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Chapter 7:  
Deadlocks 

 

1 Introduction 

Welcome to this chapter on deadlocks in operating systems! In this 

chapter, we will discuss the concept of deadlocks and their importance 

in the context of operating systems. 

A deadlock is a situation in which two or more processes are unable to 

continue executing because each is waiting for one of the others to 

release a resource. In other words, a deadlock occurs when two or more 

processes are stuck in a circular wait for resources, and none of them 

can proceed until the others release the resources they are waiting for. 

Understanding and preventing deadlocks is essential in operating 

systems because deadlocks can cause system failure, which can be costly 

in terms of time, money, and resources. Thus, this chapter will focus on 

the different causes of deadlocks and the strategies for preventing them. 

In summary, the goals of this chapter are to define deadlocks, explain 

why understanding and preventing deadlocks are crucial in operating 

systems, and provide an overview of the strategies for preventing 

deadlocks. 

1.1 Definition of deadlocks 

In the context of operating systems, deadlocks refer to a situation where 

a set of processes are blocked and unable to proceed, as they are waiting 

for resources that are held by other processes in the set. Deadlocks can 
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have a significant impact on the performance and reliability of operating 

systems and can result in significant loss of time, resources, and even 

data. Therefore, it is important to understand the concept of deadlocks, 

their causes, and the various methods used to prevent, detect, and 

resolve them. 

A deadlock is a situation where a set of processes is blocked and unable 

to proceed, as they are waiting for resources that are held by other 

processes in the set. In other words, each process is waiting for a 

resource that is currently held by another process in the set, and hence 

none of the processes can proceed. Deadlocks can occur when a set of 

processes compete for a finite set of resources, and each process requires 

a resource that is held by another process. 

There are four necessary conditions that must be present for a deadlock 

to occur: 

 Resource types and allocation policies: The system must have a 

finite number of resources that are divided into several types, and 

the allocation of these resources must follow a certain policy. 

 Hold and wait: A process must hold at least one resource and be 

waiting for additional resources that are currently held by other 

processes. 

 No preemption: Resources cannot be preempted, i.e., they cannot 

be forcibly removed from a process that is holding them. 

 Circular wait: A set of processes must be waiting for resources in 

a circular chain, where each process is waiting for a resource that 

is held by the next process in the chain. 

Deadlocks can have a significant impact on the performance and 

reliability of operating systems. Therefore, it is important to understand 

the concept of deadlocks, their causes, and the various methods used to 

prevent, detect, and resolve them. In the next chapter, we will discuss 

the various methods used to prevent, detect, and resolve deadlocks in 

operating systems. 
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1.2 Resources  

Resources are an important part of any operating system. They are 

objects to which some process has been granted exclusive access. These 

resources can take many forms, including hardware devices like printers, 

scanners, and Blu-ray drives, as well as software objects like data records, 

files, and other system resources. 

Resources can be categorized in several ways. For example, they can be 

classified as sharable or non-sharable resources. A sharable resource is 

one that can be used by multiple processes at the same time. For 

example, a printer can be used by multiple users simultaneously. On the 

other hand, a non-sharable resource is one that can be used by only one 

process at a time. For example, a Blu-ray drive can be used by only one 

process at a time. 

Another way to categorize resources is by their availability. Some 

resources are always available, while others are created dynamically 

when requested by a process. For example, a printer is always available, 

while a database record is created dynamically when requested by a 

process. 

A computer system can have many different types of resources, and 

managing them can be a complex task. To avoid deadlocks, the 

operating system must carefully manage the allocation and release of 

resources. 

When multiple processes compete for resources, deadlocks can occur. 

A deadlock is a situation in which two or more processes are waiting 

indefinitely for each other to release resources. To avoid deadlocks, the 

operating system must ensure that resources are allocated and released 

in a way that does not allow a circular wait to occur. 
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1.2.1 Preemptable resources  

In operating systems, resources can be classified as preemptable or non-

preemptable. Preemptable resources are those that can be taken away 

from the process owning them without any negative impact. This is in 

contrast to non-preemptable resources, which cannot be taken away 

from the process owning them without causing serious problems. 

Memory is a good example of a preemptable resource. A process may be 

using a certain amount of memory, but if it is preempted, its memory 

can be swapped out to disk without causing any ill effects. When the 

process resumes execution, its memory can be swapped back in from 

disk, and the process can continue where it left off. 

Let's consider an example to illustrate this concept further. Imagine a 

system with 1 GB of user memory, one printer, and two 1-GB processes 

that each want to print something. Process A requests and obtains the 

printer, then starts to compute the values to print. Before it has finished 

the computation, it exceeds its time quantum and is swapped out to disk. 

While Process A is swapped out, Process B requests and obtains the 

printer. Since the printer is a non-preemptable resource, Process A 

cannot proceed until it gets the printer back. However, since memory is 

a preemptable resource, its memory can be swapped out to disk without 

any ill effects. When Process A is ready to continue, its memory can be 

swapped back in from disk and it can continue with the printing process. 

Preemptable resources are important in operating systems because they 

allow for efficient use of system resources. By preempting processes that 

are not currently using their resources, the system can free up those 

resources for other processes to use. This can lead to better overall 

system performance and more efficient use of system resources. 

In conclusion, preemptable resources are resources that can be taken 

away from the process owning them without causing any negative 

impact. Memory is a common example of a preemptable resource in 
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operating systems, and their use is important for efficient use of system 

resources. 

1.2.2 Nonpreemptable resources 

In contrast to preemptable resources, nonpreemptable resources are 

those that cannot be taken away from their current owner without 

potentially causing failure. A common example of a nonpreemptable 

resource is a Blu-ray recorder. If a process is in the middle of burning a 

Blu-ray and the recorder is suddenly taken away and given to another 

process, the result will likely be a garbled or unusable disc. 

Nonpreemptable resources must therefore be carefully managed by the 

operating system to ensure that they are only granted to processes that 

can safely and reliably complete their tasks. 

Managing nonpreemptable resources involves allocating and 

deallocating them in a way that minimizes the risk of contention and 

deadlock. This typically requires the use of more sophisticated 

synchronization mechanisms than those used for preemptable 

resources. For example, one approach to managing nonpreemptable 

resources is to use a token-based protocol, in which processes must 

acquire a token before they can access the resource. The token is passed 

from process to process, ensuring that only one process at a time has 

access to the resource. This approach can be effective but can also lead 

to contention and deadlock if the token becomes unavailable. 

Another approach to managing nonpreemptable resources is to use 

priority-based scheduling. In this approach, processes are assigned 

priorities based on their resource needs and the urgency of their tasks. 

Processes with higher priorities are given access to the resource before 

processes with lower priorities. This approach can be effective but can 

also lead to starvation if lower-priority processes are never given access 

to the resource. 

Overall, managing nonpreemptable resources is a critical aspect of 

operating system design and requires careful consideration of the trade-
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offs between performance, reliability, and fairness. By carefully 

managing these resources, operating systems can ensure that processes 

can complete their tasks without the risk of failure or data corruption. 

1.3 Resource acquisition  

Resource acquisition is a crucial aspect of managing shared resources in 

an operating system. Different resources have different requirements, 

and the way that they are acquired and released must be carefully 

managed to ensure that no process is left waiting indefinitely for a 

resource to become available. 

For some types of resources, such as records in a database system, it is 

up to the user processes to manage the usage of resources themselves. 

In these cases, semaphores or mutexes can be used to control access to 

the resource. 

Each resource is associated with a semaphore or mutex, which is 

initialized to 1. When a process wants to use the resource, it must first 

acquire the semaphore or mutex by performing a "down" operation on 

it. This effectively decrements the semaphore or mutex count and waits 

until it becomes available if it is currently held by another process. Once 

the semaphore or mutex is acquired, the process can use the resource. 

When the process is finished with the resource, it must release it by 

performing an "up" operation on the semaphore or mutex. This 

effectively increments the count and makes the resource available for 

another process to use. 

The use of semaphores and mutexes to manage resource acquisition 

ensures that multiple processes can access the resource without 

conflicting with one another. However, it is important to note that this 

approach can lead to deadlock if processes are not careful to release the 

resource when they are finished using it. In addition, it can be difficult 
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to manage the acquisition and release of resources in a large and 

complex system with many different types of resources. 

Overall, resource acquisition is a critical aspect of operating system 

design, and different types of resources require different approaches to 

ensure efficient and reliable management. By carefully managing 

resource acquisition, an operating system can ensure that processes can 

access the resources they need without encountering conflicts or delays. 

1.4 Importance of understanding and preventing 

deadlocks 

Deadlocks are one of the most significant problems in operating systems 

that can lead to system crashes, data loss, and user frustration. As a 

result, it is crucial to understand and prevent deadlocks in operating 

systems. In this chapter, we will discuss the importance of 

understanding and preventing deadlocks in operating systems. 

Importance of understanding deadlocks: 

 Prevent system crashes: Deadlocks can cause the entire system to 

crash. Understanding how deadlocks occur can help prevent these 

crashes and ensure the stability of the operating system. 

 Improve system performance: Deadlocks can cause resource 

contention and delays, resulting in reduced system performance. 

By understanding how deadlocks occur, we can design systems to 

avoid them, which can improve system performance. 

 Ensure data integrity: Deadlocks can cause data loss or corruption. 

Understanding how deadlocks occur can help prevent these 

problems, ensuring the integrity of the data stored in the 

operating system. 

Importance of preventing deadlocks: 
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 Reduce system downtime: Deadlocks can cause system downtime, 

which can be costly for businesses. Preventing deadlocks can help 

reduce system downtime, leading to improved productivity and 

reduced costs. 

 Improve user experience: Deadlocks can cause programs to freeze, 

leading to a poor user experience. Preventing deadlocks can help 

ensure that programs run smoothly, providing a better user 

experience. 

 Ensure system reliability: Deadlocks can cause system failures, 

leading to data loss and other problems. Preventing deadlocks can 

help ensure system reliability and reduce the risk of data loss or 

other problems. 

In conclusion, understanding and preventing deadlocks is critical for 

ensuring the stability, performance, and reliability of operating systems. 

By taking measures to prevent deadlocks, we can reduce system 

downtime, improve user experience, and ensure data integrity and 

system reliability. 

1.5 Overview of the goals of the chapter 

Deadlocks occur when two or more processes are waiting for a resource 

that is held by another process, and none of the processes can proceed 

until the resource is released. This results in a circular waiting pattern, 

which can lead to a system deadlock. Understanding the causes and 

effects of deadlocks is crucial in ensuring that systems remain reliable 

and efficient. 

The goals of this chapter are to provide a comprehensive overview of 

deadlocks, including their definition, causes, prevention techniques, 

and resolution methods. We will examine the necessary conditions for 

a deadlock to occur and the implications of deadlocks in an operating 

system. Additionally, we will look at how to detect and avoid deadlocks, 

along with the advantages and disadvantages of different approaches. 
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We will also discuss the impact of deadlocks on system performance and 

reliability. 

By the end of this chapter, readers will have a clear understanding of 

what deadlocks are, the conditions that cause them, and the methods 

used to prevent and resolve them. This knowledge will help system 

administrators and developers identify and mitigate potential deadlocks 

in their systems, leading to improved system reliability and performance. 

2 Necessary Conditions for Deadlocks 

Welcome to the chapter on "Necessary Conditions for Deadlocks". In 

this chapter, we will be discussing the necessary conditions that can lead 

to deadlocks in an operating system. Deadlocks are one of the most 

critical problems in operating systems and can cause system crashes, 

data loss, and other serious issues. Therefore, understanding the 

necessary conditions for deadlocks is essential for any operating system 

developer. 

We will start by defining what deadlocks are and why it is essential to 

prevent them. Then, we will discuss the four necessary conditions that 

can lead to deadlocks, which include resource types and allocation 

policies, hold and wait, no preemption, and circular wait. By 

understanding these conditions, you can identify and prevent deadlocks 

in your operating system. 

So, let's dive into the chapter and explore the necessary conditions for 

deadlocks! 

2.1 Resource types and allocation policies 

In order to understand deadlocks, it is important to understand the 

types of resources that can be involved in a deadlock situation. 
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Resources can be classified as either reusable or consumable. Reusable 

resources, such as printers or communication channels, can be used by 

multiple processes at the same time. Consumable resources, such as 

memory or CPU time, are used up as processes run and cannot be shared. 

Resource allocation policies determine how resources are allocated to 

processes. In a system where resources are allocated on a first-come, 

first-served basis, processes may end up holding resources for longer 

than necessary, leading to potential deadlock situations. 

2.2 Mutual exclusion 

Mutual exclusion is a fundamental requirement for concurrent systems 

that deal with shared resources. It refers to the idea that only one 

process can access a shared resource at any given time, to prevent 

conflicting updates and ensure data consistency. The mutual exclusion 

condition is a key concept in operating systems, as it ensures that only 

one process can hold a specific resource at any given time, thereby 

preventing multiple processes from accessing and modifying the same 

resource simultaneously. 

The mutual exclusion condition can be expressed as follows: each 

resource is either currently assigned to exactly one process, or it is 

available. This means that a process must first request a resource before 

it can use it, and only one process can be granted access to the resource 

at a time. Once the process has finished using the resource, it must 

release it back to the system so that other processes can use it. 

In order to implement mutual exclusion, operating systems typically 

provide synchronization mechanisms such as semaphores, mutexes, 

and monitors. These mechanisms ensure that only one process can 

acquire a lock on a resource at any given time, effectively enforcing 

mutual exclusion. 
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The mutual exclusion condition is crucial in preventing race conditions, 

which can occur when two or more processes access the same shared 

resource simultaneously, leading to inconsistent results. By enforcing 

mutual exclusion, operating systems can ensure that each process has 

exclusive access to a resource when it needs it, preventing conflicts and 

ensuring data consistency. 

2.3 Hold and wait 

In addition to the mutual exclusion condition, the hold and wait 

condition is another necessary condition for a deadlock to occur. This 

condition can arise when a process is holding onto a resource while also 

waiting for another resource that is currently being held by another 

process. 

To illustrate this, let's consider a scenario where two processes, A and B, 

each need two resources to complete their tasks. Process A currently 

holds resource 1 but needs resource 2, while process B currently holds 

resource 2 but needs resource 1. If both processes are allowed to hold 

onto their currently held resources and wait for the other process to 

release the needed resource, then a deadlock will occur. 

The hold and wait condition can be avoided by requiring a process to 

request and acquire all necessary resources before beginning execution. 

This can be achieved through various methods such as the banker's 

algorithm or using non-preemptive resources. 

Alternatively, processes can be allowed to release their currently held 

resources and then reacquire them in a predetermined order. This 

approach can help avoid deadlocks by preventing a process from 

holding onto resources while waiting for another resource to become 

available. 

Overall, the hold and wait condition highlights the importance of 

carefully managing resource allocation to prevent situations where 



PAGE 15 

processes are waiting for resources to become available while holding 

onto resources themselves. By proactively addressing this condition, we 

can help reduce the likelihood of deadlocks occurring in a system. 

2.4 No preemption 

The no preemption condition states that resources cannot be taken 

away from a process without that process voluntarily releasing them. 

This means that if a process is holding onto a resource and not releasing 

it, other processes cannot preempt that resource. For example, if process 

A is holding resource R1 and process B needs resource R1 to complete its 

execution, process B cannot forcibly take resource R1 from process A. 

Process A must voluntarily release resource R1 before process B can 

acquire it. 

The no preemption condition is necessary for a deadlock to occur 

because it prevents the system from resolving a deadlock by forcibly 

taking resources away from processes. If the system were allowed to 

forcibly take resources away from processes, it would be possible to 

break a deadlock by forcibly taking a resource from one process and 

giving it to another process. However, if the no preemption condition is 

in effect, the system cannot break a deadlock by forcibly taking 

resources away from processes. 

To illustrate the no preemption condition, consider a system with two 

processes, P1 and P2, and two resources, R1 and R2. Suppose that process 

P1 is holding onto resource R1 and waiting for resource R2, which is 

being held by process P2. Similarly, process P2 is holding onto resource 

R2 and waiting for resource R1, which is being held by process P1. This 

situation creates a deadlock, as neither process can proceed without 

releasing a resource that it is holding. 

Now, suppose that the system is allowed to preempt resources from 

processes. In this case, the system could forcibly take resource R1 from 
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process P1 and give it to process P2, and forcibly take resource R2 from 

process P2 and give it to process P1. This would resolve the deadlock, as 

both processes would now have the resources they need to proceed. 

However, if the no preemption condition is in effect, the system cannot 

forcibly take resources from processes, and the deadlock remains. 

2.5 Circular wait 

The circular wait condition is one of the necessary conditions for a 

deadlock to occur. In a system with multiple processes and resources, 

circular wait happens when a set of processes are waiting for resources 

that are held by other processes in a circular chain. 

For example, process A is waiting for a resource held by process B, 

process B is waiting for a resource held by process C, and process C is 

waiting for a resource held by process A. This creates a circular chain of 

processes waiting for resources, which prevents any of them from 

proceeding and leads to a deadlock. 

Deadlocks can be avoided by breaking the circular wait condition. One 

way to do this is to impose an ordering on the resources, such that all 

processes request resources in the same order. This eliminates the 

possibility of circular wait, as resources are requested in a specific order, 

and each process can acquire the resources it needs without having to 

wait for another process. 

Another way to avoid deadlocks is through resource allocation. The 

operating system can use algorithms like Banker's algorithm, which 

determines if a requested resource allocation will result in a safe state or 

not. If the allocation will not result in a safe state, the request is denied, 

and the process must wait for the requested resource. 

Overall, understanding these necessary conditions for deadlocks is 

crucial for designing and implementing operating systems that are 



PAGE 17 

robust and reliable. In the following sections, we will explore methods 

for detecting, preventing, and resolving deadlocks. 

3 Deadlock modelling 

3.1 Resource allocation graph 

Resource Allocation Graph (RAG) is a graphical representation of 

resources that are being used by a set of processes. In deadlocks, a RAG 

is used to represent the allocation and request of resources by different 

processes. The RAG shows the relationships between resources and 

processes, and helps to determine whether a deadlock exists. 

In a RAG, processes are represented by circles and resources by 

rectangles. The circles are connected to the rectangles by arrows, which 

represent the allocation of resources from the resource to the process. 

Additionally, the rectangles can be connected to each other by another 

set of arrows, which represent the requests of resources from one 

resource to another. 

A RAG can be used to detect whether a deadlock exists in the system. A 

deadlock is said to occur if and only if there exists a cycle in the graph. 

This cycle represents a circular wait, which is one of the necessary 

conditions for a deadlock. If a cycle is detected, it means that there is at 

least one process that is holding a resource and is waiting for another 

resource that is being held by a different process. 

Moreover, a RAG can also be used to resolve deadlocks. If a cycle is 

detected in the RAG, the resources involved in the cycle can be 

examined to determine which resource to preempt, if any. The 

preempted resource can then be allocated to the process that is waiting 

for it, and the cycle can be broken. 
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Example: Here's an example pseudocode for constructing a resource 

allocation graph: 

initialize graph G = (V, E) 

initialize set of processes P = {P1, P2, ..., Pn} 

initialize set of resources R = {R1, R2, ..., Rm} 

 

for each process Pi in P: 

    add node Pi to V 

for each resource Rj in R: 

    add node Rj to V 

 

for each resource allocation edge (Pi, Rj) in E: 

    add edge (Pi, Rj) to G 

 

for each request edge (Rj, Pi) in E: 

    add edge (Rj, Pi) to G 

In this pseudocode, we first initialize an empty graph G, as well as the 

sets of processes P and resources R. We then add nodes to G for each 

process and resource. 

Next, we iterate through the set of edges E and add an edge to G for each 

resource allocation or request. An edge from a process node Pi to a 

resource node Rj represents an allocation of Rj to Pi, while an edge from 

a resource node Rj to a process node Pi represents a request from Pi for 

Rj. This algorithm can be used to construct a resource allocation graph, 

which can then be used to detect and prevent deadlocks in a system. 
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In conclusion, the Resource Allocation Graph is a useful tool for 

detecting and resolving deadlocks in operating systems. It provides a 

clear visualization of the relationships between processes and resources, 

making it easier to understand and identify potential deadlocks. 

3.2 Dealing with deadlocks 

Deadlocks are a challenging problem for operating systems, as they can 

bring an entire system to a standstill. Fortunately, there are several 

strategies that can be used to deal with deadlocks. 

The first strategy is simply to ignore the problem and hope it goes away. 

While this approach might work in some cases, it is not a reliable 

solution and can lead to long periods of system inactivity. 

The second strategy is detection and recovery. This approach involves 

allowing deadlocks to occur, detecting when they happen, and taking 

action to recover from them. This can be done by periodically checking 

the system for deadlocks and releasing resources as necessary to break 

the deadlock. While this approach can be effective, it can also be costly 

in terms of system resources and may not be feasible in all situations. 

The third strategy is dynamic avoidance through careful resource 

allocation. This involves monitoring resource usage in real-time and 

carefully allocating resources to prevent deadlocks from occurring. This 

approach requires sophisticated algorithms and can be difficult to 

implement in practice. 

The final strategy is prevention by structurally negating one of the four 

conditions necessary for a deadlock to occur. For example, by ensuring 

that resources are only ever allocated to a single process at a time, the 

hold and wait condition can be negated. This approach requires careful 

design and can be challenging to implement, but is often the most 

effective way to prevent deadlocks from occurring. 
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Overall, there is no single best approach for dealing with deadlocks, and 

the appropriate strategy will depend on the specific circumstances of 

the system in question. Nevertheless, by carefully monitoring resource 

usage and adopting appropriate prevention and recovery strategies, it is 

possible to minimize the impact of deadlocks and ensure that systems 

remain available and responsive even in the face of these challenging 

situations. 

3.3 The ostrich algorithm  

The ostrich algorithm is a simple approach to dealing with deadlocks 

that involves ignoring the problem and pretending it doesn't exist. This 

approach is often viewed as unacceptable by mathematicians, who 

believe that deadlocks must be prevented at all costs. However, 

engineers tend to take a more practical approach and consider the 

frequency and severity of the problem. 

When deciding whether to use the ostrich algorithm, engineers may ask 

questions such as: How often do deadlocks occur? How often does the 

system crash for other reasons? And how serious are the consequences 

of a deadlock? If deadlocks occur infrequently compared to other system 

failures, engineers may not be willing to pay a large performance or 

convenience penalty to prevent them. 

While the ostrich algorithm may seem like a tempting solution, it is not 

a sustainable approach to handling deadlocks in a production system. 

Ignoring the problem can lead to system instability, and in the worst-

case scenario, it can result in catastrophic failures that can bring down 

the entire system. As such, it is generally recommended to use one of 

the other strategies for dealing with deadlocks, such as detection and 

recovery, dynamic avoidance, or prevention. 
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3.4 Communication deadlocks  

Communication deadlocks occur when processes are waiting for each 

other to communicate and exchange data or messages. This type of 

deadlock can occur in a distributed system or in a system with multiple 

processes communicating through message passing. When two 

processes are waiting for each other to send or receive a message, they 

can deadlock if neither process releases the resources it is holding until 

it receives the message it is waiting for. 

One example of a communication deadlock is a message buffer deadlock, 

where two processes are waiting for each other to release a message 

buffer. For example, Process A may be waiting for Process B to release a 

buffer so that it can send a message, while Process B may be waiting for 

Process A to release a buffer so that it can receive a message. This 

situation can result in a deadlock if neither process releases the buffer it 

is holding. 

Another example of a communication deadlock is a resource deadlock 

caused by a message. For example, a process may be waiting for a 

message from another process before it can release a resource, while the 

other process may be waiting for the same resource before it can send 

the message. This situation can also result in a deadlock if neither 

process releases the resource it is holding. 

To prevent communication deadlocks, it is important to design 

protocols that allow processes to release resources in a timely manner. 

One approach is to use timeouts, which allow processes to release 

resources if they do not receive a message within a certain period of time. 

Another approach is to use a centralized scheduler or a distributed 

algorithm to coordinate the exchange of messages and ensure that 

resources are released in a way that prevents deadlocks. 

Overall, communication deadlocks can be just as problematic as 

resource deadlocks, and it is important for operating system designers 
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to be aware of the potential for both types of deadlocks in their systems. 

By designing protocols that allow processes to release resources in a 

timely manner and by coordinating the exchange of messages, operating 

system designers can prevent communication deadlocks and ensure the 

smooth operation of their systems. 

4 Deadlock detection 

4.1 Deadlock detection with one resource of each type 

Deadlocks can be a real challenge for operating systems, but there are 

various methods to detect and resolve them. In this chapter, we will 

discuss one method for detecting deadlocks when there is only one 

resource of each type. 

To begin with, we can create a resource graph that shows the 

relationships between the resources and the processes that use them. 

The graph will contain nodes representing the processes and the 

resources, with directed edges connecting a process to the resource it is 

currently holding and the resource to the process that is waiting for it. 

In this system with only one resource of each type, we can assume that 

a process can hold onto at most one resource at any given time. 

Therefore, the graph will not contain multiple edges connecting a 

process to different resources of the same type. 

If this resource graph contains one or more cycles, a deadlock exists. A 

cycle represents a situation where a process is waiting for a resource that 

is held by another process, which in turn is waiting for a resource held 

by a third process, and so on, until the cycle completes. Any process that 

is part of a cycle is deadlocked and cannot make any progress until the 

deadlock is resolved. 
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On the other hand, if there are no cycles in the resource graph, the 

system is not deadlocked. The processes are all able to acquire the 

resources they need to complete their tasks without waiting indefinitely 

for other processes to release their resources. 

Using this method to detect deadlocks in a system with one resource of 

each type is relatively simple and straightforward. However, this 

approach becomes more complicated when there are multiple resources 

of the same type or when processes can hold multiple resources at the 

same time. In the next chapter, we will discuss a more complex method 

for detecting deadlocks in these types of systems. 

 

In order to detect deadlocks in a system where there is only one resource 

of each type, we can use an algorithm known as the cycle detection 

algorithm. The algorithm works by constructing a resource graph that 

shows the relationships between processes and resources. If this graph 

contains one or more cycles, then a deadlock exists in the system. 

The cycle detection algorithm operates by performing a series of steps 

for each node in the graph. First, we initialize an empty list L and mark 

all arcs as unmarked. Then, we add the current node to the end of L and 

check to see if it appears in the list two times. If it does, then the graph 

contains a cycle, and the algorithm terminates. 

If there are any unmarked outgoing arcs from the current node, we pick 

one at random and mark it. We then follow it to the new current node 

and go back to step 3. If there are no unmarked outgoing arcs, we have 

reached a dead end. We remove this node and go back to the previous 

node, make that one the current node, and go to step 3. 

If we reach the initial node again and there are no cycles, then the 

algorithm terminates. By following these steps, we can detect deadlocks 

in a system with one resource of each type. 
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It's worth noting that this algorithm assumes that there is only one 

resource of each type in the system. If there are multiple resources of a 

particular type, a different algorithm would be needed to detect 

deadlocks. However, the cycle detection algorithm is a useful starting 

point for understanding the principles of deadlock detection in 

operating systems. 

4.2 Deadlock detection with multiple resources of each 

type 

In more complex systems, with multiple copies of some of the resources, 

a different algorithm is required to detect deadlocks. In this case, a 

matrix-based approach can be used to detect deadlock among n 

processes, P1 through Pn. 

Let the number of resource classes be m, with E1 resources of class 1, E2 

resources of class 2, and so on, with Ei resources of class i (1 ≤ i ≤ m). The 

existing resource vector, E, gives the total number of instances of each 

resource in existence. For example, if class 1 is tape drives, then E1 = 2 

means the system has two tape drives. 

At any instant, some of the resources are assigned and are not available. 

The available resource vector, A, indicates the number of instances of 

each resource that are currently available and unassigned. For example, 

if both tape drives are assigned, A1 will be 0. 

To detect deadlocks, two arrays are used: C, the current allocation 

matrix, and R, the request matrix. The current allocation matrix, C, has 

n rows and m columns, with each element Cij indicating the number of 

resources of type j currently allocated to process Pi. The request matrix, 

R, has the same dimensions as C and indicates the number of resources 

of each type that each process is requesting. 
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The detection algorithm checks whether there is a safe sequence of 

processes that can complete their execution. A safe sequence is a 

sequence of processes such that for each process Pi, the resources it 

needs to complete its execution are available either currently or after 

completing the execution of some other process Pj. If a safe sequence 

exists, then there is no deadlock. 

The detection algorithm works by initializing the work vector, W, to the 

available resource vector, A. Then, for each process Pi, the algorithm 

checks whether Pi can complete its execution by comparing the number 

of resources it needs, as specified in the request matrix, R, with the 

number of resources currently available, as specified in the work vector, 

W. If Pi can complete its execution, then it releases its resources to the 

system and adds them to the work vector. The algorithm continues this 

process until all processes can complete their execution or no process 

can be completed. 

If there is no safe sequence of processes, then a deadlock exists. In this 

case, the algorithm identifies the deadlocked processes by constructing 

a graph, with one node for each process that is deadlocked, and one edge 

for each resource that the process is waiting for. The graph is then 

searched for a cycle, and if one is found, the deadlocked processes are 

identified. 

In summary, the matrix-based algorithm for deadlock detection with 

multiple resources of each type involves using two arrays, C and R, to 

represent the current allocation and resource request matrices. The 

algorithm works by checking for the existence of a safe sequence of 

processes and identifying deadlocked processes by constructing a graph 

and searching for a cycle. 

 

In this section, we'll discuss the matrix-based algorithm used to detect 

deadlocks in a system with n processes and m resource classes. As 

mentioned earlier, let's assume there are E1 resources of class 1, E2 
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resources of class 2, and so on, up to Em resources of class m. 

Additionally, we have an available resource vector A, which specifies the 

number of instances of each resource that are currently available and 

unassigned. The current allocation matrix, C, shows the current 

allocation of resources to processes, while the request matrix, R, shows 

the additional resources that each process needs to complete its 

execution. 

The deadlock detection algorithm can be described in the following 

steps: 

1. Look for an unmarked process, Pi, for which the ith row of R is 

less than or equal to A. 

2. If such a process is found, add the ith row of C to A, mark the 

process, and go back to step 1. 

3. If no such process exists, the algorithm terminates. 

In step 1, we're trying to find a process whose resource requests can be 

satisfied with the available resources. If we find such a process, we add 

its allocated resources to the available resource vector and mark the 

process as having been examined. We then start over from step 1 and 

continue until all processes have been marked, or until there are no 

more unmarked processes that can be satisfied. 

This algorithm is a form of a banker's algorithm that determines 

whether the system is in a safe state or not. The system is considered to 

be in a safe state if there exists a sequence of processes such that each 

process can acquire all the resources it needs before any of the other 

processes in the sequence request any resources. 

In conclusion, this matrix-based algorithm provides an efficient way to 

detect deadlocks in a system with multiple resources of each type. By 

following these simple steps, we can identify which processes are 

deadlocked and take appropriate measures to resolve the issue. 
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5 Recovery from deadlock 

We will delve into the methods of resolving deadlocks, including killing 

processes, resource preemption, and rollback and recovery. By the end 

of this chapter, you will have a comprehensive understanding of the 

causes and prevention of deadlocks and the techniques to resolve them. 

5.1 Killing processes 

In some cases, it may be necessary to kill one or more processes to break 

a deadlock. This is often seen as a last resort, as it can result in loss of 

data or incomplete transactions. In this chapter, we will discuss the 

process of killing processes as a method of resolving deadlocks. 

When a deadlock is detected, the operating system may choose to kill 

one or more of the processes involved in the deadlock. This is done to 

free up resources that are being held by those processes and break the 

deadlock. The operating system must carefully select which process or 

processes to kill in order to minimize the impact on the system as a 

whole. 

When choosing which process to kill, the operating system should 

consider several factors, such as the importance of the process, the 

amount of resources it is currently holding, and the potential impact on 

other processes. If the process being killed is part of a larger transaction 

or operation, the operating system should ensure that any necessary 

rollback or recovery procedures are carried out to minimize data loss. 

Once the process or processes have been selected for termination, the 

operating system will send a signal to those processes to instruct them 

to terminate. The process being killed should release any resources it is 

currently holding to ensure that they can be used by other processes in 

the system. 
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Killing processes can have a significant impact on system performance, 

particularly if the process being killed is a critical system process. This 

can lead to system instability, crashes, or even data loss. 

To minimize the impact of killing processes, the operating system 

should ensure that any necessary recovery procedures are carried out to 

restore the system to a stable state. In addition, the operating system 

should monitor system performance after the processes have been killed 

to ensure that there are no lingering issues that may impact system 

reliability. 

Killing processes is a drastic measure that should only be taken as a last 

resort when other deadlock resolution methods have failed. The 

operating system must carefully consider the impact of killing processes 

on the system as a whole, and take steps to minimize any negative 

impact on system performance or reliability. 

5.2 Resource preemption 

In cases where deadlocks cannot be prevented or avoided, the next step 

is to resolve the deadlock. One method of resolving deadlocks is through 

resource preemption. Resource preemption is the act of forcibly 

removing resources from a process in order to free them up and allow 

other processes to proceed. 

Resource preemption can be a useful strategy in resolving deadlocks. 

However, it can also be a complex and potentially dangerous technique, 

as forcibly removing resources from a process can result in data loss or 

corruption if not done carefully. In this chapter, we will explore the 

concept of resource preemption in deadlocks resolution. 

Resource preemption involves the following basic principles: 

 Priority: The resources being preempted must have a well-defined 

priority scheme. This priority scheme is used to determine which 



PAGE 29 

process should have its resources preempted in order to break the 

deadlock. 

 Rollback: When a resource is preempted from a process, the 

process may need to be rolled back to a previous state in order to 

release the resource. This involves undoing any work that has 

been done since the resource was acquired. 

 Avoidance of Starvation: Resource preemption must be done in a 

way that does not cause starvation of any process. This means that 

resources should be preempted in a fair and equitable way, and 

that all processes should have an equal chance of obtaining the 

resources they need. 

 

There are several methods of resource preemption, including: 

 Victim Selection: The first step in resource preemption is to select 

a process to be the victim. The victim is the process whose 

resources will be preempted. The selection process typically 

involves choosing the process with the lowest priority or the 

process that has been waiting the longest. 

 Rollback: Once a victim has been selected, the process must be 

rolled back to a previous state in order to release the resources. 

This involves undoing any work that has been done since the 

resource was acquired. 

 Re-allocation: Once the resources have been preempted, they 

must be allocated to another process. This may involve choosing 

a process from a waiting list or using a priority scheme to 

determine which process should receive the resources. 

 Notification: Finally, the process that has had its resources 

preempted must be notified of the preemption. This allows the 

process to take any necessary action to recover from the 

preemption. 

Resource preemption is a complex technique that should be used with 

caution. It is important to have a well-defined priority scheme in place, 
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as well as a plan for rolling back processes and reallocating resources. 

Additionally, care should be taken to ensure that resource preemption 

does not cause starvation of any process. 

Resource preemption is a powerful technique for resolving deadlocks. 

By forcibly removing resources from a process, resource preemption can 

break deadlocks and allow other processes to proceed. However, 

resource preemption must be used with care, as it can result in data loss 

or corruption if not done properly. By following the basic principles of 

resource preemption and using well-defined methods, deadlocks can be 

resolved safely and efficiently. 

5.3 Rollback and recovery 

In some cases, killing processes or resource preemption may not be 

feasible solutions for resolving deadlocks. Another approach is to use 

rollback and recovery techniques to undo the actions that led to the 

deadlock and restore the system to a consistent state. In this chapter, 

we will discuss the use of rollback and recovery techniques for resolving 

deadlocks in operating systems. 

Rollback and recovery techniques involve undoing the actions that led 

to the deadlock and restoring the system to a consistent state. This can 

be done by rolling back transactions and re-executing them in a 

different order. Rollback and recovery techniques can be used to resolve 

deadlocks in systems where processes communicate with each other 

through transactions. A transaction is a sequence of operations that 

must be completed as a whole. In case of a deadlock, the transactions 

involved in the deadlock can be rolled back and re-executed in a 

different order to avoid the deadlock. 
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5.3.1 Two-Phase Commit Protocol 

The two-phase commit protocol is a popular rollback and recovery 

technique used for resolving deadlocks in distributed systems. In this 

protocol, a coordinator is responsible for managing the transactions and 

ensuring that they are executed in a consistent manner. The protocol 

consists of two phases: 

 Commit Request Phase: In this phase, the coordinator sends a 

message to all the participants asking them if they are ready to 

commit the transaction. If all the participants reply with a yes, the 

coordinator sends a message to all the participants asking them to 

commit the transaction. 

 Commit Phase: In this phase, the participants commit the 

transaction and send a message to the coordinator confirming 

that the transaction has been committed. 

If a participant does not reply to the commit request or replies with a 

no, the coordinator aborts the transaction and rolls it back. This ensures 

that the system is always in a consistent state and avoids deadlocks. 

5.3.2 Checkpointing 

Checkpointing is another technique used for rollback and recovery in 

operating systems. In this technique, the state of the system is saved at 

regular intervals in a checkpoint file. If a deadlock occurs, the system 

can be restored to a consistent state by rolling back to the last 

checkpoint and re-executing the transactions from that point. 

Rollback and recovery techniques are often used in distributed systems 

where processes communicate with each other through transactions. 

They are effective in resolving deadlocks and ensuring that the system 

remains in a consistent state. However, they can be costly in terms of 

time and resources required for rollback and recovery. Compared to 

other techniques such as killing processes or resource preemption, 
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rollback and recovery techniques are more complex and require more 

sophisticated algorithms to be implemented. 

In conclusion, rollback and recovery techniques are an effective way of 

resolving deadlocks in operating systems. They involve undoing the 

actions that led to the deadlock and restoring the system to a consistent 

state. The two-phase commit protocol and checkpointing are popular 

rollback and recovery techniques used for resolving deadlocks in 

distributed systems. However, they can be costly in terms of time and 

resources required for rollback and recovery. 

6 Deadlock Avoidance 

Deadlock is a situation that occurs in an operating system when two or 

more processes are blocked, waiting for each other to release resources. 

It can cause a significant delay in system performance and result in a 

loss of data. In this chapter, we will discuss the concept of deadlock 

avoidance, which is an important aspect of operating system design. 

Deadlock avoidance is the approach that an operating system uses to 

prevent deadlocks from occurring. In this chapter, we will explore the 

various techniques and algorithms that can be used to prevent 

deadlocks in a system. We will first discuss the concept of safe and 

unsafe states and how they relate to deadlock avoidance. Then we will 

delve into the Banker's algorithm for deadlock avoidance, which is 

widely used in operating systems. 

Deadlock avoidance is a technique used to prevent the occurrence of 

deadlocks by ensuring that the system remains in a safe state. In this 

chapter, we will discuss the concept of safe and unsafe states in the 

context of deadlocks avoidance. 
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6.1 Safe State 

A safe state is a system state in which all processes can complete their 

execution without leading to a deadlock. In other words, a safe state is 

a state in which the system can allocate resources to all the processes in 

some order and still avoid a deadlock. A system can be considered to be 

in a safe state if there is at least one sequence of resource allocations 

that can lead to a state where all processes have obtained their required 

resources and completed their execution. 

6.2 Unsafe State 

An unsafe state is a system state in which the system may or may not 

lead to a deadlock. In other words, an unsafe state is a state in which the 

system cannot allocate resources to all the processes in some order 

without leading to a deadlock. A system can be considered to be in an 

unsafe state if there is no sequence of resource allocations that can lead 

to a state where all processes have obtained their required resources and 

completed their execution. 

6.3 Resource Allocation Graph 

The resource allocation graph is a technique used to check if a system is 

in a safe or unsafe state. The resource allocation graph consists of two 

types of nodes: process nodes and resource nodes. A process node 

represents a process, and a resource node represents a resource. 

In the resource allocation graph, a directed edge from a process node to 

a resource node represents a process requesting a resource, and a 

directed edge from a resource node to a process node represents a 

resource being held by a process. A cycle in the resource allocation 

graph indicates the presence of a deadlock. 
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6.4 Banker's Algorithm 

The banker’s algorithm is a scheduling algorithm that can prevent 

deadlocks by checking if a request can be granted without leading to an 

unsafe state. It is based on the analogy of a small-town banker who 

grants lines of credit to customers. 

In the banker’s algorithm, each process is assigned a maximum demand 

for each resource type, which represents the maximum number of 

resources the process will need at any given time. The system also 

maintains a current allocation of resources to each process and an 

available resource vector, which represents the number of resources of 

each type that are currently available. 

When a process requests resources, the banker’s algorithm checks 

whether granting the request will lead to an unsafe state, i.e., a state 

where deadlock may occur. To do this, the algorithm simulates the 

granting of the request by subtracting the requested resources from the 

available resource vector and adding them to the process’s current 

allocation. It then checks whether there exists a safe sequence of 

processes that can complete their work using the available resources. If 

such a sequence exists, the request is granted; otherwise, it is denied. 

The safe sequence is determined using a variation of the deadlock 

detection algorithm presented earlier. Starting from the current 

available resource vector, the algorithm searches for a process whose 

maximum demand can be satisfied using the available resources. If such 

a process is found, its allocated resources are released, and the process 

is removed from the system. The resources released by the process are 

added back to the available resource vector, and the search continues 

until either all processes have been satisfied or no process can be 

satisfied. 
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If the request cannot be granted, the process is forced to wait until the 

required resources become available. This may cause delays and reduce 

system efficiency, but it ensures that deadlock cannot occur. 

In summary, the banker’s algorithm is a scheduling algorithm that can 

prevent deadlocks by checking if a request can be granted without 

leading to an unsafe state. It is based on the analogy of a small-town 

banker who grants lines of credit to customers and ensures that the 

resources are allocated in a safe and efficient manner. 

The banker's algorithm consists of the following steps: 

 When a process requests a resource, the system checks if the 

request can be granted without leading to an unsafe state. 

 If the request can be granted, the system allocates the resource to 

the process. 

 If the request cannot be granted, the process is blocked until the 

resource becomes available. 

 When a process releases a resource, the system checks if this 

release can lead to a safe state. 

 If the release leads to a safe state, the system deallocates the 

resource from the process and grants the resource to the next 

process in the queue. 

The Banker's algorithm uses a set of rules to determine whether a 

resource request should be granted or not. The rules are as follows: 

 If a process requests resources, they are immediately denied if the 

resources they request are not currently available. 

 If a process requests resources, they are immediately denied if 

granting the request will cause the system to enter an unsafe state. 

 If a process requests resources, they are granted the resources if 

they are immediately available, and granting the resources will 

not cause the system to enter an unsafe state. 

 If a process requests resources that are not immediately available, 

they are placed in a queue until the resources become available. 
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When the resources become available, the algorithm checks if 

granting the request will cause the system to enter an unsafe state. 

If it does not, the request is granted, and the process can continue. 

Example: The concept of safe and unsafe states is typically used in 

conjunction with the Banker's algorithm for deadlock avoidance. Here 

is a pseudocode example: 

/* Assume we have n processes and m resource types */ 

 

/* Function to check if a state is safe */ 

boolean isSafe(int available[], int max[][m], int allocation[][m], 

int n) { 

    int work[m]; 

    boolean finish[n]; 

    int i, j; 

     

    /* Initialize work and finish arrays */ 

    for (i = 0; i < m; i++) { 

        work[i] = available[i]; 

    } 

    for (i = 0; i < n; i++) { 

        finish[i] = false; 

    } 

     

    /* Find an unfinished process with needs less than or equal to 

work */ 

    for (i = 0; i < n; i++) { 

        if (finish[i] == false) { 
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            boolean needsMet = true; 

            for (j = 0; j < m; j++) { 

                if (max[i][j] - allocation[i][j] > work[j]) { 

                    needsMet = false; 

                    break; 

                } 

            } 

            if (needsMet) { 

                /* Release resources from process i */ 

                for (j = 0; j < m; j++) { 

                    work[j] += allocation[i][j]; 

                } 

                /* Mark process i as finished */ 

                finish[i] = true; 

                /* Restart the search for an unfinished process */ 

                i = -1; 

            } 

        } 

    } 

     

    /* If all processes are finished, the state is safe */ 

    for (i = 0; i < n; i++) { 

        if (finish[i] == false) { 

            return false; 

        } 
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    } 

    return true; 

} 

This code assumes that the available resources, maximum resource 

needs, and current resource allocations are stored in arrays available, 

max, and allocation, respectively. The n parameter is the number of 

processes in the system, and m is the number of resource types. The 

function returns true if the state is safe and false otherwise. 

In this chapter, we have discussed the concept of safe and unsafe states 

in the context of deadlock avoidance. We have also discussed the 

resource allocation graph and the banker's algorithm for deadlock 

avoidance. By using these techniques, operating systems can ensure that 

the system remains in a safe state, thereby preventing deadlocks from 

occurring. 

7 Deadlock prevention 

7.1 Attacking the mutual-exclusion condition 

Mutual exclusion is a fundamental requirement for preventing race 

conditions and maintaining data consistency. However, as we have seen, 

it can also lead to deadlocks. In order to prevent deadlocks by attacking 

the mutual-exclusion condition, we need to find ways to allow multiple 

processes to access shared resources concurrently without interfering 

with each other. 

One way to achieve this is to make data read-only. This means that 

multiple processes can access the same data at the same time without 

causing any conflicts. This approach works well for situations where 

data is being read, but it is not suitable for situations where data is being 

modified. 
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Another way to attack the mutual-exclusion condition is to use spooling. 

Spooling is a technique where data is temporarily stored in a buffer or 

queue until it can be processed. For example, when multiple processes 

want to print output on a shared printer, the output is first spooled to a 

temporary buffer. Then, a separate process, known as the printer 

daemon, accesses the printer and prints out the output from the buffer. 

By using spooling, multiple processes can generate output at the same 

time without interfering with each other. Since the printer daemon 

never requests any other resources, we can eliminate deadlock for the 

printer. 

In some cases, it may also be possible to use non-exclusive access control 

mechanisms to allow multiple processes to access shared resources 

concurrently. For example, in a database management system, multiple 

processes can access the same database concurrently by using locking 

and transaction management mechanisms. 

In summary, attacking the mutual-exclusion condition involves finding 

ways to allow multiple processes to access shared resources 

concurrently without interfering with each other. This can be achieved 

by making data read-only, using spooling, or using non-exclusive access 

control mechanisms. By using these techniques, we can prevent 

deadlocks caused by mutual exclusion while still maintaining data 

consistency and integrity. 

7.2 Attacking the hold-and-wait condition 

While requiring all resources to be requested before execution starts 

may eliminate deadlocks, it is often impractical. A more flexible 

approach is to use a technique called resource ordering. With resource 

ordering, resources are given a fixed order, and a process may only 

request resources in that order. If a process needs a resource that is later 

in the order, it must release all resources that come earlier in the order 
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before making the request. This technique ensures that a process never 

holds resources while waiting for others. 

Another approach to attacking the hold-and-wait condition is to use a 

two-phase locking protocol. In this protocol, a process may request 

resources one at a time, but once a resource is acquired, it is held until 

the process releases all resources. This technique ensures that a process 

will never request a resource while holding another, thereby avoiding 

the hold-and-wait condition. However, it may lead to resource 

starvation, as a process that holds a resource cannot request any others 

until it releases the held resource. 

Yet another technique is to require that a process release all its resources 

whenever it is blocked, and then request all of them again when it is 

unblocked. This approach is known as restartable atomic actions and is 

typically used in database systems. While effective, it can be expensive, 

as it requires redoing all actions that have been completed up to the 

point of the block. 

In summary, there are several ways to attack the hold-and-wait 

condition, including resource ordering, two-phase locking, and 

restartable atomic actions. Each technique has its advantages and 

disadvantages, and the choice of technique depends on the specific 

requirements of the system being designed. 

7.3 Attacking the no-preemption condition 

The third condition stated by Coffman et al. is the no-preemption 

condition. It states that resources cannot be taken away from a process 

unless that process releases them voluntarily. This condition makes it 

difficult to prevent deadlocks because it is hard to force a process to 

release resources that it is holding. However, there are some strategies 

that can be used to attack this condition and prevent deadlocks. 
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One approach is to use virtualization to create the illusion of 

preemption. For example, in the printer and plotter scenario discussed 

earlier, spooling printer output to disk creates a virtual printer that can 

be preempted if necessary. The printer daemon has exclusive access to 

the physical printer, but other processes can write to the spool area and 

create a queue of print jobs. The daemon reads the spool files and sends 

them to the printer as resources become available. If a process needs the 

plotter while waiting for the printer, it can be allocated the plotter 

resource without affecting the printer resource. When the printer 

resource becomes available, the process can resume printing without 

losing any data. 

Another approach to attacking the no-preemption condition is to use 

timeouts to force processes to release resources. A timeout mechanism 

can be built into the resource allocation algorithm so that if a process 

holds a resource for too long, it is forcibly released. This approach is 

effective for some resources, such as network connections, where it is 

not too disruptive to terminate a connection and start over. However, it 

may not work for resources that hold state, such as files or database 

records, because terminating the process could lead to data corruption 

or inconsistency. 

A third approach to attacking the no-preemption condition is to use 

priority-based scheduling to allocate resources. In a priority-based 

system, processes are assigned a priority level that determines their 

access to resources. A process with a higher priority can preempt a 

process with a lower priority if it needs the same resource. This 

approach can work well for real-time systems where certain tasks have 

strict timing requirements. However, it may not work well for general-

purpose systems where fairness and equality are important. 

In summary, the no-preemption condition makes it difficult to prevent 

deadlocks, but virtualization, timeouts, and priority-based scheduling 

are all effective strategies for attacking this condition. Each strategy has 



PAGE 42 

its strengths and weaknesses, and the choice of strategy depends on the 

specific requirements of the system. 

7.4 Attacking the circular wait condition  

Attacking the circular wait condition is the final step in preventing 

deadlocks. One way to eliminate circular wait is to enforce a rule that a 

process can only hold one resource at a time. This approach may work 

in some scenarios, but it can be impractical for processes that require 

multiple resources simultaneously. 

Another approach is to impose a total ordering of all resources and 

require processes to request resources in that order. For example, if 

resources A, B, and C have an order such that A < B < C, then a process 

can only request B after obtaining A and can only request C after 

obtaining B. This approach can prevent circular wait, but it requires a 

strict ordering of all resources, which may be difficult to achieve in some 

systems. 

A more flexible approach is to allow processes to request resources in 

any order but to impose a limit on the number of resources a process 

can hold at any given time. This limit can be set to the maximum 

number of resources that any process will need, which can prevent 

circular wait by limiting the number of processes that can be involved 

in a circular wait situation. 

Another way to prevent circular wait is to use a resource allocation 

graph (RAG) to track resource requests and allocations. The RAG is a 

directed graph where nodes represent processes and resources, and 

edges represent requests and allocations. If the graph contains a cycle, 

then there is a circular wait situation, and deadlock is possible. To 

prevent deadlock, the system can use an algorithm to detect cycles in 

the RAG and break them by releasing resources held by one of the 

processes involved in the cycle. 
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In conclusion, the circular wait condition can be eliminated by 

enforcing a rule that a process can hold only one resource at a time, 

imposing a strict ordering of all resources, limiting the number of 

resources a process can hold at any given time, or using a resource 

allocation graph to detect and break cycles. Each of these approaches 

has its own strengths and weaknesses, and the choice depends on the 

specific requirements of the system. 

7.5 Prevention through resource ordering and 

allocation policies 

Prevention through resource ordering and allocation policies is an 

approach used to avoid deadlocks in operating systems. This approach 

involves imposing a particular order on the acquisition of resources, 

which helps to avoid the conditions that cause deadlocks. 

The idea behind this approach is to define a hierarchy of resources and 

require that resources be acquired in a specific order. This way, each 

process will acquire the resources it needs in the right order, preventing 

circular wait conditions that cause deadlocks. 

For instance, if two resources A and B are needed by a process, and the 

required order is A then B, then the process must first acquire resource 

A before acquiring resource B. This ensures that resource B is not 

already held by another process that might cause a deadlock. 

This approach can be implemented using various methods, such as 

using a resource allocation table that defines the order in which 

resources must be acquired or using a priority-based approach where 

higher priority processes are given preference in acquiring resources. 

One common resource ordering policy is the "first-come, first-served" 

approach. This approach ensures that resources are allocated to 

processes in the order in which they request them. However, this 
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approach can lead to inefficient use of resources since a process that is 

holding a resource might block other processes from using it even when 

it is not actively using it. 

Another approach is the "priority-based" approach, where higher 

priority processes are given preference in acquiring resources. This 

approach ensures that critical processes are given access to the 

resources they need before lower priority processes. However, this 

approach can also lead to inefficiencies if a higher priority process is 

waiting for a lower priority process to release a resource it needs. 

Overall, prevention through resource ordering and allocation policies is 

an effective approach to avoid deadlocks in operating systems. However, 

it is important to choose the right resource allocation policy that 

balances efficiency and fairness. 

7.6 Prevention through timeouts and deadlock 

detection 

Preventing deadlocks is an essential aspect of operating system design. 

One approach to prevent deadlocks is through the use of timeouts and 

deadlock detection. In this chapter, we will discuss the concept of 

timeouts and deadlock detection, and their role in preventing deadlocks. 

A timeout is a mechanism that enables a process to give up waiting for 

a resource after a certain period. Timeouts can be used to avoid 

deadlocks by enforcing a time limit on how long a process is allowed to 

wait for a resource. If the resource is not available within the specified 

time limit, the process is interrupted, and the resource is released, 

allowing other processes to access it. 

Another approach to preventing deadlocks is through deadlock 

detection. Deadlock detection involves periodically checking the 

resource allocation graph for cycles, which would indicate the presence 
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of a deadlock. When a cycle is detected, the operating system can take 

one of two actions: either preempt resources to break the deadlock, or 

kill one of the processes involved in the cycle. Deadlock detection can 

be implemented using algorithms such as the Banker's algorithm. 

Timeouts and deadlock detection can be used together to prevent 

deadlocks. In this approach, processes are allowed to wait for a resource 

for a certain period, after which the operating system checks for 

deadlocks. If a deadlock is detected, the operating system can take 

appropriate action, such as releasing resources or killing processes. 

Timeouts and deadlock detection are essential techniques for 

preventing deadlocks in operating systems. Timeouts provide a 

mechanism for processes to release resources if they are not available 

within a certain time, while deadlock detection allows the operating 

system to identify and resolve deadlocks before they cause system-wide 

issues. By using a combination of these techniques, operating systems 

can ensure that deadlocks are prevented or resolved quickly, improving 

system performance and reliability. 

7.7 Two-phase locking  

Two-phase locking is a technique used in many database systems to 

prevent deadlocks. It is based on the idea of acquiring all necessary locks 

before beginning any real work. In the first phase, the process tries to 

lock all the records it needs, one at a time. If it succeeds, it begins the 

second phase, performing its updates and releasing the locks. No real 

work is done in the first phase. 

The two-phase locking algorithm can be summarized as follows: 

 In the growing phase, a transaction can acquire locks but cannot 

release any locks. 

 In the shrinking phase, a transaction can release locks but cannot 

acquire any locks. 
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 Once a transaction enters the shrinking phase, it cannot return to 

the growing phase. 

The two-phase locking algorithm guarantees serializability, meaning 

that the transactions are executed as if they occurred one at a time in 

some order, even though they may actually execute concurrently. 

Serializability ensures that the results of concurrent transactions are 

equivalent to the results of executing the transactions serially. 

One potential drawback of two-phase locking is that it can lead to 

deadlock if transactions hold locks for an extended period of time. To 

avoid this, some database systems use a timeout mechanism, where a 

transaction is forced to release its locks after a certain period of time if 

it has not completed its updates. 

In summary, two-phase locking is a technique used in database systems 

to prevent deadlocks. It ensures serializability by acquiring all necessary 

locks before beginning any real work, and releasing them only after all 

work has been completed. While it can lead to deadlocks if locks are 

held for an extended period of time, a timeout mechanism can be used 

to mitigate this risk. 

8 Other issues 

8.1 Livelock  

Livelock is a situation where two or more processes keep changing their 

state in response to changes in the other process's state, but no progress 

is made. In other words, the processes are not deadlocked, but they are 

unable to proceed with their tasks because they are constantly 

responding to the actions of the other process. 

One common cause of livelock is when two or more processes are 

waiting for a shared resource to become available, but each process 
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releases the resource when it detects that the other process is waiting 

for it. This results in a situation where the resource is constantly being 

passed back and forth between the processes, but neither process can 

actually make progress. 

Another cause of livelock is when two or more processes are trying to 

coordinate their actions, but each process is waiting for the other 

process to take the first step. For example, consider a situation where 

two robots are trying to navigate through a narrow corridor. If each 

robot keeps moving aside to let the other robot pass, they may end up 

moving back and forth without ever making any progress. 

To avoid livelock, it is important to design algorithms that are resilient 

to unexpected events and that can handle situations where processes 

need to coordinate their actions. One approach is to use timeouts to 

ensure that processes do not wait indefinitely for a resource or a 

response from another process. Another approach is to use randomized 

algorithms that introduce some degree of randomness into the decision-

making process, which can help to break deadlocks and prevent 

livelocks. 

Overall, livelock is a complex issue that requires careful consideration 

when designing distributed systems and algorithms. By understanding 

the causes and implications of livelock, it is possible to design systems 

that are more resilient and that can handle unexpected events in a 

graceful manner. 

8.2 Livelock vs Deadlock 

Livelock and deadlock are not always straightforward to identify and can 

occur in unexpected ways. For example, in some operating systems, the 

number of processes allowed is limited by the number of entries in the 

process table. When a program attempts to fork a new process but fails 

due to a full process table, a reasonable strategy might be to wait for a 
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random time and try again. However, this can lead to livelock if multiple 

processes are attempting to fork at the same time and repeatedly fail 

due to the same resource constraint. 

In this scenario, the processes are all attempting to acquire the same 

finite resource (i.e., an entry in the process table) and are repeatedly 

failing and retrying at the same time. This can lead to a situation where 

none of the processes are able to make progress, even though they are 

all technically executing. 

To avoid this type of livelock, a better strategy might be for the processes 

to wait for a random time and then retry the fork operation at different 

times, rather than all attempting to retry at the same time. This way, 

there is a higher likelihood that at least one process will be able to 

acquire the necessary resource and make progress, rather than all of 

them continuously failing and retrying. 

8.3 Starvation  

Starvation is a phenomenon that occurs when a process is perpetually 

denied access to a resource it requires to execute, even though the 

resource is available. This problem is closely related to deadlock and 

livelock, as all three can occur due to poor resource allocation policies. 

When a system is dynamic, requests for resources occur frequently, and 

there is a need to allocate resources fairly. However, the resource 

allocation policy may not be optimal and can lead to some processes 

never getting the resources they need, even though they are not 

deadlocked. 

A common example of starvation is the allocation of a printer. In a 

scenario where multiple processes want to use the printer 

simultaneously, a decision must be made about who gets to use it first. 

However, if the system's policy is to always give the printer to the same 
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process, other processes may be starved of access to the printer 

indefinitely. 

One way to prevent starvation is to implement a fairness policy that 

ensures every process gets a chance to use the resource. This policy 

could be based on a round-robin algorithm, where each process gets a 

turn to use the resource in a predetermined order. 

Another solution is to implement a priority-based resource allocation 

policy. Processes with higher priority levels are given priority access to 

the resource, ensuring that they are not starved of the resources they 

need. 

It is important to note that, although a fair allocation policy may prevent 

starvation, it may also lead to some resources being underutilized. 

Therefore, a balance must be struck between preventing starvation and 

maximizing resource utilization. 

In conclusion, starvation is a problem that occurs when a process is 

perpetually denied access to a resource it needs, even though the 

resource is available. To prevent starvation, a fair resource allocation 

policy must be implemented that ensures every process gets a chance to 

use the resource. 

9 Case Study: Deadlocks in Linux 

Deadlocks are one of the most challenging problems in operating 

system design and implementation. A deadlock occurs when two or 

more processes are waiting for resources held by each other, leading to 

a state of impasse where none of the processes can proceed. This can 

have severe consequences, such as system crashes, loss of data, and 

reduced system performance. 

In this chapter, we will discuss the necessary conditions for deadlocks, 

including resource types, allocation policies, hold and wait, no 
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preemption, and circular wait. We will also explore various methods of 

detection and prevention, including the resource allocation graph, 

Banker's algorithm, prevention through resource ordering and 

allocation policies, and prevention through timeouts and deadlock 

detection. 

Furthermore, we will discuss methods of deadlock resolution, including 

killing processes, resource preemption, and rollback and recovery. We 

will also delve into the concept of deadlock avoidance, including safe 

and unsafe states, the Banker's algorithm for deadlock avoidance, and a 

comparison with other resource allocation algorithms. 

Finally, we will take a closer look at the case study of deadlocks in Linux. 

We will provide an overview of Linux's approach to handling deadlocks 

and compare it with other operating systems. Additionally, we will 

examine the impact of deadlocks on Linux's performance and reliability. 

9.1 Overview of Linux's approach to handling deadlocks 

Linux is an open-source operating system that is widely used in various 

applications. Linux has a sophisticated approach to handle deadlocks, 

which is an essential feature of an operating system. This chapter will 

provide an overview of Linux's approach to handling deadlocks. 

The Linux operating system employs a combination of prevention, 

detection, and resolution techniques to deal with deadlocks. The Linux 

kernel has a deadlock detection and resolution mechanism that can 

identify and resolve deadlocks. The deadlock resolution mechanism in 

Linux is based on resource preemption and rollback techniques. 

The Linux kernel's deadlock detection mechanism is based on a 

resource allocation graph (RAG), which is similar to the one discussed 

in the previous chapter. The Linux kernel maintains a RAG that 

represents the current state of the system's resources and their 

allocation. Whenever a new process requests a resource, the kernel 
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checks whether the request creates a cycle in the RAG. If a cycle exists, 

the kernel identifies the processes involved in the cycle and takes 

appropriate actions to resolve the deadlock. 

Example: Sure, here's a simple pseudocode for detecting a cycle in a 

resource allocation graph: 

1. Mark all nodes as unvisited. 

2. For each node in the graph: 

   a. If the node is unvisited, perform depth-first search (DFS) 

traversal. 

   b. While traversing, mark the current node as visited. 

   c. If we encounter a node that is already marked as visited, 

then there is a cycle in the graph. 

   d. After DFS traversal is complete, clear the visited marks for 

all nodes. 

3. If no cycle is found after DFS traversal of all nodes, the graph 

does not have any deadlock. 

Note that this is a simplified pseudocode and there are more efficient 

algorithms for cycle detection in graphs, such as Tarjan's algorithm or 

Kosaraju's algorithm. 

In Linux, the kernel employs the Ostrich algorithm for deadlock 

detection. The Ostrich algorithm is a heuristic-based algorithm that 

uses a combination of cycle detection and process suspension to detect 

and resolve deadlocks. Whenever a deadlock is detected, the kernel 

suspends one or more processes involved in the deadlock to break the 

cycle and resolve the deadlock. 

Example: Here's an example pseudocode for the Ostrich algorithm for 

deadlock detection: 

// Initialize the data structures 

let work = available 



PAGE 52 

let finish = array of size n, filled with false 

let deadlock_detected = false 

let deadlock_processes = empty list 

 

// Repeat until all processes have finished or a deadlock is 

detected 

while there are unfinished processes and not deadlock_detected: 

    let found = false 

     

    // Check each unfinished process 

    for each process in processes: 

        if finish[process] == false and need[process] <= work: 

            // Found a process that can complete 

            found = true 

            work += allocation[process] 

            finish[process] = true 

             

    // If no process can complete, a deadlock has occurred 

    if found == false: 

        deadlock_detected = true 

         

        // Find all processes involved in the deadlock 

        for each process in processes: 

            if finish[process] == false: 

                deadlock_processes.add(process) 
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// If a deadlock was detected, print the list of processes involved 

if deadlock_detected: 

    print("Deadlock detected. Processes involved:", 

deadlock_processes) 

Note that this is a simplified example and may not be suitable for all 

situations. The actual implementation may vary depending on the 

specific requirements and constraints of the system. 

 

Apart from deadlock detection and resolution, Linux also employs 

several prevention techniques to avoid deadlocks altogether. One of the 

primary prevention techniques used in Linux is resource ordering. In 

resource ordering, resources are allocated to processes in a predefined 

order, thereby preventing the possibility of a circular wait. Linux also 

uses timeout mechanisms to prevent deadlocks, where a process is 

forced to release a resource after a specified period to avoid resource 

starvation. 

In conclusion, Linux's approach to handling deadlocks is a combination 

of prevention, detection, and resolution techniques. The kernel employs 

the Ostrich algorithm for deadlock detection, and resource preemption 

and rollback techniques for deadlock resolution. Linux also uses 

prevention techniques such as resource ordering and timeout 

mechanisms to avoid deadlocks altogether. Overall, Linux's approach to 

handling deadlocks is an essential feature of the operating system that 

ensures the system's reliability and performance. 

9.2 Comparison with other operating systems 

In this chapter, we will compare the approaches taken by different 

operating systems in handling deadlocks. Deadlocks are a common 



PAGE 54 

problem faced by most operating systems, and different operating 

systems have different ways of handling them. 

Windows and Linux are two popular operating systems that take 

different approaches to handle deadlocks. Windows uses a combination 

of prevention, detection, and resolution techniques to handle deadlocks. 

On the other hand, Linux uses prevention and detection techniques. 

Windows uses a resource allocation graph to detect deadlocks. If a cycle 

is found in the graph, it indicates a deadlock. Windows also uses 

timeouts to detect deadlocks. If a process is waiting for a resource for 

too long, it is considered to be deadlocked, and Windows takes 

appropriate action to resolve the deadlock. 

Windows also uses a combination of prevention and resolution 

techniques to handle deadlocks. Windows prevents deadlocks by 

ensuring that processes request all the resources they need at once. This 

eliminates the hold and wait condition. Windows also uses resource 

preemption to resolve deadlocks. If a process is holding a resource that 

another process needs, Windows preempts the resource from the 

holding process to resolve the deadlock. 

Linux takes a different approach to handle deadlocks. Linux primarily 

uses prevention techniques to prevent deadlocks from occurring in the 

first place. Linux ensures that a process requests all the resources it 

needs before it begins executing. This eliminates the hold and wait 

condition. 

Linux also uses a timeout mechanism to detect deadlocks. If a process is 

waiting for a resource for too long, it is considered to be deadlocked, 

and Linux takes appropriate action to resolve the deadlock. 

In terms of handling deadlocks, both Windows and Linux have their 

advantages and disadvantages. Windows is better at handling complex 

deadlocks that involve multiple resources and processes, while Linux is 

better at preventing deadlocks from occurring in the first place. 
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Overall, it is important for operating systems to have effective deadlock 

handling mechanisms to ensure the reliability and stability of the system. 

The choice of approach depends on the specific requirements and 

constraints of the system. 

10 Conclusion 

In conclusion, deadlocks are a complex issue that can have serious 

consequences for the reliability and performance of an operating system. 

It is essential for operating system designers and developers to have a 

deep understanding of the necessary conditions for deadlocks, as well 

as the methods of detection, prevention, and resolution. 

In this chapter, we have explored the various aspects of deadlocks, 

including their definition, necessary conditions, detection and 

prevention methods, resolution techniques, and avoidance strategies. 

We also discussed a case study on deadlocks in Linux, which highlights 

the importance of proper handling of deadlocks for the smooth 

functioning of a complex operating system. 

By implementing effective mechanisms for dealing with deadlocks, 

operating system designers and developers can ensure that their 

systems are more reliable and robust. It is important to continuously 

evaluate and update these mechanisms to adapt to changing technology 

and system requirements. 

Overall, understanding and preventing deadlocks is an essential aspect 

of operating system design and maintenance. With the right approach, 

we can minimize the risk of deadlocks and ensure that our systems 

continue to operate efficiently and reliably. 


