion of memory management, its importance, and 

how it impacts the overall performance of an operating system. We will 

also discuss the different types of memory and their roles in the memory 

management process. Additionally, we will delve into the memory 

hierarchy and how it affects the performance of an operating system. 

By the end of this chapter, you will have a comprehensive understanding 

of memory management in operating systems and its crucial role in 

ensuring optimal system performance. So, let's dive in! 

1.1 Definition and importance of memory management 

Memory management is a crucial part of operating systems that deals 

with the management of computer memory. Memory management is 

responsible for the efficient and effective allocation and de-allocation of 

memory to processes and programs. The memory management 

subsystem of an operating system must ensure that the right process 



PAGE 5 

gets the required amount of memory at the right time. This chapter will 

introduce the concept of memory management and discuss its 

importance in operating systems. 

Memory management is the process of controlling and coordinating the 

use of computer memory to allow the efficient execution of programs 

and the sharing of memory among multiple processes. The main tasks 

of memory management include allocation, deallocation, protection, 

and sharing of memory. 

Memory management is essential in operating systems for several 

reasons. The following are some of the key reasons why memory 

management is critical: 

 Efficient Use of Memory: Memory management is essential for the 

efficient use of memory. It ensures that memory is allocated only 

to those processes that need it, and the unused memory is released 

to other processes that require it. This helps in maximizing the 

available memory resources and improving the overall 

performance of the system. 

 Protection of Memory: Memory management is crucial for the 

protection of memory from unauthorized access. It ensures that 

each process can only access the memory allocated to it and not 

interfere with other processes' memory space. This helps in 

preventing programs from corrupting each other's data or code. 

 Sharing of Memory: Memory management is essential for 

enabling the sharing of memory among multiple processes. 

Shared memory allows multiple processes to access the same 

memory area, which can improve communication and 

coordination among the processes. 

 Virtual Memory: Memory management is also responsible for the 

implementation of virtual memory, which is a technique used to 

provide the illusion of a larger main memory than is physically 

available. Virtual memory enables programs to use more memory 
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than is physically present by swapping parts of the program 

between the main memory and the hard disk. 

Memory management is a crucial part of operating systems that ensures 

the efficient and effective use of memory resources. The importance of 

memory management cannot be overstated, as it plays a significant role 

in the overall performance and reliability of the system. In the following 

chapters, we will explore various memory management techniques and 

strategies used by operating systems to manage memory effectively. 

1.2 Overview of the goals of the chapter 

Memory management is a fundamental concept in operating systems 

that involves the management of the computer's primary memory. The 

primary memory is a volatile storage area that temporarily stores the 

data and instructions that are being processed by the CPU. This chapter 

will provide an overview of the goals of memory management and 

discuss the different techniques and strategies employed by operating 

systems to achieve these goals. 

The primary goals of memory management are to provide a convenient 

and efficient way for processes to access and use the system's memory, 

while also ensuring that the memory is utilized in the most optimal 

manner possible. Achieving these goals requires careful planning and 

coordination by the operating system, which must maintain an accurate 

record of which processes are using which parts of the memory at any 

given time. 

To achieve these goals, the operating system employs various 

techniques such as memory allocation, memory protection, memory 

sharing, and memory compaction. Memory allocation is the process of 

reserving memory space for a process to use. Memory protection is the 

mechanism that ensures that a process can only access memory areas 

that have been allocated to it. Memory sharing is the technique that 
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allows multiple processes to share a single memory region. Finally, 

memory compaction is the process of eliminating fragmentation in the 

memory, which can occur when the memory is allocated and 

deallocated frequently. 

This chapter will examine each of these techniques in more detail, as 

well as explore the advantages and disadvantages of each approach. It 

will also discuss the different memory allocation strategies such as 

paging and segmentation, and their impact on memory management. 

Additionally, this chapter will describe various memory management 

algorithms, such as page replacement algorithms, and their 

performance characteristics. 

Overall, the goals of memory management are to ensure that the 

memory is utilized efficiently, that processes have access to the memory 

they require, and that the memory is protected from unauthorized 

access. The techniques and strategies employed by operating systems to 

achieve these goals are constantly evolving and improving as technology 

advances, and it is essential for operating systems developers to keep 

abreast of these developments to ensure that their systems remain 

efficient, reliable, and secure. 

1.3 Background 

When you run a program on your computer, it is first brought from the 

disk into the main memory and then placed within a process. The CPU 

can only directly access the main memory and registers. Therefore, the 

program must be loaded into the main memory for the CPU to execute 

it. 

The memory unit only sees a stream of addresses and read or write 

requests. It does not know anything about the content of the data being 

transferred. This means that the CPU has to issue an address and a 

request type to access a specific location in the memory. 
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Register access is incredibly fast and can be accomplished in one CPU 

clock cycle or less. On the other hand, accessing the main memory can 

take many cycles, which can cause a stall in the CPU. This delay can be 

a significant problem in high-performance computing. 

To overcome this issue, the cache sits between the main memory and 

CPU registers. The cache is a small amount of high-speed memory that 

holds frequently accessed data. When the CPU needs data that is not 

currently in the registers, it checks the cache. If the data is present in 

the cache, it can be quickly accessed, avoiding the need to access the 

main memory. This process is called caching. 

Protection of memory is crucial to ensure correct operation. Without 

memory protection, one program could access the memory of another 

program and corrupt its data, causing unexpected results. This can be 

especially problematic in a multi-user system where multiple users are 

running programs simultaneously. To prevent this from happening, the 

operating system implements memory protection mechanisms that 

ensure that each program can only access its allocated memory. 

In conclusion, bringing a program from the disk into memory and 

placing it within a process for execution is a critical process in the 

operation of an operating system. Main memory and registers are the 

only storage that the CPU can access directly. The cache sits between 

the main memory and the CPU registers to improve performance, and 

memory protection is essential to ensure correct operation. 

2 No memory abstraction 

Before the advent of memory abstraction, computer programs simply 

saw physical memory as a continuous set of addresses, each 

corresponding to a cell containing a certain number of bits. When a 

program executed an instruction to move data from one location to 
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another, the computer simply moved the contents of the specified 

physical memory location to the destination register. 

While this model may seem straightforward, it has several drawbacks. 

First and foremost, it exposes programs to low-level details of the 

underlying hardware, making them harder to write and debug. 

Programs that rely on physical memory addresses can be hard to port to 

different hardware platforms or operating systems, and they may break 

if the physical layout of memory changes. 

Moreover, physical memory can be shared among multiple programs 

running concurrently, which can lead to conflicts and data corruption. 

Without a memory abstraction layer to manage access to memory, 

programs can inadvertently overwrite each other's data, leading to 

unpredictable results. 

To address these issues, modern operating systems provide a variety of 

memory abstractions, such as virtual memory, memory protection, and 

memory allocation. These abstractions hide the underlying physical 

memory layout from programs, provide isolation and protection 

between different programs, and allow programs to allocate and release 

memory dynamically as needed. 

2.1 Running multiple programs 

In the absence of memory abstraction, running multiple programs on a 

computer might seem impossible. However, it is possible to run 

multiple programs sequentially with the help of swapping. Swapping 

refers to the process of saving the entire contents of memory to a disk 

file, then bringing in and running the next program. 

When a program is run, it occupies a certain amount of physical 

memory. When another program needs to be run, the operating system 

saves the current program's memory to disk and loads the new 

program's memory into physical memory. This allows the computer to 
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appear as though it is running multiple programs simultaneously, even 

though only one program is actually in memory at any given time. 

Swapping is not an ideal solution, as it can be slow and inefficient. 

However, in the absence of memory abstraction, it is the only way to run 

multiple programs on a computer. As computer technology advanced, 

memory abstraction was introduced, allowing for more efficient and 

streamlined management of multiple programs running in memory 

simultaneously. 

2.2 Static relocation 

The core problem with the no-memory-abstraction approach is that two 

programs may reference the same physical memory, leading to conflicts 

and unpredictable behavior. What we want instead is for each program 

to have its own private set of addresses that are local to it. This can be 

achieved through the use of memory abstraction. 

Memory abstraction allows programs to reference logical memory 

addresses that are mapped to physical memory addresses by the 

operating system. This mapping is done on a per-process basis, meaning 

that each process has its own private set of logical addresses that are 

mapped to physical memory. 

One early solution to the problem of running multiple programs 

without memory abstraction was the IBM 360's static relocation 

technique. When loading a program into memory, the operating system 

would modify the program on the fly by adjusting its memory references. 

This allowed the program to reference logical memory addresses instead 

of physical memory addresses, but required extra processing time and 

added complexity to the loading process. 

Modern operating systems use more sophisticated memory abstraction 

techniques that are more efficient and transparent to the programmer. 

For example, virtual memory allows each process to have its own virtual 
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address space that is mapped to physical memory by the operating 

system. This allows programs to reference logical memory addresses 

that are independent of the physical memory layout, making it possible 

to run multiple programs simultaneously without conflicts. 

In conclusion, memory abstraction is a crucial concept in modern 

operating systems that enables multiple programs to run 

simultaneously without conflicts. While early computers lacked 

memory abstraction, techniques such as static relocation were 

developed to work around this limitation. Today, virtual memory 

provides a powerful and efficient way to abstract memory and allow 

multiple programs to run without interference. 

In summary, while the lack of memory abstraction may have been 

acceptable in the early days of computing, modern operating systems 

provide sophisticated memory abstractions to improve program 

reliability, portability, and security. 

3 The Address Space 

The address space is the view of memory that a running program has in 

the system. It contains all of the memory state of the program, including 

the code, data, and stack. For example, when you write a program, the 

instructions that make up the program code have to live somewhere in 

memory. They are stored in the address space of the program. 

In addition to the code, the address space also contains data. This can 

include variables, arrays, and other data structures that are used by the 

program. The address space also includes a stack, which is used by the 

program to keep track of function calls and to allocate local variables. 

The address space is an abstraction because the memory used by a 

program is not necessarily contiguous or physically contiguous in the 

system. The OS uses virtual memory to map the address space of a 

program to the physical memory of the system. This allows the OS to 
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allocate memory dynamically as needed, and to protect the memory of 

one program from being accessed by another. 

When a program accesses memory, it does so using virtual addresses. 

These addresses are translated by the OS into physical addresses that 

correspond to locations in the physical memory of the system. The 

translation process is transparent to the program, which sees only its 

virtual address space. 

Understanding the concept of the address space is crucial for 

understanding how memory is managed by the operating system. It 

allows programs to access memory in a way that is independent of the 

physical memory layout of the system, and it allows the OS to protect 

the memory of one program from being accessed by another. 

3.1 Logical address space 

A logical address space is the set of addresses that a process can use to 

reference its memory. This space is defined by a pair of base and limit 

registers, which specify the starting address and the size of the memory 

region that the process can access. The base register contains the 

starting address of the memory region, and the limit register contains 

the size of the memory region. 

When a CPU generates a memory access in user mode, it must check 

that the address is within the boundaries defined by the base and limit 

registers for that particular user. This check ensures that the process 

does not access memory outside its address space, which can cause the 

system to crash or behave unpredictably. 

The hardware address protection mechanism enforces this check by 

ensuring that every memory access generated by the CPU is verified 

against the base and limit registers for that user. If the access falls 

outside the limits, the CPU will raise an exception, which the operating 

system will handle. 



PAGE 13 

The hardware address protection mechanism is a critical component of 

modern operating systems, as it provides a robust and efficient way to 

protect processes from accessing memory outside their address space. It 

ensures that each process is isolated from other processes and can only 

access its allocated memory region, improving system stability and 

security. 

In conclusion, the base and limit registers define the logical address 

space for each process in the system. The CPU must check every 

memory access generated in user mode to ensure that it falls within the 

base and limit registers for that particular user. The hardware address 

protection mechanism enforces this check and ensures that each 

process is isolated from other processes and can only access its allocated 

memory region, improving system stability and security. 

3.2 Address binding 

When a program is on disk, it is in a state of readiness to be brought 

into memory for execution. These programs are stored in an input queue, 

waiting for the operating system to load them into memory. Without 

support, these programs must be loaded into address 0000, which can 

be inconvenient for the system, as the first user process physical address 

always ends up being 0000. 

However, there are ways to ensure that this is not always the case. For 

example, the operating system can use a technique known as base and 

bounds registers, which allows the programs to be loaded into different 

regions of memory. This technique defines a range of addresses that a 

program can access, and the programs can be loaded into any available 

memory space within that range. 

Furthermore, addresses are represented in different ways at different 

stages of a program's life. For instance, source code addresses are usually 
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symbolic, representing the name of a variable or a function. These 

addresses are not specific to a particular memory location. 

Once the source code is compiled, the addresses are bound to 

relocatable addresses, which are relative to the beginning of the module. 

For example, an address may be expressed as "14 bytes from the 

beginning of this module." The linker or loader will then bind these 

relocatable addresses to absolute addresses, such as 74014, which 

represents the specific memory location. 

Each binding maps one address space to another, allowing the operating 

system to keep track of the different address spaces used by a program 

throughout its life cycle. This mapping enables the operating system to 

manage the memory effectively, ensuring that different programs do not 

conflict with each other. 

In conclusion, programs on disk are loaded into memory for execution 

from an input queue. The use of base and bounds registers allows the 

programs to be loaded into different regions of memory. Addresses are 

represented in different ways at different stages of a program's life, 

starting with symbolic names for variables and functions, moving to 

relocatable addresses, and finally binding to absolute addresses. Each 

binding maps one address space to another, allowing the operating 

system to manage the memory effectively. 

3.3 Logical vs physical address spaces 

A logical address, also known as a virtual address, is generated by the 

CPU. It is the address that a program sees when it is running, and it is 

independent of the physical memory location where the data is stored. 

The physical address, on the other hand, is the address that is seen by 

the memory unit. It is the actual location of the data in physical memory. 

In compile-time and load-time address-binding schemes, the logical 

and physical addresses are the same. However, in execution-time 
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address-binding schemes, the logical and physical addresses differ. At 

this stage, the operating system maps the logical addresses generated by 

the program to their corresponding physical addresses. 

The logical address space is the set of all logical addresses generated by 

a program. It represents the entire range of addresses that the program 

can access, regardless of whether or not they are actually present in 

physical memory. The physical address space, on the other hand, is the 

set of all physical addresses generated by a program. It represents the 

actual range of addresses where the data is stored in physical memory. 

The separation of logical and physical address spaces enables the 

operating system to manage memory more effectively. By using virtual 

memory, the operating system can provide each process with its own 

logical address space, regardless of the amount of physical memory 

available. This allows the operating system to execute multiple 

programs concurrently, even if they require more memory than is 

physically available. 

In conclusion, the concept of a logical address space that is bound to a 

separate physical address space is crucial to proper memory 

management. The logical address is generated by the CPU and is 

independent of the physical memory location, while the physical 

address is the actual location of the data in physical memory. The logical 

address space represents the entire range of addresses that the program 

can access, while the physical address space represents the actual range 

of addresses where the data is stored. This separation enables the 

operating system to manage memory effectively and execute multiple 

programs concurrently. 

3.4 Swapping 

As computer systems became more complex and the number of 

processes running concurrently increased, it became necessary to 
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develop strategies to deal with memory overload. One such strategy is 

swapping, which involves bringing each process into memory in its 

entirety, running it for a period of time, and then putting it back on the 

disk. When a process is not running, it can be stored on the disk, freeing 

up memory for other processes to use. 

Swapping is a relatively simple approach to managing memory, but it 

can be slow and inefficient. Every time a process is swapped in or out, 

there is an overhead associated with reading from or writing to the disk, 

which can slow down the system. Additionally, if the system is heavily 

loaded with many processes, there may not be enough disk space to hold 

all of the swapped-out processes, leading to performance degradation. 

To address some of these issues, another approach to memory 

management, known as paging, was developed. Instead of swapping 

entire processes in and out of memory, paging divides memory into 

fixed-sized blocks, known as pages, and maps these pages to 

corresponding blocks on the disk, known as page frames. When a 

process needs to access a page that is not currently in memory, the page 

is brought in from disk and placed in a free page frame. 

Paging can be more efficient than swapping, as it allows processes to 

share pages that are common across multiple processes. It also allows 

for more fine-grained control over memory allocation, as pages can be 

allocated and deallocated on demand. However, paging also introduces 

overhead in the form of page faults, which occur when a process tries to 

access a page that is not in memory, and must be fetched from disk. 

In summary, swapping and paging are two approaches to managing 

memory overload in computer systems. While swapping is a simple and 

straightforward approach, it can be slow and inefficient. Paging, on the 

other hand, allows for more fine-grained control over memory 

allocation, but introduces additional overhead in the form of page faults. 

Both approaches have their strengths and weaknesses, and the choice of 

which approach to use will depend on the specific requirements of the 

system in question. 
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3.5 Memory compaction 

In a system that uses swapping to deal with memory overload, multiple 

processes are brought into memory, run for a period, and then moved 

back to disk to free up memory. This can lead to multiple holes or 

unused regions in memory where processes were loaded and then 

swapped out. To optimize memory usage, it is possible to combine all 

these unused regions into one big hole by moving all the processes down 

as far as possible. This technique is called memory compaction. 

However, memory compaction requires a lot of CPU time and may not 

be worth the effort on larger machines. For instance, on a 16-GB 

machine that can copy 8 bytes in 8 nanoseconds, it would take 

approximately 16 minutes to move all the processes downward. 

Therefore, memory compaction is usually not performed except in rare 

cases when the system is running out of memory and a significant 

amount of memory could be recovered by performing this operation. 

In summary, memory compaction is a technique used to optimize 

memory usage in a system that uses swapping to deal with memory 

overload. By combining all the unused regions into one big hole, more 

memory can be made available for use. However, this technique can be 

time-consuming and is usually only performed in rare cases when the 

system is running out of memory. 

3.6 Managing free memory 

Managing free memory is a crucial task for the operating system, 

especially in dynamic memory allocation. Two common methods for 

keeping track of memory usage are bitmaps and free lists. 

A bitmap is a data structure that consists of a series of bits, where each 

bit represents a block of memory. If the bit is set to 1, it means that the 

corresponding block of memory is currently in use; if it is set to 0, the 
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block of memory is free. Bitmaps are easy to use and require minimal 

overhead, but they are not very efficient for large memory systems. 

A free list is a linked list that contains all the free blocks of memory in 

the system. Each block of memory has a header that contains the size of 

the block and a pointer to the next free block. When a process requests 

memory, the operating system searches the free list for a block that is 

large enough to satisfy the request. When a block is allocated, it is 

removed from the free list. When the block is freed, it is added back to 

the free list. Free lists require more overhead than bitmaps, but they are 

more efficient for large memory systems. 

In Linux, there are specific memory allocators used for managing free 

memory. The buddy allocator divides memory into power-of-two-sized 

blocks and maintains a free list for each block size. When a block is 

allocated, the allocator finds the smallest free block that is large enough 

to satisfy the request and splits it into two halves. When a block is freed, 

the allocator merges it with its buddy (the adjacent block of the same 

size) if it is also free. The slab allocator, on the other hand, allocates and 

frees fixed-sized memory chunks called slabs. Each slab contains one or 

more objects of the same size, and the allocator maintains a free list for 

each slab. 

Managing free memory is a complex task, but it is essential for ensuring 

the efficient use of system resources. By using bitmaps, free lists, or 

specific memory allocators, the operating system can ensure that 

memory is allocated and deallocated in an efficient and organized 

manner. 

3.6.1 Memory management with bitmaps 

One of the ways to keep track of memory usage is to use bitmaps. In this 

method, memory is divided into small units, with each unit 

corresponding to a bit in the bitmap. The bit is set to 0 if the unit is free 

and 1 if it is occupied. 
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The bitmap can be stored in memory itself, or in some other data 

structure that can be accessed quickly. The advantage of using a bitmap 

is that it is simple and easy to implement. The disadvantage is that it 

can be inefficient in terms of memory usage, especially if the allocation 

units are small. 

For example, consider a system where memory is divided into 4KB pages, 

and each page is further divided into 4-byte units. In this case, the 

bitmap would consist of one bit for each 4-byte unit. If a process 

requests 1KB of memory, the system would need to find a contiguous 

block of 256 free units (1KB/4B=256). To do this, the system would 

search the bitmap for a block of 256 consecutive 0 bits, which indicates 

that the corresponding units are free. 

To allocate the memory, the system would set the corresponding bits in 

the bitmap to 1, indicating that the units are now occupied. To 

deallocate the memory, the system would simply set the bits back to 0. 

One potential issue with bitmap memory management is fragmentation. 

Over time, memory may become fragmented, with small free blocks 

scattered throughout the address space. This can make it difficult to find 

large contiguous blocks of free memory, even if the total amount of free 

memory is sufficient. 

Overall, while bitmap memory management is simple and 

straightforward, it may not be the most efficient method for managing 

memory in all cases. Other methods, such as free lists, may be more 

suitable for some systems. 

3.6.2 Memory management with linked lists 

In addition to bitmap-based memory management, another popular 

technique for keeping track of memory usage is through linked lists. In 

this method, the operating system maintains a linked list of allocated 

and free memory segments. 
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Each memory segment can either contain a process or be an empty hole 

between two processes. The linked list maintains pointers to the start 

and end of each segment and allows the operating system to efficiently 

allocate and deallocate memory as needed. 

When a new process needs memory, the operating system searches the 

linked list for a free segment of the required size. If a suitable segment 

is found, it is allocated to the new process, and the linked list is updated 

to reflect the change in memory usage. If no suitable segment is 

available, the operating system must either wait for a process to release 

memory or swap an idle process to disk to free up memory. 

Deallocating memory is also straightforward with linked lists. When a 

process terminates, the operating system marks the corresponding 

memory segment as free and updates the linked list accordingly. If 

adjacent free segments are found, they can be combined into a larger 

hole to be used for future memory allocation. 

One advantage of using linked lists for memory management is that 

they can be more memory-efficient than bitmaps. Linked lists only 

require one pointer per memory segment, whereas bitmaps require a bit 

for each allocation unit, which can quickly become prohibitively large 

for large memory systems. 

However, linked lists also have some disadvantages. For example, they 

can be slower than bitmaps for large memory systems because searching 

for free segments requires traversing the entire linked list. Additionally, 

fragmentation can be a problem if memory segments are not combined 

properly, leading to wasted space and reduced memory efficiency. 

Overall, linked lists provide a flexible and efficient method for managing 

memory in an operating system. However, as with any memory 

management technique, it is important to carefully consider the 

tradeoffs between efficiency, fragmentation, and complexity when 

choosing a specific method for a given system. 
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4 Memory management unit (MMU) 

A relocation register is a hardware register that holds a base address for 

a process. When a process generates an address, the value in the 

relocation register is added to the address, resulting in a physical 

address. This scheme allows the operating system to map the logical or 

virtual addresses generated by a process to physical addresses at 

runtime. 

One advantage of this approach is that the user program deals with 

logical addresses, and it never sees the real physical addresses. This is 

because the physical address is generated at runtime by adding the value 

in the relocation register to the logical address generated by the process. 

This approach is commonly used in systems with limited memory, such 

as embedded systems, where the cost of additional hardware to support 

more complex mapping schemes is prohibitive. 

Execution-time binding occurs when a reference is made to a location 

in memory. When the reference is made, the logical address is bound to 

a physical address. This binding ensures that the process can access the 

data it needs in physical memory. 

In the MS-DOS operating system running on Intel 80x86 processors, 

four relocation registers were used to support this simple mapping 

scheme. This approach is an example of a runtime address-binding 

method. Other runtime address-binding methods include segment-

base addressing and paging. 

In conclusion, the hardware device that maps virtual addresses to 

physical addresses is a crucial component of memory management in 

an operating system. The simple scheme of adding the value in the 

relocation register to every address generated by a user process at the 

time it is sent to memory is an effective approach for systems with 

limited memory. This approach allows the user program to deal with 

logical addresses and never see the real physical addresses, while 
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execution-time binding ensures that the logical address is bound to a 

physical address. 

4.1 Dynamic loading 

Dynamic loading is a useful technique in modern operating systems that 

allows routines or libraries to be loaded from disk only when they are 

actually needed. This can lead to better memory-space utilization, as 

unused routines are never loaded, freeing up memory for other 

processes. 

All routines are kept on disk in relocatable load format, which allows 

them to be loaded into any available memory space. This technique is 

particularly useful when large amounts of code are needed to handle 

infrequently occurring cases, as the routines are only loaded when 

needed, reducing memory usage for the rest of the time. 

The operating system does not need to provide any special support for 

dynamic loading, as it can be implemented through program design. 

However, the operating system can provide libraries to implement 

dynamic loading, making it easier for programmers to use this 

technique. 

One important advantage of dynamic loading is that it allows a program 

to be smaller, as it does not have to include all of the code needed for 

every possible scenario. This can lead to faster program startup times, 

as only the necessary code is loaded into memory. 

Dynamic loading can also improve system security, as it can prevent 

malicious code from being loaded into memory until it is actually 

needed. This can reduce the risk of system vulnerabilities being 

exploited by attackers. 

Overall, dynamic loading is a useful technique for improving memory 

utilization and program performance in modern operating systems. It is 
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a powerful tool that can be used by programmers to optimize their 

programs, and can be supported by the operating system through the 

use of libraries and other tools. 

4.2 Dynamic linking 

In operating systems, there are two main methods for linking library 

code with the main program: static and dynamic linking. Static linking 

involves the loader combining system libraries and program code into a 

single binary image, while dynamic linking delays the linking process 

until the program is executed. 

With dynamic linking, a small piece of code called a stub is used to 

locate the appropriate memory-resident library routine. The stub 

replaces itself with the address of the routine and executes it. The 

operating system checks if the routine is in the process's memory 

address. If it is not in the address space, it is added to the address space. 

Dynamic linking is particularly useful for libraries because it allows 

multiple programs to share a single copy of a library in memory, which 

reduces the overall memory usage of the system. This technique is also 

known as shared libraries. 

One of the advantages of dynamic linking is that it allows for patching 

system libraries. Versioning may be needed to ensure that applications 

continue to work properly after updates to system libraries. Another 

advantage of dynamic linking is that it can lead to better performance, 

as only the code that is actually used needs to be loaded into memory. 

However, there are also some drawbacks to dynamic linking. One 

potential problem is that it can make the program slower to start up 

because it requires more time to locate and load the necessary library 

routines. Another problem is that it can make the program more 

vulnerable to security exploits, as malicious code could potentially be 
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injected into a shared library and executed by any program that uses 

that library. 

Overall, the decision to use static or dynamic linking depends on the 

specific needs of the application and the operating system. Both 

methods have their advantages and disadvantages, and it is up to the 

programmer to decide which method is most appropriate for their 

particular project. 

4.3 Swapping 

One of the key features of modern operating systems is the ability to 

manage memory effectively, even when the total physical memory space 

of processes exceeds the available physical memory. One technique used 

to manage this situation is called swapping. In this chapter, we will 

discuss the concept of swapping and how it allows processes to be 

temporarily moved out of memory to a backing store, and then brought 

back into memory for continued execution. 

The first step in implementing swapping is to create a fast disk called a 

backing store that is large enough to hold copies of all memory images 

for all users. The backing store must provide direct access to these 

memory images so they can be easily swapped in and out of physical 

memory. When a process needs to be swapped out of memory, the 

operating system copies its entire memory image to the backing store, 

freeing up physical memory for other processes. 

When a swapped-out process needs to be brought back into memory for 

continued execution, the operating system copies its memory image 

from the backing store back into physical memory. This process is 

known as "roll in." The amount of time it takes to roll in a process is 

directly proportional to the size of its memory image. 

In priority-based scheduling algorithms, a variant of swapping called 

"roll out, roll in" is used. When a higher-priority process becomes 
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available to run, the operating system temporarily moves the lower-

priority process out of memory and onto the backing store, freeing up 

memory for the higher-priority process. The higher-priority process is 

then loaded into memory and executed. When the higher-priority 

process is finished, the operating system swaps it out and reloads the 

lower-priority process back into memory. 

The major challenge in swapping is to minimize the total transfer time 

required to move a process in and out of memory. This transfer time 

includes both the time required to copy the process image to or from 

the backing store and the time required to perform any necessary 

address translation or other housekeeping tasks. The operating system 

must also maintain a ready queue of processes that are ready to run, but 

whose memory images are currently stored on the backing store. 

In summary, swapping is a powerful memory management technique 

that allows processes to be temporarily moved out of memory to a 

backing store, freeing up physical memory for other processes. With the 

help of a fast and large enough backing store, the total physical memory 

space of processes can exceed the available physical memory. By 

maintaining a ready queue of processes that are ready to run, but whose 

memory images are currently stored on the backing store, the operating 

system can ensure that these processes are loaded back into memory 

quickly and efficiently when required. 

4.4 Context Switch Time 

Memory management is a critical aspect of modern operating systems, 

and swapping processes in and out of memory is a key strategy used to 

manage memory effectively. However, swapping can be a time-

consuming process, particularly when the process to be executed is not 

currently in memory. 
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When a process needs to be executed, but it is not currently in memory, 

the system must swap out a process and swap in the target process. This 

operation can take a significant amount of time, especially if the process 

being swapped out is large. For example, if a 100MB process is swapped 

to a hard disk with a transfer rate of 50MB/sec, the swap-out time alone 

will take 2000 ms. This is in addition to the time required to swap in the 

target process, resulting in a total context switch swapping component 

time of 4000 ms, or 4 seconds. 

To reduce the time required for swapping, modern operating systems 

use a modified version of standard swapping. One approach is to reduce 

the amount of memory that is swapped by knowing how much memory 

is really being used. System calls such as request_memory() and 

release_memory() can be used to inform the OS of the memory use, 

along with other constraints on swapping. 

Another challenge with swapping is pending I/O. If a process has 

pending I/O, it cannot be swapped out as the I/O would occur to the 

wrong process. One approach to this issue is to transfer the I/O to kernel 

space first and then to the I/O device, a technique known as double 

buffering. However, this approach adds overhead. 

In conclusion, while standard swapping is not commonly used in 

modern operating systems, swapping processes in and out of memory is 

still an essential technique for effective memory management. By using 

modified swapping techniques and managing memory usage efficiently, 

the system can reduce the time required for swapping and improve 

overall system performance. 

5 Memory allocation strategies: 

Memory allocation strategies are crucial to effective management of 

memory in operating systems. In this chapter, we will explore two of the 

most popular memory allocation strategies: paging and segmentation. 
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5.1 Contiguous Allocation 

Main memory is a precious resource in any computer system, and 

operating systems must allocate it efficiently to ensure optimal 

performance. One early method of allocation is contiguous allocation, 

in which each process is contained in a single contiguous section of 

memory. However, this method is limited in its ability to support 

multiple processes efficiently. 

Modern systems typically divide main memory into two partitions: one 

for the resident operating system and one for user processes. The 

operating system is usually held in low memory with the interrupt 

vector, while user processes are held in high memory. To protect user 

processes from each other and from changing operating-system code 

and data, relocation registers are used. 

The base register contains the value of the smallest physical address, 

while the limit register contains the range of logical addresses. Each 

logical address must be less than the limit register. The memory 

management unit (MMU) maps logical addresses dynamically, allowing 

for actions such as kernel code being transient and the kernel changing 

size. 

This partitioning of memory and use of relocation registers allows for 

more efficient allocation of memory resources. However, it is important 

to note that this approach is not without its limitations. For example, 

there is a limit to the amount of memory that can be allocated to a single 

process, and fragmentation can occur as processes are loaded and 

unloaded from memory. 

Overall, the efficient allocation of main memory is critical to the 

performance of any operating system. By dividing memory into 

partitions and using relocation registers, modern systems are able to 

support both the operating system and multiple user processes in a way 

that maximizes the use of this valuable resource. 



PAGE 28 

5.2 Multiple partition allocation 

In a computer system, main memory is a limited resource and must be 

allocated efficiently to support both the operating system and user 

processes. One early method of memory allocation is contiguous 

allocation, where each process is contained in a single contiguous 

section of memory. However, this method has its limitations, as it 

restricts the degree of multiprogramming to the number of partitions 

available. 

To address this issue, multiple-partition allocation is used, which allows 

for variable-partition sizes that are sized to fit a given process's needs. 

In this method, memory is divided into several partitions, and each 

process is allocated memory from a hole large enough to accommodate 

it. A hole is a block of available memory of various sizes that are 

scattered throughout memory. 

When a process exits, it frees up its partition, which can then be used to 

accommodate new processes. To optimize memory allocation, adjacent 

free partitions are combined to create larger holes. The operating system 

keeps track of information about allocated and free partitions, which 

enables it to allocate memory to new processes and manage memory 

efficiently. 

This method of memory allocation has several benefits, including 

increased flexibility, improved memory utilization, and the ability to 

accommodate processes with varying memory requirements. However, 

it also has some limitations, such as fragmentation, where the free 

partitions are too small to accommodate new processes. This can lead 

to inefficient memory utilization and reduced performance. 

To address these issues, some modern operating systems use dynamic 

partitioning, where the size of the partitions is adjusted dynamically to 

accommodate new processes. This approach minimizes fragmentation 
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and optimizes memory utilization, resulting in improved system 

performance. 

5.3 Paging 

Paging is a memory allocation strategy that divides physical memory 

into fixed-size blocks called pages. In contrast to segmentation, paging 

does not divide memory based on the size of the program. Instead, 

programs are divided into pages of equal size, usually 4KB or 8KB. 

Each program is assigned a page table that keeps track of the physical 

addresses of each page. The operating system maintains a page table for 

each process. When a program is executed, the virtual addresses 

generated by the program are translated to physical addresses by the 

page table. 

One advantage of paging is that it enables the use of virtual memory, 

which allows programs to use more memory than is physically available. 

Paging also allows for more efficient use of physical memory, as 

programs can be loaded into memory only when needed. 

With paging, physical memory is divided into fixed-sized blocks called 

frames, which are typically between 512 bytes and 16 Mbytes and are 

sized to be a power of 2. Similarly, logical memory is divided into blocks 

of the same size called pages. Pages are the basic unit of transfer 

between physical memory and the backing store. 

When a program is run, the system finds N free frames to load the 

program into, where N is the number of pages required for the program. 

The system keeps track of all free frames, and the program's pages are 

loaded into the frames. A page table is then set up to translate logical to 

physical addresses, allowing the system to map each page of the 

program to a specific physical frame. 
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One advantage of paging is that it avoids external fragmentation 

because the physical address space of a process can be noncontiguous. 

This is because a process is allocated physical memory whenever it's 

available, so it doesn't need to wait for contiguous memory blocks to 

become available. 

However, paging still suffers from internal fragmentation, where 

allocated memory may be slightly larger than requested memory. The 

size difference between a page and a segment that a program requires is 

internal to a frame but not being used. 

To avoid this issue, the system may employ a technique called demand 

paging, where pages are brought into memory only when they are 

needed. This can help reduce the amount of memory that is wasted due 

to internal fragmentation. 

Finally, it's worth noting that the backing store is also divided into pages, 

so it also suffers from the same fragmentation issues as physical memory. 

However, modern systems use sophisticated algorithms to manage the 

backing store, ensuring that pages are allocated efficiently and 

minimizing fragmentation as much as possible. 

Example: Here's a sample pseudocode for the paging algorithm: 

// Initialize variables 

pageSize = 4KB 

pageTable = [] 

numPages = totalMemory / pageSize 

freeList = [0, 1, 2, ..., numPages-1] 

 

// Allocate a page 

function allocatePage(): 

    if freeList is empty: 
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        return null // no free page available 

    else: 

        pageFrame = freeList.pop(0) // get the first free page 

frame 

        pageTable[pageNumber] = pageFrame // map the page to the 

frame 

        return pageFrame 

 

// Free a page 

function freePage(pageNumber): 

    pageFrame = pageTable[pageNumber] 

    freeList.append(pageFrame) // add the frame to the free list 

    pageTable[pageNumber] = null // unmap the page 

This is just a basic example of how the paging algorithm can be 

implemented in pseudocode. Actual implementations may vary 

depending on the specific requirements and constraints of the system. 

5.3.1 Address Translation Scheme 

In virtual memory systems, the address generated by the CPU is divided 

into a page number and a page offset. The page number is used as an 

index into a page table that contains the base address of each page in 

physical memory. The page offset is combined with the base address to 

define the physical memory address that is sent to the memory unit. 

The division of the address into page number and offset is important 

because it allows the operating system to manage memory more 

efficiently. Instead of requiring that all of a program's memory be loaded 

into physical memory at once, the operating system can load only the 

pages that are currently needed. This is possible because each page is a 
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fixed size, and the operating system can keep track of which pages are 

currently in use and which are not. 

The size of the page is an important parameter in virtual memory 

systems, as it determines the granularity of memory management. In 

general, larger page sizes reduce the overhead of managing virtual 

memory, but they also increase the amount of internal fragmentation. 

This is because each page must be allocated in its entirety, even if the 

program only needs a portion of the page. 

The relationship between the logical address space and the page size is 

also important, as it determines the number of pages that can be 

addressed. For a given logical address space of 2^m and a page size of 

2^n, the number of pages that can be addressed is 2^(m-n). This means 

that larger logical address spaces or smaller page sizes will require larger 

page tables to be maintained by the operating system. 

In summary, the division of the address generated by the CPU into page 

number and page offset allows for efficient management of memory in 

virtual memory systems. The page size and the relationship between the 

logical address space and the page size are important parameters that 

must be carefully chosen to balance efficiency and internal 

fragmentation. 

5.3.2 The page table  

The page table is a data structure used by the operating system to map 

virtual addresses to physical addresses. Each process has its own page 

table, which is kept in main memory. The page table is typically 

implemented as an array of page table entries (PTEs), with one entry for 

each page in the process's address space. 

The page table base register (PTBR) is a hardware register that points to 

the base of the page table in memory. The page table length register 

(PTLR) indicates the size of the page table. When the CPU generates a 

virtual address, the page number is used as an index into the page table. 
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The PTE at that index contains the physical page number and the status 

of the page (whether it is in memory or on disk). 

One major drawback of this scheme is that every memory access 

requires two memory accesses: one to retrieve the PTE from memory 

and one to retrieve the actual data or instruction. This can significantly 

slow down the system's performance. 

To mitigate this issue, a special fast-lookup hardware cache called 

associative memory or translation look-aside buffers (TLBs) is used. The 

TLB is a small, high-speed cache that stores recently used page table 

entries. When the CPU generates a virtual address, it first checks the 

TLB. If the page table entry is found in the TLB, the corresponding 

physical address is immediately used. If the page table entry is not in the 

TLB, the page table must be accessed in memory. 

5.3.3 Associative Memory and Translation Look-Aside Buffers (TLBs) 

In simple terms, associative memory is a type of computer memory that 

enables quick and efficient data retrieval by searching for a specific piece 

of information based on its content rather than its address. Unlike the 

conventional computer memory that uses addresses to store and 

retrieve data, associative memory stores data as pairs of key-value, 

where the key represents the content of the data, and the value is the 

actual data. 

The key-value pairs in associative memory are stored in a table, and 

when a search operation is performed, the memory looks for the key in 

the table and retrieves the corresponding value. Associative memory is 

commonly used in CPU caches, where it enables quick access to 

frequently used data without the need to search through the main 

memory. 

Translation Look-Aside Buffers, or TLBs for short, are a type of cache 

memory that stores recently accessed virtual-to-physical address 

translations. TLBs are used in modern computer systems to speed up 
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the memory access process by reducing the number of memory accesses 

required to translate virtual memory addresses to physical memory 

addresses. 

In simple terms, when a program running on a computer system 

accesses memory, it provides a virtual memory address, which needs to 

be translated into a physical memory address. This process can be time-

consuming and resource-intensive, especially when the same memory 

locations are accessed multiple times. 

To speed up this process, TLBs are used to store the most recently 

accessed virtual-to-physical address translations. When a program 

requests memory access, the TLB is checked first to see if the required 

translation is available. If it is, the TLB provides the physical memory 

address directly, which speeds up the memory access process. If the 

translation is not available in the TLB, the CPU must perform a complete 

virtual-to-physical address translation, which takes longer. 

Associative memory and TLBs are both used extensively in modern 

computer systems to improve memory management efficiency. 

Associative memory is used in CPU caches to speed up data retrieval, 

while TLBs are used to speed up virtual-to-physical memory address 

translations. 

By reducing the number of memory accesses required, these 

components help to reduce the overall memory access time and improve 

the performance of computer systems. Additionally, they also help to 

reduce the workload on the CPU and improve the overall system 

efficiency. 

In conclusion, associative memory and translation look-aside buffers 

(TLBs) are critical components in modern computer memory 

management systems. They play a significant role in reducing memory 

access times, improving system efficiency, and reducing the workload 

on the CPU. As an operating system book author, it's crucial to 
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understand the workings of these components to design efficient and 

reliable memory management systems. 

5.3.4 Effective Access Time 

Associative lookup is a method used in computer memory management 

to search for information based on its content rather than its address. It 

is commonly used in translation look-aside buffers (TLBs) to speed up 

the memory access process. When a program running on a computer 

system requests memory access, the TLB checks its associative registers 

to see if the required translation is available. If it is, the TLB provides 

the physical memory address directly, which speeds up the memory 

access process. If the translation is not available in the TLB, the CPU 

must perform a complete virtual-to-physical address translation, which 

takes longer. 

The time required for associative lookup is usually very short, typically 

in the range of ε time units, where ε represents the search time required 

by the TLB. This time is significantly shorter than the time required for 

a complete virtual-to-physical address translation, which can take up to 

10% of memory access time. 

The hit ratio is the percentage of times that a page number is found in 

the associative registers. The hit ratio is related to the number of 

associative registers available in the TLB. A higher hit ratio means that 

more page numbers are found in the associative registers, reducing the 

number of memory accesses required. 

To calculate the impact of associative lookup on memory access time, 

we use the effective access time (EAT) formula. EAT is the average time 

required to access a memory location, taking into account both the hit 

ratio and the time required for memory access. The EAT formula is: 

EAT = (1 + ε) α + (2 + ε)(1 – α) 

Where α is the hit ratio and ε is the time required for associative lookup. 
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Let's consider an example to illustrate the impact of associative lookup 

on memory access time. Suppose we have a computer system with a hit 

ratio of 80%, a TLB search time of 20ns, and a memory access time of 

100ns. Using the EAT formula, we can calculate the effective access time 

as: 

EAT = (1 + 0.2) x 0.8 x 100 + (2 + 0.2) x (1 - 0.8) x 100 = 120ns 

In this example, the effective access time is 120ns. However, if we 

increase the hit ratio to a more realistic value of 99%, the effective access 

time is reduced to: 

EAT = (1 + 0.2) x 0.99 x 100 + (2 + 0.2) x (1 - 0.99) x 100 = 101ns 

As you can see, the impact of associative lookup on memory access time 

is significant, especially when the hit ratio is high. 

In conclusion, associative lookup is a powerful technique used in 

computer memory management to reduce memory access time and 

improve overall system efficiency. By using associative lookup in TLBs, 

computer systems can speed up the memory access process and reduce 

the workload on the CPU. The hit ratio and the time required for 

associative lookup are critical factors that impact the effective access 

time, and it is essential to consider these factors when designing 

memory management systems. 

5.3.5 Memory Protection 

One way memory protection is implemented is by associating a 

protection bit with each frame to indicate whether read-only or read-

write access is allowed. This protection bit can also be used to indicate 

execute-only access or other forms of access control. By using these 

protection bits, the operating system can prevent programs from 

accessing memory in ways that could potentially cause harm or 

corruption. 
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Another way memory protection is implemented is by using valid-

invalid bits attached to each entry in the page table. The valid bit 

indicates that the associated page is in the process’ logical address space 

and is, therefore, a legal page. The invalid bit indicates that the page is 

not in the process’ logical address space. 

The page table is used by the CPU to translate virtual memory addresses 

into physical memory addresses. When a program attempts to access 

memory, the CPU uses the page table to determine if the memory 

location is valid and if the access is legal. If a program attempts to access 

memory that is not in its logical address space, or if it attempts to 

perform an illegal operation on memory, the CPU triggers an exception 

or trap, which is handled by the operating system. 

Another approach to memory protection is to use a page-table length 

register (PTLR), which stores the maximum index of the page table. This 

register ensures that programs do not exceed the allocated space in the 

page table and helps prevent buffer overflow attacks. 

When a memory violation occurs, such as an attempt to access an 

invalid memory location or perform an illegal operation on memory, the 

CPU triggers an exception or trap. The operating system handles the 

exception by terminating the offending process or by taking other 

appropriate actions, such as displaying an error message or initiating a 

recovery process. 

In conclusion, memory protection is a critical aspect of computer 

systems that ensures the safety and integrity of programs and data. By 

using protection bits and valid-invalid bits, and by using a page table 

length register, the operating system can prevent programs from 

accessing memory in ways that could potentially cause harm or 

corruption. Any violations of memory protection result in an exception 

or trap, which is handled by the operating system. By implementing 

robust memory protection mechanisms, computer systems can ensure 

the safety and security of the programs and data they contain. 
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5.4 Segmentation 

Segmentation is a memory allocation strategy that divides memory into 

variable-sized segments. Each segment represents a logical unit of the 

program, such as a function or data structure. 

Like paging, segmentation requires the use of a segment table to 

translate virtual addresses to physical addresses. Each segment table 

entry contains the base address and length of the segment. 

A segment is a logical unit that represents a specific part of the program, 

such as the main program, a procedure, a function, a method, an object, 

local variables, global variables, a common block, a stack, a symbol table, 

or an array. 

Segments provide a flexible way of organizing program code and data. 

Instead of being limited to a single contiguous block of memory, a 

program can be composed of multiple segments, each with its own size 

and location in memory. This allows for more efficient use of memory 

and enables the system to better manage the allocation and deallocation 

of memory resources. 

Segments are typically defined by the programmer and are managed by 

the operating system. The operating system is responsible for allocating 

memory for each segment and for loading the segments into memory 

when needed. The operating system also provides mechanisms for 

accessing the segments and for ensuring that the segments are 

protected from unauthorized access or modification. 

One of the advantages of using segments is that they provide a way of 

separating program code and data into distinct logical units. This can 

make it easier for programmers to organize their code and can help to 

reduce errors and bugs. For example, by grouping related variables and 

functions into a single segment, programmers can more easily keep 

track of the data and code that are associated with each other. 
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Another advantage of using segments is that they provide a way of 

managing memory resources more efficiently. Because segments can be 

allocated and deallocated independently, the system can more easily 

manage memory usage and avoid problems such as fragmentation or 

overallocation. 

However, segmentation is also more complex than paging, as it requires 

the management of variable-sized memory segments. This can lead to 

external fragmentation, which occurs when free memory is broken up 

into small chunks that cannot be used to satisfy larger memory requests. 

Example: Here is an example of pseudocode for segmentation: 

// Define the Segment Table data structure 

struct SegmentTableEntry { 

    uint32_t base_address; 

    uint32_t limit; 

    uint8_t protection; 

}; 

 

// Define the Process data structure 

struct Process { 

    uint32_t pid; 

    SegmentTableEntry segment_table[MAX_SEGMENTS]; 

    uint32_t num_segments; 

}; 

 

// Allocate a new segment for a process 

void allocate_segment(Process *process, uint32_t size, uint8_t 

protection) { 
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    // Find a free slot in the segment table 

    uint32_t index = 0; 

    while (process->segment_table[index].limit != 0 && index < 

MAX_SEGMENTS) { 

        index++; 

    } 

 

    if (index == MAX_SEGMENTS) { 

        // No free slots in the segment table 

        return; 

    } 

 

    // Allocate memory for the new segment 

    uint32_t base_address = allocate_memory(size); 

 

    // Update the segment table entry 

    process->segment_table[index].base_address = base_address; 

    process->segment_table[index].limit = size; 

    process->segment_table[index].protection = protection; 

 

    // Increment the number of segments in the process 

    process->num_segments++; 

} 

 

// Free a segment for a process 

void free_segment(Process *process, uint32_t segment_index) { 
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    // Check if the segment index is valid 

    if (segment_index >= process->num_segments) { 

        return; 

    } 

 

    // Free the memory associated with the segment 

    uint32_t base_address = process-

>segment_table[segment_index].base_address; 

    uint32_t size = process->segment_table[segment_index].limit; 

    free_memory(base_address, size); 

 

    // Clear the segment table entry 

    process->segment_table[segment_index].base_address = 0; 

    process->segment_table[segment_index].limit = 0; 

    process->segment_table[segment_index].protection = 0; 

 

    // Decrement the number of segments in the process 

    process->num_segments--; 

} 

Note that this is just a basic example and does not include error 

checking or other important details. 

5.4.1 Address Translation Scheme 

In some operating systems, the logical address of a process is divided 

into two parts: the segment number and the offset. The segment 

number is used to index into a segment table that maps two-

dimensional physical addresses. The segment table contains 
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information about the segments used by the process, including their 

base addresses and lengths. 

Each entry in the segment table has a base field that contains the 

starting physical address of the segment in memory, and a limit field 

that specifies the length of the segment. The segment table base register 

(STBR) points to the location of the segment table in memory, while the 

segment table length register (STLR) indicates the number of segments 

used by the program. 

When a program generates a logical address, the segment number is 

used to index into the segment table to obtain the base address and 

length of the segment that contains the offset. The physical address is 

then computed by adding the base address and offset. 

Using a segment table allows for non-contiguous allocation of physical 

memory to a process, which can help reduce external fragmentation. 

However, like with paging, there may still be internal fragmentation due 

to unused space within a segment. 

It's important to note that not all operating systems use segment tables, 

and those that do may use different variations of this approach. 

Nonetheless, understanding how logical addresses are translated into 

physical addresses can help us better understand how processes interact 

with memory in an operating system. 

5.5 Paging vs segmentation 

Advances in memory technology have led to the development of 

different memory allocation strategies, such as paging and 

segmentation. Each strategy has its advantages and disadvantages, 

which affect the overall performance of the system. In this chapter, we 

will explore the pros and cons of each strategy in the context of memory 

management. 
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Paging is a memory allocation strategy that divides the memory into 

fixed-size pages, usually 4KB in size. The process's memory is also 

divided into fixed-size pages. The system maps each page of the 

process's memory to a corresponding page in physical memory, 

resulting in a virtual-to-physical address mapping. Paging has several 

advantages, such as: 

 Easy management: Paging is easy to manage since the memory is 

divided into fixed-size pages. The system can allocate and 

deallocate pages quickly and efficiently. 

 Efficient use of memory: Paging can use the physical memory 

efficiently, as the system only loads the necessary pages of a 

process into memory. Unused pages can be swapped out to disk, 

freeing up physical memory for other processes. 

 Memory protection: Paging provides memory protection by 

mapping each process to its own memory space. This isolation 

ensures that a process cannot access the memory space of another 

process. 

 

However, paging has some disadvantages, such as: 

 Fragmentation: Paging can lead to fragmentation of the physical 

memory. If the system needs to allocate a contiguous block of 

physical memory larger than the available free memory, it must 

move pages around to create a contiguous block, resulting in 

fragmentation. 

 Overhead: Paging can incur an overhead in terms of memory 

access time due to the extra level of indirection involved in 

accessing memory through the page table. 

 

Segmentation is another memory allocation strategy that divides the 

memory into logical segments of varying sizes. Each segment 
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corresponds to a portion of the process's memory, such as the stack, 

heap, or code segment. Segmentation has several advantages, such as: 

 Flexibility: Segmentation is flexible since it can allocate memory 

segments of different sizes. This flexibility makes it suitable for 

applications that require dynamic memory allocation. 

 No fragmentation: Segmentation does not lead to fragmentation 

since each segment can be allocated independently. This makes it 

easier to allocate contiguous memory blocks. 

 Sharing: Segmentation allows memory sharing between processes 

since different processes can share segments. This feature enables 

faster inter-process communication. 

 

However, segmentation also has some disadvantages, such as: 

 Overhead: Segmentation can incur an overhead in terms of 

memory access time due to the extra level of indirection involved 

in accessing memory through the segment table. 

 Memory protection: Segmentation can be challenging to manage, 

as there is no built-in memory protection mechanism. This lack of 

protection can lead to memory leaks, buffer overflows, and other 

security vulnerabilities. 

 

In conclusion, both paging and segmentation have their advantages and 

disadvantages. The choice of memory allocation strategy depends on 

the requirements of the application and the hardware constraints. 

While paging is easy to manage and provides memory protection, 

segmentation is flexible and can be used for sharing memory between 

processes. 
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5.6 Choosing a Memory Allocation Strategy 

When choosing a memory allocation strategy, it is important to consider 

the requirements of the program and the system resources available. 

Paging is generally used in systems with limited physical memory and a 

large virtual address space, while segmentation is more commonly used 

in systems with more available physical memory and variable program 

memory requirements. 

In addition to paging and segmentation, other memory allocation 

strategies include buddy memory allocation and slab allocation. Buddy 

memory allocation divides memory into fixed-size blocks and allocates 

blocks that are closest in size to the requested size. Slab allocation is a 

more specialized technique that is used in systems with a large number 

of similar objects, such as file system buffers. 

Overall, choosing the most appropriate memory allocation strategy is 

critical to the effective management of memory in operating systems. 

By carefully considering the requirements of the system and the 

program, developers can choose the most efficient and effective memory 

allocation strategy. 

5.7 Dynamic Storage Allocation 

Memory management is a critical aspect of operating systems, 

particularly when it comes to managing free space. This chapter 

discusses different strategies that can be used to manage free space and 

minimize fragmentation. 

When a program requests memory from the operating system, it may 

not always know exactly how much memory it will need. For this reason, 

many memory allocation systems allow for variable-sized requests. 

However, this can lead to fragmentation, where there are small pockets 
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of free space scattered throughout memory that cannot be used to 

satisfy larger requests. 

One common approach to managing free space is called the buddy 

system. In this approach, the operating system maintains a list of free 

memory blocks, each of which is a power of two in size. When a request 

comes in, the system finds the smallest free block that can satisfy the 

request, and splits it in two if necessary to create two smaller free blocks. 

This continues recursively until the smallest block that can satisfy the 

request is found. When a block is freed, the system checks to see if its 

buddy block (the block with which it was originally split) is also free. If 

so, the two blocks are merged back into a larger block. 

Another approach is called the slab allocation system. In this approach, 

the operating system maintains a set of pre-allocated memory chunks, 

each of which is of a fixed size. When a request comes in, the system 

finds the appropriate chunk and returns a pointer to the requested 

memory within that chunk. When the memory is freed, it is returned to 

the appropriate chunk rather than being released back to the general 

free space pool. This can reduce fragmentation because memory is 

always released to a specific chunk rather than being returned to the 

general pool, which can lead to small pockets of free space that cannot 

be used. 

Different strategies have different trade-offs in terms of time and space 

overheads. For example, the buddy system can be more efficient in 

terms of space usage because it can split and merge blocks to exactly fit 

the requested size. However, it can be less efficient in terms of time 

overhead because it may need to search the free block list recursively to 

find a block that is the right size. The slab allocation system, on the 

other hand, can be more efficient in terms of time overhead because it 

always returns memory from a pre-allocated chunk, but it may be less 

efficient in terms of space usage because chunks may not be fully 

utilized. 
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In summary, managing free space is an important aspect of memory 

management in operating systems. Different strategies can be used to 

minimize fragmentation and balance time and space overheads. The 

buddy system and slab allocation system are two common approaches, 

each with their own trade-offs. 

5.7.1 The best-fit strategy 

In the management of free space, one strategy that can be used to 

minimize fragmentation is the best fit strategy. This strategy involves 

searching through the free list to find chunks of free memory that are as 

big or bigger than the requested size. Then, the strategy returns the 

smallest block from the group of candidates that meet the requested 

size, known as the best-fit chunk. 

The best-fit strategy aims to reduce wasted space by returning a block 

that is as close as possible to what the user asks for. However, the 

strategy also comes with a performance cost. Naive implementations of 

the best-fit strategy may suffer a heavy performance penalty when 

performing an exhaustive search for the correct free block. 

To implement the best-fit strategy, the allocator has to traverse the free 

list and compare each block's size to the requested size. Once the 

allocator finds a block that can fit the request, it has to determine which 

block is the smallest from the group of candidates. The allocator then 

returns this block to the requesting program. 

One significant drawback of the best-fit strategy is that it can lead to 

external fragmentation. External fragmentation occurs when the 

allocator cannot find a single block of memory that is large enough to 

satisfy a request, even though the total free memory is sufficient. This 

issue arises when small blocks of free memory are scattered throughout 

the heap. 

To address the issue of external fragmentation, some implementations 

of the best-fit strategy combine adjacent free blocks into a single larger 
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block. This approach can help reduce fragmentation by consolidating 

smaller free blocks into more significant ones. 

Overall, the best-fit strategy is a useful approach to manage free space 

when allocating variable-sized requests. It aims to minimize wasted 

space and can be combined with other strategies to further reduce 

fragmentation. However, its performance cost must be carefully 

considered when implementing this strategy. 

5.7.2 The worst-fit strategy 

Worst fit is a memory allocation strategy that takes the opposite 

approach to best fit. Instead of finding the smallest available block that 

can satisfy a request, it searches for the largest block and allocates the 

requested amount from it, leaving the remaining space on the free list. 

The rationale behind this approach is to leave large chunks of free 

memory that can be used for larger requests in the future, thereby 

reducing fragmentation. However, studies have shown that worst fit 

tends to perform poorly, leading to excessive fragmentation and high 

overheads. 

One of the reasons for this poor performance is that worst fit requires a 

full search of the free list, just like best fit. This search can be expensive 

and time-consuming, especially in the presence of a large number of 

small free blocks. 

Moreover, worst fit can lead to a phenomenon known as external 

fragmentation, where the available memory is fragmented into many 

small free blocks that cannot be used to satisfy larger requests, even if 

their total size is sufficient. This can happen if worst fit repeatedly 

breaks down larger free blocks into smaller ones to satisfy requests. 

Overall, worst fit is not a recommended strategy for managing free 

memory. Other, more sophisticated approaches, such as buddy 

allocation and slab allocation, have been developed to address the 
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shortcomings of simple strategies like best fit and worst fit. These 

approaches aim to minimize fragmentation, reduce overheads, and 

improve performance by using more efficient data structures and 

algorithms. 

5.7.3 The first-fit strategy 

First fit is one of the most commonly used strategies for managing free 

space in a memory allocator. It's also one of the simplest. The basic idea 

is to search the free list from the beginning, looking for the first block 

that is large enough to satisfy the allocation request. Once a block is 

found, it is allocated to the user, and any remaining free space is added 

back to the free list. 

One advantage of the first fit strategy is speed. Because the allocator 

only needs to search the free list until it finds a block that is large enough 

to satisfy the allocation request, it can be quite fast. This is especially 

true when the free list is relatively small or when the allocation request 

is relatively small. 

However, one potential disadvantage of the first fit strategy is that it can 

lead to fragmentation of the free list. Specifically, if the allocator 

repeatedly allocates and deallocates small blocks of memory, the free 

list can become fragmented with many small, unusable gaps. This can 

make it more difficult to find large blocks of contiguous memory when 

a larger allocation request is made. 

To address this issue, some memory allocators use address-based 

ordering of the free list. By keeping the list ordered by the address of the 

free space, it becomes easier to coalesce adjacent blocks of free space, 

which can help to reduce fragmentation and make it easier to find larger 

blocks of contiguous memory. 

Overall, the first fit strategy is a useful and widely used approach for 

managing free space in memory allocators. However, it's important to 
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be aware of its potential drawbacks, particularly when dealing with 

small or frequent allocation requests. 

5.7.4 The next-fit strategy 

The next fit algorithm is an improvement on the first fit method, which 

simply finds the first block that is big enough and returns the requested 

amount to the user. The problem with first fit is that it can pollute the 

beginning of the free list with small objects, leading to fragmentation. 

Next fit aims to avoid this problem by keeping an extra pointer that 

indicates where the last search for free space ended. 

The next fit algorithm works by starting the search for free space at the 

location where the last search ended. If there is no free space available 

at that location, the search continues from the beginning of the list. By 

doing this, next fit spreads the searches for free space throughout the 

list more uniformly, thus avoiding splintering of the beginning of the 

list. 

One advantage of next fit is that it performs better than worst fit since 

it avoids the fragmentation that worst fit can create. However, it may 

still suffer from fragmentation since it does not attempt to compact free 

space. Moreover, it may not find the best fit for a request since it does 

not perform an exhaustive search of all the free spaces available. 

In conclusion, next fit is a memory management strategy that tries to 

avoid the problems of first fit and worst fit. By keeping an extra pointer 

to the location where the last search ended, next fit can spread the 

searches for free space throughout the list more uniformly, thus 

avoiding splintering of the beginning of the list. However, it does not 

attempt to compact free space and may not find the best fit for a request. 

Therefore, choosing the right memory management strategy depends 

on the specific requirements of the system. 
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5.8 Fragmentation 

Memory management is a critical component of any operating system, 

and understanding the different types of fragmentation is essential to 

efficient memory usage. External fragmentation occurs when there is 

enough total memory space to satisfy a request, but it is not contiguous, 

resulting in wasted space. Internal fragmentation, on the other hand, 

occurs when the allocated memory is slightly larger than the requested 

memory, leaving unused memory within a partition. 

One way to address external fragmentation is through compaction, 

which involves shuffling memory contents to place all free memory 

together in one large block. However, this is only possible if relocation 

is dynamic and can be done at execution time. This technique can be 

effective in reducing external fragmentation and increasing the amount 

of available memory. 

Another issue to consider is the impact of I/O operations on memory 

usage. To prevent data corruption during I/O, jobs must be latched in 

memory while involved in I/O, and I/O operations should only be 

conducted into OS buffers. This approach helps to minimize the risk of 

data loss and ensures that memory usage remains efficient. 

It is also worth noting that fragmentation is not just limited to main 

memory but can also occur in the backing store. Thus, similar 

techniques, such as compaction, can be used to address fragmentation 

in the backing store and ensure that memory usage remains efficient 

and effective. 

In conclusion, understanding the different types of fragmentation and 

the techniques to address them is essential for efficient memory usage 

in any operating system. By minimizing fragmentation and optimizing 

memory allocation, the overall performance of the system can be 

improved. 
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6 Memory API 

In general, there are two types of memory allocation in a running 

program: stack memory and heap memory. Understanding the 

differences between these two types of memory is essential to writing 

programs that are fast and stable. 

Stack memory is a type of automatic memory, which means that the 

compiler manages the allocations and deallocations of this memory for 

you, the programmer. This type of memory is used to hold local 

variables, function call frames, and other temporary data that is needed 

during the execution of a program. Stack memory is fast and efficient, 

and its usage is straightforward since the compiler takes care of all the 

details. 

Heap memory, on the other hand, is not automatically managed by the 

compiler. Instead, the programmer is responsible for explicitly 

allocating and deallocating this memory. Heap memory is used to store 

data that needs to be accessed over a longer period than stack memory. 

Since heap memory is not automatically managed, it can be more 

challenging to use correctly, and mistakes can lead to serious bugs in a 

program. 

In a typical C program, the stack and heap memory are used in 

conjunction with each other. The stack is used for small, short-lived 

variables and function call frames, while the heap is used for large, long-

lived data structures that need to be dynamically allocated and 

deallocated. Efficiently managing the use of these two types of memory 

is critical to the performance and stability of a program. 

The operating system provides a virtual memory abstraction that allows 

programs to access memory as if it were a contiguous block of physical 

memory. This abstraction is called the address space, and it is the 

running program's view of memory in the system. The address space of 
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a process contains all of the memory state of the running program, 

including the stack and heap memory. 

In summary, understanding the differences between stack and heap 

memory is critical to writing efficient and reliable C programs. Stack 

memory is automatically managed by the compiler and is used for small, 

short-lived variables, while heap memory is explicitly managed by the 

programmer and is used for large, long-lived data structures. Both types 

of memory are critical to the performance and stability of a program, 

and efficient management of these resources is a crucial task for any C 

programmer. 

6.1 The malloc() Call 

When writing programs in C, one of the most common tasks is to 

allocate memory dynamically. This is often necessary when you don't 

know beforehand how much memory you will need, or when you need 

memory that persists beyond the lifetime of a particular function call. 

In C, the malloc() function is used to dynamically allocate memory from 

the heap. The malloc() call is quite simple: you pass it a size asking for 

some room on the heap, and it either succeeds and gives you back a 

pointer to the newly-allocated space, or fails and returns NULL. 

For example, if you wanted to allocate an array of integers with a size of 

10, you could do so with the following code: 

int* my_array = (int*)malloc(10 * sizeof(int)); 

This code allocates enough memory to hold 10 integers and returns a 

pointer to the first element of the array. Note that we cast the result of 

malloc() to an int pointer, since malloc() returns a void pointer by 

default. 
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Once you've finished using the memory you've allocated, it's important 

to free it to avoid memory leaks. To do so, simply call the free() function 

and pass it the pointer to the memory you want to free: 

It's important to note that dynamic memory allocation can be a source 

of bugs and performance problems if not used carefully. Allocating too 

much memory or failing to free memory can lead to memory leaks, while 

allocating too little memory can result in buffer overflows and other 

errors. It's also important to consider the lifetime of the memory you 

allocate, as well as any potential race conditions that may arise when 

multiple threads are accessing the same memory. 

6.2 The free() Call 

Memory management is an essential aspect of programming, especially 

when dealing with heap memory. Allocating memory is an easy task, but 

knowing when and how to free memory is challenging. The free() call is 

used to free heap memory that is no longer in use. 

When a program no longer needs a particular block of memory, it 

should free that memory to prevent memory leaks. Memory leaks occur 

when a program continues to allocate memory without freeing it, 

leading to a shortage of available memory. 

To free memory using the free() call, the programmer needs to pass in 

the pointer to the allocated memory block. Once freed, the memory 

becomes available for future allocation. It is crucial to note that freeing 

a block of memory does not necessarily erase its contents; it only marks 

it as available for reuse. 

It is also essential to be cautious when using the free() call. Attempting 

to free a block of memory that has already been freed or attempting to 

free an invalid pointer can result in unexpected behavior. For this reason, 

it is a good practice to assign the pointer to NULL after freeing it to avoid 

potential issues in the future. 
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In summary, the free() call is a simple yet essential function for 

managing heap memory in a program. It helps prevent memory leaks 

and ensures that memory is efficiently utilized by the program. However, 

care must be taken when using the free() call to avoid unexpected 

behavior. 

Example: Here's an example program that demonstrates the use of the 

free() function in C: 

#include <stdio.h> 

#include <stdlib.h> 

 

int main() { 

    // Allocate memory for an integer on the heap 

    int *num = (int*)malloc(sizeof(int)); 

    if (num == NULL) { 

        printf("Error: failed to allocate memory.\n"); 

        return 1; 

    } 

 

    // Assign a value to the integer 

    *num = 42; 

    printf("The value of num is: %d\n", *num); 

 

    // Free the memory 

    free(num); 

 

    // Attempt to access the memory after it has been freed 
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    printf("The value of num is now: %d\n", *num); 

 

    return 0; 

} 

This program first allocates memory for an integer on the heap using 

the malloc() function. It then assigns a value to the integer and prints it 

out. After that, it frees the memory using the free() function. Finally, it 

attempts to access the memory again and print out the value of the 

integer, which should result in undefined behavior since the memory 

has been freed. 

7 Paging and Page Replacement Algorithms 

Welcome to the chapter on Paging and Page Replacement Algorithms. 

Memory management is a crucial aspect of operating systems that 

involves managing the memory resources of a system to ensure efficient 

allocation and usage. In this chapter, we will discuss the concept of 

paging and page tables, which is one of the most common strategies 

used for memory allocation in modern operating systems. 

We will also explore the different page replacement algorithms, such as 

FIFO, LRU, Optimal, and Clock. These algorithms are used to determine 

which page to replace when a page fault occurs. Finally, we will evaluate 

the performance of these algorithms and compare their advantages and 

disadvantages. 

Understanding paging and page replacement algorithms is essential for 

optimizing the use of memory resources in an operating system. So, let's 

dive into the details of these concepts and explore how they are used to 

manage memory in modern operating systems. 
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7.1 Overview of paging and page tables 

In modern operating systems, the use of virtual memory is crucial for 

efficient memory management. One of the key components of virtual 

memory is paging. In this chapter, we will provide an overview of paging 

and page tables, which are used to manage virtual memory. 

Paging is a memory management scheme that allows an operating 

system to use secondary memory, such as a hard disk, as an extension 

of primary memory, such as RAM. The idea behind paging is to divide 

the physical memory into small fixed-sized blocks called frames, and 

divide the virtual memory into the same-sized blocks called pages. 

These pages are then mapped to the frames using a page table. 

A page table is a data structure used by the operating system to map 

virtual addresses to physical addresses. Each entry in the page table 

corresponds to a page in the virtual address space. The entry contains 

information about the physical address where the page is stored in 

memory, as well as some control bits that indicate whether the page is 

valid, dirty, or accessed. 

The page table is stored in memory and is accessed by the hardware 

during memory accesses. The page table is typically organized as a tree 

or a hash table for efficient access. 

When a process requests access to a virtual address, the hardware first 

checks the page table to see if the page is currently in physical memory. 

If the page is not in memory, a page fault occurs and the operating 

system must retrieve the page from secondary storage and load it into 

physical memory. 

Paging has several advantages over traditional memory management 

schemes: 

 Flexibility: Paging allows the operating system to manage physical 

memory in a more flexible manner. With paging, the operating 



PAGE 58 

system can allocate and deallocate memory on demand, and can 

use secondary storage as an extension of physical memory. 

 Protection: Paging provides protection against unauthorized 

access to memory. Each process has its own page table, which 

ensures that it can only access its own memory and not the 

memory of other processes. 

 Sharing: Paging allows multiple processes to share the same 

physical memory. This is useful for programs that need to share 

large data structures, such as databases. 

 

Paging also has some disadvantages: 

 Overhead: Paging introduces some overhead, both in terms of 

CPU time and memory usage. The page table must be maintained 

by the operating system, and each memory access requires an 

additional lookup in the page table. 

 Fragmentation: Paging can lead to fragmentation of physical 

memory. When a page is swapped out to secondary storage, the 

physical memory it occupied becomes available for other pages. 

However, this memory may not be contiguous, which can lead to 

fragmentation. 

 

Paging is a key component of virtual memory and is used by most 

modern operating systems. It provides flexibility, protection, and 

sharing, but also introduces overhead and can lead to fragmentation. 

The use of page tables allows the operating system to efficiently map 

virtual addresses to physical addresses and manage memory in a more 

flexible manner. 

Example: Here's a pseudocode for a basic page table in a virtual 

memory system: 

// Define the page table structure 
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struct PageTableEntry { 

    int present;  // Indicates whether the page is in physical 

memory (1) or on disk (0) 

    int frame;    // The frame number in physical memory where the 

page is stored 

}; 

 

// Create an array to hold the page table entries 

PageTableEntry page_table[num_pages]; 

 

// Initialize the page table entries 

for (int i = 0; i < num_pages; i++) { 

    page_table[i].present = 0; 

    page_table[i].frame = -1; 

} 

 

// Function to translate a virtual address to a physical address 

int translate_address(int virtual_address) { 

    int page_number = virtual_address / page_size; 

    int offset = virtual_address % page_size; 

     

    if (page_table[page_number].present == 0) { 

        // Page fault - load the page into physical memory from 

disk 

        int frame_number = get_free_frame(); 

        load_page_from_disk(page_number, frame_number); 

        page_table[page_number].present = 1; 
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        page_table[page_number].frame = frame_number; 

    } 

     

    int physical_address = page_table[page_number].frame * 

page_size + offset; 

    return physical_address; 

} 

This pseudocode defines a page table as an array of PageTableEntry 

structs. Each entry in the page table contains a present flag that 

indicates whether the page is currently in physical memory or on disk, 

and a frame number that specifies the physical frame number where the 

page is stored. 

The translate_address function takes a virtual address as input and 

returns the corresponding physical address. It first computes the page 

number and offset of the virtual address, and then checks whether the 

corresponding page is currently in physical memory. If the page is not 

present, a page fault occurs and the page is loaded into a free physical 

frame from disk. The get_free_frame function and load_page_from_disk 

function are not shown here, but they would be responsible for 

allocating a free physical frame and reading the page data from disk, 

respectively. 

Finally, the physical address is computed by multiplying the frame 

number by the page size and adding the offset, and then returned by the 

function. 

7.2 Page replacement algorithms 

In virtual memory systems, page replacement algorithms are used to 

select which pages to remove from physical memory when there is no 

more free space available. The goal of these algorithms is to minimize 
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the number of page faults that occur and ensure that the most important 

pages remain in memory. In this chapter, we will review some of the 

most common page replacement algorithms and explore their strengths 

and weaknesses. 

7.2.1 First-In-First-Out (FIFO) Algorithm 

The FIFO algorithm selects the page that was loaded into memory first 

for eviction. This algorithm is easy to implement and requires only a 

simple data structure to maintain the order in which pages were loaded. 

However, the FIFO algorithm suffers from the "Belady's Anomaly" 

problem, which is when increasing the number of frames in memory can 

actually increase the number of page faults. 

7.2.2 Least Recently Used (LRU) Algorithm 

The LRU algorithm selects the page that has not been accessed for the 

longest period of time for eviction. This algorithm is based on the 

principle of locality, which states that recently accessed pages are more 

likely to be accessed again in the near future. The LRU algorithm is 

effective at minimizing the number of page faults and has been shown 

to perform well in practice. However, the LRU algorithm can be difficult 

to implement efficiently, as it requires tracking the access history of 

every page. 

7.2.3 Clock Algorithm 

The Clock algorithm is a modification of the FIFO algorithm that is 

designed to reduce the likelihood of Belady's Anomaly. This algorithm 

maintains a circular list of pages in memory and uses a clock hand to 

traverse the list. When a page is accessed, its reference bit is set to 1. 

When the clock hand reaches a page with a reference bit of 0, that page 

is selected for eviction. The Clock algorithm is simple to implement and 

has been shown to perform well in practice. 
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7.2.4 Least-Frequently Used (LFU) Algorithm 

The LFU algorithm selects the page that has been accessed the fewest 

number of times for eviction. This algorithm is based on the principle 

that pages that are accessed less frequently are less likely to be accessed 

in the future. The LFU algorithm can be effective in reducing the 

number of page faults in workloads with predictable access patterns. 

However, the LFU algorithm can perform poorly in workloads with 

irregular access patterns. 

7.2.5 Random Algorithm 

The Random algorithm selects a page for eviction at random. This 

algorithm is simple to implement and requires no tracking of page 

history or usage. However, the Random algorithm can perform poorly 

in practice, as it may select important pages for eviction. 

 

In this chapter, we have reviewed several common page replacement 

algorithms and explored their strengths and weaknesses. The choice of 

page replacement algorithm depends on the specific requirements of 

the system and the characteristics of the workload. The LRU algorithm 

is generally considered to be a good default choice, as it performs well 

in a wide range of workloads. However, other algorithms such as the 

Clock algorithm and the LFU algorithm can be effective in specific 

circumstances. The key to effective page replacement is to select an 

algorithm that balances the competing goals of minimizing the number 

of page faults and ensuring that the most important pages remain in 

memory. 
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8 Segmentation and Compaction 

As the complexity of computer systems has increased, so has the need 

for efficient and effective memory management. Memory is a precious 

resource, and it is essential to ensure that it is used efficiently to 

optimize system performance. Segmentation is one approach to 

memory management that offers some benefits over other methods 

such as paging. However, segmentation also has its drawbacks, which 

we will explore in this chapter. 

We will then examine the issue of fragmentation, which occurs when 

the memory is divided into small pieces that cannot be effectively 

utilized. We will see how external fragmentation arises due to the 

allocation and deallocation of memory blocks, while internal 

fragmentation occurs when memory allocated to a process is not fully 

utilized. We will also look at how compaction can be used to resolve 

these issues. 

Finally, we will dive into garbage collection, which is the process of 

automatically freeing up memory that is no longer in use. We will 

discuss two methods of garbage collection, mark-and-sweep and 

reference counting, and compare their advantages and disadvantages. 

8.1 Segmentation 

Segmentation is a memory management technique that allows a process 

to be divided into logical segments, where each segment represents a 

different part of the program such as code, data, and stack. The 

segments can be of variable length, allowing for more flexibility in 

memory allocation than the fixed-size pages used in paging. In this 

chapter, we will discuss the advantages and disadvantages of 

segmentation. 
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Advantages of Segmentation: 

 Flexibility: Segmentation provides more flexibility in memory 

allocation than paging, as the segments can be of variable size. 

This allows for more efficient use of memory, as segments can be 

allocated according to the size requirements of the program. 

 Protection: Segmentation provides protection for the program's 

code, data, and stack by dividing them into separate segments. 

This helps prevent one part of the program from overwriting 

another part, resulting in a more reliable and stable system. 

 Sharing: Segments can be shared between processes, allowing 

multiple processes to access the same data without the need for 

copying. This can improve the overall efficiency of the system. 

 Simplified Memory Management: Segmentation simplifies 

memory management by dividing memory into logical segments 

that can be easily managed by the operating system. 

 

Disadvantages of Segmentation: 

 Fragmentation: Segmentation can lead to fragmentation of 

memory, where the available memory becomes divided into small, 

unusable chunks. This can result in wasted memory and reduced 

efficiency. 

 Overhead: Segmentation requires additional overhead compared 

to paging, as the operating system needs to manage the segment 

table to keep track of the segments. 

 External Fragmentation: Segmentation can lead to external 

fragmentation, where there are enough free memory blocks 

available, but they are not contiguous. This can cause memory 

allocation to fail even if there is enough free memory. 

 Complexity: Segmentation is more complex than paging, as the 

segments can be of variable size and need to be managed 

separately. 
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In conclusion, segmentation offers several advantages over paging, 

including flexibility, protection, sharing, and simplified memory 

management. However, it also has some drawbacks, such as 

fragmentation, overhead, external fragmentation, and complexity. As 

with any memory management technique, it is important to weigh the 

advantages and disadvantages to determine which approach is best for 

a particular system. 

8.2 Fragmentation and compaction 

Fragmentation and compaction are critical aspects of memory 

management that operating systems must address. Fragmentation 

occurs when memory becomes divided into many small, unusable 

sections, while compaction is the process of merging these sections to 

form larger, usable ones. 

There are two types of fragmentation: internal fragmentation and 

external fragmentation. Internal fragmentation occurs when a process 

is allocated more memory than it needs, resulting in the unused portion 

of memory remaining unusable. This can occur when a process requests 

a fixed-sized block of memory but doesn't use it entirely. External 

fragmentation occurs when there is free memory available but is not 

contiguous, making it unusable for allocation to processes. 

To address fragmentation, an operating system may use compaction. 

Compaction is a process of moving memory contents around to create 

larger contiguous blocks of free memory. This process can be time-

consuming and is generally used in situations where fragmentation has 

become a severe issue. 

One of the primary advantages of segmentation is that it allows for more 

efficient memory management. This is because each process is allocated 

only the amount of memory it requires, eliminating internal 
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fragmentation. Additionally, segmentation provides better support for 

dynamic memory allocation, as the allocation size can vary for each 

segment. This makes it easier to manage memory for complex programs 

that require different memory sizes for different components. 

However, segmentation can also lead to external fragmentation, as 

memory segments may not be contiguous. This can limit the available 

memory for new processes, leading to poor system performance. 

Additionally, managing memory in a segmented environment can be 

more complex than managing memory in a paged environment. 

In summary, fragmentation and compaction are important concepts in 

memory management. External and internal fragmentation can lead to 

inefficient use of memory, while compaction can be used to address 

fragmentation issues. Segmentation is a useful approach to managing 

memory, but it can also lead to external fragmentation, which can be 

challenging to manage. 

Example: Here's a pseudocode for a basic compaction algorithm for a 

segmented memory management scheme: 

Function compact(): 

    sorted_segments = sort_segments_by_address() 

    current_address = 0 

     

    for segment in sorted_segments: 

        if segment.base_address != current_address: 

            move_segment(segment, current_address) 

        current_address += segment.size 

         

    update_segment_table() 
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In this algorithm, we first sort the segments in the memory according to 

their base address. Then, we start iterating over them in order and check 

if the current segment's base address is the same as the current address 

we are tracking. If it's not, we move the segment to the current address. 

After moving the segment, we update the current address to reflect the 

new end of the segment. Finally, we update the segment table to reflect 

the new base addresses of the moved segments. 

This basic algorithm assumes that we have access to the segment table 

and can move segments around in memory. It also assumes that we are 

working with a system that uses base and limit registers to define 

segments. 

8.3 Garbage collection 

Memory management in modern operating systems is a complex and 

challenging task. Among the various techniques employed to efficiently 

manage the memory, garbage collection is one of the most important. It 

is a technique that automatically deallocates memory that is no longer 

being used by the program. There are two commonly used garbage 

collection algorithms: mark-and-sweep and reference counting. 

Mark-and-sweep algorithm is a garbage collection technique that 

involves a two-phase process: marking and sweeping. During the 

marking phase, the garbage collector traverses the object graph starting 

from the roots and marks all objects that are still in use. During the 

sweeping phase, the garbage collector deallocates all objects that are not 

marked. 

Example: Here's an example pseudocode for the mark-and-sweep 

algorithm: 

function mark_and_sweep() { 

   mark(); 
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   sweep(); 

} 

 

function mark() { 

   for each object in heap { 

      if (object.is_marked() == false) { 

         object.mark(); 

         mark_referenced_objects(object); 

      } 

   } 

} 

 

function mark_referenced_objects(object) { 

   for each reference in object.references { 

      if (reference.is_marked() == false) { 

         reference.mark(); 

         mark_referenced_objects(reference); 

      } 

   } 

} 

 

function sweep() { 

   for each object in heap { 

      if (object.is_marked() == false) { 

         heap.deallocate(object); 
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      } else { 

         object.unmark(); 

      } 

   } 

} 

Reference counting is another garbage collection algorithm that 

maintains a count of the number of references to each object. When an 

object's reference count drops to zero, it is deallocated. The advantage 

of reference counting is that it can immediately reclaim memory when 

an object is no longer needed. However, reference counting can be 

inefficient in the presence of cycles. 

Example: Here's an example pseudocode for the reference counting 

algorithm: 

function increment_reference_count(object) { 

   object.reference_count++; 

} 

 

function decrement_reference_count(object) { 

   object.reference_count--; 

   if (object.reference_count == 0) { 

      deallocate(object); 

   } 

} 

In conclusion, garbage collection algorithms play a critical role in 

modern memory management. Mark-and-sweep and reference 

counting are two commonly used garbage collection algorithms, each 

with its own advantages and disadvantages. Understanding the benefits 
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and limitations of these algorithms is important for designing efficient 

and reliable memory management systems. 

9 Memory Protection and Sharing 

In this chapter, we will discuss the important topics of memory 

protection and sharing mechanisms in operating systems. Memory 

protection is a crucial feature in modern operating systems that ensures 

the security and integrity of the system. We will look at various 

protection mechanisms such as access control lists and capabilities. 

In addition, we will discuss the concept of memory sharing, which 

allows multiple processes to access the same memory space. This can 

greatly improve system performance and efficiency. We will explore 

different sharing mechanisms such as copy-on-write, memory-mapped 

files, and shared memory. 

By the end of this chapter, you will have a better understanding of how 

memory protection and sharing work in operating systems and the 

different techniques used to implement them. So, let's dive into the 

world of memory protection and sharing! 

9.1 Protection mechanisms 

In an operating system, it is essential to ensure that processes and users 

have access only to the resources they are authorized to use. Protection 

mechanisms are used to control access to these resources. Two common 

types of protection mechanisms used in operating systems are access 

control lists (ACLs) and capabilities. In this chapter, we will discuss the 

basics of ACLs and capabilities and their advantages and disadvantages. 
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9.1.1 Access Control Lists (ACLs) 

An Access Control List is a list of permissions attached to an object. An 

object can be a file, folder, device, or any other resource that a user or 

process may need to access. The ACL contains a list of users or groups 

and their corresponding permissions for the object. For example, a file 

may have an ACL that allows read and write permissions for the owner, 

read-only permissions for members of the "developers" group, and no 

access for others. 

An ACL-based access control system can be either discretionary or 

mandatory. In discretionary access control (DAC), the owner of the 

object has full control over the access permissions for that object. The 

owner can modify the ACL to grant or revoke access rights as needed. 

In mandatory access control (MAC), the operating system enforces 

access control policies set by an administrator or security policy. 

The advantages of using ACLs include the ability to control access to 

individual resources on a per-user or per-group basis. ACLs also enable 

delegation of permissions to other users or groups. However, managing 

ACLs can become complex, especially when dealing with large numbers 

of users and resources. 

9.1.2 Capabilities 

Capabilities are a type of access control mechanism that grants 

permissions to a process rather than a user or group. In this approach, 

the operating system assigns a set of capabilities to each process at the 

time of its creation. These capabilities determine what resources the 

process can access. 

Capabilities-based access control is often used in microkernel-based 

operating systems, where system services are provided by separate 

processes with defined capabilities. This approach helps to enforce the 

principle of least privilege, where each process has the minimum 

permissions needed to perform its task. 
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The advantages of using capabilities include improved security and the 

ability to limit access to resources based on the specific requirements of 

a process. However, capabilities can be challenging to manage when 

dealing with complex access control scenarios. 

9.1.3 Comparison of ACLs and Capabilities 

ACLs and capabilities have different approaches to access control. ACLs 

are generally easier to manage and are used in most operating systems. 

However, they may be less secure than capabilities-based systems since 

they grant permissions based on user or group membership. On the 

other hand, capabilities are more secure and granular, but they can be 

challenging to manage and are not widely used. 

The choice between ACLs and capabilities depends on the specific 

requirements of the system. In general, ACLs are suitable for systems 

that require simple access control policies, while capabilities are more 

suitable for systems that require a high level of security and fine-grained 

access control. 

Access control mechanisms such as ACLs and capabilities are essential 

for ensuring the security of an operating system. They enable 

administrators to control access to resources based on specific 

requirements and help to enforce the principle of least privilege. 

However, choosing the right access control mechanism requires a 

careful assessment of the system's requirements, including security, 

manageability, and complexity. By understanding the advantages and 

disadvantages of ACLs and capabilities, administrators can choose the 

right mechanism for their system. 

Access Control List (ACL) is a data structure that is used to store 

permissions associated with an object in an operating system.  

Example: Here's a sample pseudocode for implementing an ACL: 

// Structure of an Access Control Entry (ACE) 
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struct ACE { 

    int uid;             // User ID 

    int gid;             // Group ID 

    int permissions;     // Permissions granted to the user/group 

}; 

 

// Structure of an Access Control List (ACL) 

struct ACL { 

    int owner_uid;       // User ID of the owner of the object 

    int owner_gid;       // Group ID of the owner of the object 

    int num_entries;     // Number of Access Control Entries (ACEs) 

    ACE entries[MAX_ENTRIES];   // Array of ACEs 

}; 

 

// Function to check if a given user has permission to perform a 

certain action on the object 

bool check_permission(int user_id, int group_id, int action, ACL 

acl) { 

    // Check if the user is the owner of the object 

    if (user_id == acl.owner_uid) { 

        if (action & acl.permissions) { 

            return true; 

        } 

    } 

 

    // Check if the user belongs to the group that owns the object 
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    if (group_id == acl.owner_gid) { 

        if (action & (acl.permissions >> 3)) { 

            return true; 

        } 

    } 

 

    // Check if the user has explicit permission in the ACL 

    for (int i = 0; i < acl.num_entries; i++) { 

        if (user_id == acl.entries[i].uid || group_id == 

acl.entries[i].gid) { 

            if (action & acl.entries[i].permissions) { 

                return true; 

            } 

        } 

    } 

 

    // If none of the above conditions are satisfied, the user does 

not have permission 

    return false; 

} 

In this pseudocode, the ACL struct contains information about the 

owner of the object, the number of ACEs, and an array of ACE structures. 

Each ACE structure contains the user/group ID and the permissions 

granted to that user/group. The check_permission function takes as 

input the user ID, group ID, and the action to be performed on the 

object. It then checks whether the user has permission to perform that 

action based on the information in the ACL. The function returns true 

if the user has permission and false otherwise. 



PAGE 75 

9.2 Sharing mechanisms 

In modern operating systems, processes often need to share information 

and data with each other. Sharing mechanisms provide a way for 

processes to communicate and share resources with each other. In this 

chapter, we will discuss three popular sharing mechanisms: copy-on-

write, memory-mapped files, and shared memory. 

9.2.1 Copy-On-Write (COW) 

Copy-on-write is a technique used by many operating systems to 

efficiently share memory between processes. In this technique, when a 

process wants to create a copy of a memory page that is shared with 

another process, it does not create a new copy of the page immediately. 

Instead, the operating system creates a new page and marks it as a copy-

on-write page. When a process writes to this page, the operating system 

intercepts the write and makes a new copy of the page before writing to 

it. This way, both processes have their own separate copy of the page. 

One of the advantages of COW is that it is very efficient in terms of 

memory usage. It allows multiple processes to share the same memory 

pages without actually duplicating the pages until necessary. This 

means that COW can save a lot of memory and reduce the overhead of 

creating and managing memory copies. 

Example: Here's a pseudocode for copy-on-write: 

1. When a process attempts to write to a shared memory page: 

2.   If the page is not already marked as copy-on-write: 

3.     Create a new page frame in the process's private memory 

space. 

4.     Copy the contents of the shared memory page to the new page 

frame. 
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5.     Mark the new page frame as copy-on-write and set the shared 

page to read-only. 

6.     Update the page table entry to point to the new page frame. 

7.   Otherwise, if the page is already marked as copy-on-write: 

8.     Copy the shared memory page to a new page frame, as in steps 

3-4. 

9.     Update the page table entry to point to the new page frame. 

10. Allow the process to write to the new page frame. 

In summary, when a process tries to write to a shared memory page, the 

operating system checks whether the page is already marked as copy-

on-write. If it isn't, a new page frame is created in the process's private 

memory space, the contents of the shared memory page are copied to 

the new frame, and the page table entry is updated to point to the new 

frame. The shared memory page is then marked as read-only and copy-

on-write. If the page is already marked as copy-on-write, a new page 

frame is created and the shared memory page is copied to it. The page 

table entry is then updated to point to the new page frame, and the 

process is allowed to write to the new frame. 

9.2.2 Memory-Mapped Files 

Memory-mapped files allow processes to share data by mapping the 

same file into their address spaces. This technique is often used to share 

large amounts of data between processes. In memory-mapped files, the 

operating system maps a file into a process's address space, creating a 

virtual memory page for each block of data in the file. When a process 

reads or writes to this memory, the operating system reads or writes to 

the file on the disk. 

Memory-mapped files have several advantages. They provide a simple 

and efficient way to share data between processes. They also allow 

processes to treat files as if they were part of their address space, which 

can simplify programming. Memory-mapped files are particularly useful 
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for sharing large amounts of data, as they can be mapped into memory 

on demand, rather than being loaded into memory all at once. 

Example: Here's an example pseudocode for memory-mapped files: 

// Open file for reading/writing and memory-map it 

file_descriptor = open("filename.txt", O_RDWR); 

file_size = get_file_size("filename.txt"); 

file_map = mmap(NULL, file_size, PROT_READ | PROT_WRITE, MAP_SHARED, 

file_descriptor, 0); 

 

// Use the memory-mapped file as a buffer 

memcpy(file_map + offset, buffer, length); 

 

// Unmap the memory and close the file 

munmap(file_map, file_size); 

close(file_descriptor); 

Note that this is just an example and may need to be adapted to the 

specific operating system and programming language being used. The 

get_file_size function is not part of the standard C library, but can be 

implemented using system calls such as stat or fstat. Additionally, the 

memcpy function is used to demonstrate how the memory-mapped file 

can be used as a buffer for reading/writing data. 

9.2.3 Shared Memory 

Shared memory is another popular technique for sharing data between 

processes. In shared memory, a region of memory is created that can be 

accessed by multiple processes. Each process can read and write to this 

memory as if it were its own private memory. The operating system is 
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responsible for managing the shared memory region and ensuring that 

all processes have the correct permissions to access it. 

One of the advantages of shared memory is that it is very fast, as there 

is no need to copy data between processes. This can be particularly 

useful when processes need to share large amounts of data. Shared 

memory is also very flexible, as it can be used for a wide range of data-

sharing scenarios. 

Example: Here is an example pseudocode for shared memory: 

// Server process creates a shared memory segment 

int shm_id = shmget(key, size, IPC_CREAT | 0666); 

 

// Attach the shared memory segment to the address space of the 

process 

char* shared_memory = shmat(shm_id, NULL, 0); 

 

// Write to the shared memory segment 

sprintf(shared_memory, "Hello, world!"); 

 

// Detach the shared memory segment from the address space of the 

process 

shmdt(shared_memory); 

 

// Client process attaches to the shared memory segment 

int shm_id = shmget(key, size, 0666); 

 

// Attach the shared memory segment to the address space of the 

process 
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char* shared_memory = shmat(shm_id, NULL, 0); 

 

// Read from the shared memory segment 

printf("Message from shared memory: %s\n", shared_memory); 

 

// Detach the shared memory segment from the address space of the 

process 

shmdt(shared_memory); 

 

// Server process removes the shared memory segment 

shmctl(shm_id, IPC_RMID, NULL); 

In this example, a server process creates a shared memory segment 

using shmget() and attaches it to its address space using shmat(). It then 

writes a message to the shared memory segment. 

A client process attaches to the same shared memory segment using 

shmget() and shmat(), and reads the message from the shared memory 

segment. 

Finally, the server process removes the shared memory segment using 

shmctl(). 

 

Sharing mechanisms such as copy-on-write, memory-mapped files, and 

shared memory are essential components of modern operating systems. 

They allow processes to communicate and share data efficiently and 

securely. Each mechanism has its own advantages and disadvantages, 

and choosing the right one depends on the specific requirements of the 

application. 
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10 Case Study: Memory Management in Linux 

In this chapter, we will begin by providing an overview of Linux's 

memory management approach, including its memory hierarchy and 

virtual memory. We will then compare Linux's approach to memory 

management with other operating systems. Finally, we will discuss the 

impact of Linux's memory management on its performance and 

reliability. 

10.1 Overview of Linux's approach 

Linux's approach to memory management is one of the key reasons for 

its popularity and success. The memory management subsystem in 

Linux is responsible for managing the allocation and deallocation of 

memory resources to various processes in a fair and efficient manner. In 

this chapter, we will provide an overview of Linux's approach to memory 

management. 

The Linux memory management system is based on the virtual memory 

concept, which allows the system to manage more memory than is 

physically available. The virtual memory subsystem in Linux maps the 

physical memory to a process's virtual address space. This mapping is 

done using a page table, which is a data structure that maps virtual 

addresses to physical addresses. 

Linux uses a demand-paging approach, which means that pages are 

loaded into memory only when they are accessed. When a process 

accesses a page that is not currently in memory, a page fault is triggered, 

and the page is loaded from the disk into memory. This approach 

minimizes the amount of memory required by a process, as only the 

pages that are needed are loaded into memory. 

Linux provides various memory allocation algorithms to manage 

memory resources efficiently. One such algorithm is the Slab Allocator, 
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which is a fast and efficient memory allocator that is optimized for 

allocating small objects. 

The Linux memory management system also includes a number of page 

replacement algorithms, which are used to decide which pages to evict 

from memory when the system is low on memory. Some of the page 

replacement algorithms used in Linux include the Least Recently Used 

(LRU) algorithm, the Random algorithm, and the Clock algorithm. 

Linux also provides various tools and commands that can be used to 

monitor and manage memory usage. One such tool is the top command, 

which provides real-time information about the memory usage of 

processes running on the system. 

In addition to these features, Linux also supports various advanced 

memory management techniques such as memory compression, 

memory deduplication, and transparent huge pages. These techniques 

are designed to optimize memory usage and improve system 

performance. 

Overall, Linux's approach to memory management is robust, efficient, 

and highly configurable. The use of virtual memory, demand-paging, 

and advanced memory management techniques ensures that Linux can 

efficiently manage memory resources, even on systems with limited 

physical memory. 

10.2 Comparison with other operating systems 

Memory management is a critical component of an operating system, as 

it determines how the system manages its memory resources. Different 

operating systems use different approaches to manage their memory 

resources, and it is essential to understand the pros and cons of each 

approach. 
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In this chapter, we will compare the memory management approaches 

of different operating systems and analyze their strengths and 

weaknesses. 

First, let's look at Windows. Windows uses a demand paging system, 

where pages are loaded into memory when they are needed. Windows 

also uses a page file to swap out pages to disk when there is not enough 

physical memory available. One of the strengths of Windows' memory 

management is its ability to handle large amounts of memory effectively. 

However, Windows can suffer from memory fragmentation, which can 

lead to a slowdown in performance. 

Next, let's consider macOS. Like Windows, macOS uses a demand 

paging system, but it also has a feature called memory compression, 

which compresses memory pages to save space. macOS also uses a page 

file, similar to Windows. One of the strengths of macOS's memory 

management is its ability to handle low memory situations effectively. 

However, macOS can also suffer from memory fragmentation, which 

can cause performance issues. 

Linux, on the other hand, uses a different approach to memory 

management. Linux uses a combined demand paging and pre-fetching 

system, where pages are loaded into memory before they are needed. 

Linux also uses a swap space to swap out pages when there is not enough 

physical memory available. One of the strengths of Linux's memory 

management is its ability to handle a large number of processes 

effectively. Linux also has better memory utilization compared to other 

operating systems. However, Linux can also suffer from memory 

fragmentation, which can cause performance issues. 

Finally, let's consider FreeBSD. FreeBSD uses a demand paging system, 

similar to Windows and macOS, but it also has a feature called UMA 

(Unified Memory Architecture), which is a memory allocator that 

manages both kernel and user-space memory. FreeBSD also uses a swap 

space to swap out pages when there is not enough physical memory 

available. One of the strengths of FreeBSD's memory management is its 
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ability to handle a large number of processes effectively. FreeBSD also 

has better memory utilization compared to other operating systems. 

However, like other operating systems, FreeBSD can also suffer from 

memory fragmentation. 

In conclusion, each operating system uses a different approach to 

manage its memory resources, and each approach has its strengths and 

weaknesses. Windows and macOS use a demand paging system, while 

Linux and FreeBSD use a combination of demand paging and pre-

fetching. Windows and macOS both use a page file, while Linux and 

FreeBSD use a swap space. Linux and FreeBSD have better memory 

utilization and can handle a larger number of processes effectively, but 

all operating systems can suffer from memory fragmentation, which can 

cause performance issues. 

11 Conclusion 

In conclusion, memory management is a critical component of any 

operating system. It enables processes to access the resources they need 

while ensuring the system's overall stability and performance. 

This chapter provided an overview of the different aspects of memory 

management, including address spaces and memory allocation, paging 

and page replacement algorithms, segmentation and compaction, and 

memory protection and sharing. We also looked at Linux's approach to 

memory management and compared it with other operating systems. 

It's important for system administrators and developers to have a good 

understanding of memory management concepts and techniques to 

ensure optimal system performance and stability. By implementing 

efficient memory management strategies, it's possible to achieve a 

balance between resource utilization and system responsiveness, 

ultimately leading to a better user experience. 


