

Deadlocks

OPERATING SYSTEMS

Sercan Külcü | Operating Systems | 16.04.2023

PAGE 1

Contents

Contents .. 1

1 Introduction ... 4

1.1 Definition of deadlocks ... 4

1.2 Resources ... 6

1.2.1 Preemptable resources ..7

1.2.2 Nonpreemptable resources .. 8

1.3 Resource acquisition ... 9

1.4 Importance of understanding and preventing deadlocks 10

1.5 Overview of the goals of the chapter ... 11

2 Necessary Conditions for Deadlocks ... 12

2.1 Resource types and allocation policies 12

2.2 Mutual exclusion .. 13

2.3 Hold and wait ... 14

2.4 No preemption.. 15

2.5 Circular wait .. 16

3 Deadlock modelling .. 17

3.1 Resource allocation graph .. 17

3.2 Dealing with deadlocks .. 19

3.3 The ostrich algorithm.. 20

3.4 Communication deadlocks .. 21

4 Deadlock detection ... 22

4.1 Deadlock detection with one resource of each type 22

4.2 Deadlock detection with multiple resources of each type 24

5 Recovery from deadlock ... 27

PAGE 2

5.1 Killing processes ... 27

5.2 Resource preemption .. 28

5.3 Rollback and recovery ..30

5.3.1 Two-Phase Commit Protocol .. 31

5.3.2 Checkpointing ... 31

6 Deadlock Avoidance ... 32

6.1 Safe State ... 33

6.2 Unsafe State .. 33

6.3 Resource Allocation Graph .. 33

6.4 Banker's Algorithm ... 34

7 Deadlock prevention ...38

7.1 Attacking the mutual-exclusion condition38

7.2 Attacking the hold-and-wait condition39

7.3 Attacking the no-preemption condition 40

7.4 Attacking the circular wait condition .. 42

7.5 Prevention through resource ordering and allocation policies . 43

7.6 Prevention through timeouts and deadlock detection 44

7.7 Two-phase locking ...45

8 Other issues .. 46

8.1 Livelock .. 46

8.2 Livelock vs Deadlock ... 47

8.3 Starvation ... 48

9 Case Study: Deadlocks in Linux .. 49

9.1 Overview of Linux's approach to handling deadlocks 50

9.2 Comparison with other operating systems 53

10 Conclusion ... 55

PAGE 3

PAGE 4

Chapter 7:
Deadlocks

1 Introduction

Welcome to this chapter on deadlocks in operating systems! In this

chapter, we will discuss the concept of deadlocks and their importance

in the context of operating systems.

A deadlock is a situation in which two or more processes are unable to

continue executing because each is waiting for one of the others to

release a resource. In other words, a deadlock occurs when two or more

processes are stuck in a circular wait for resources, and none of them

can proceed until the others release the resources they are waiting for.

Understanding and preventing deadlocks is essential in operating

systems because deadlocks can cause system failure, which can be costly

in terms of time, money, and resources. Thus, this chapter will focus on

the different causes of deadlocks and the strategies for preventing them.

In summary, the goals of this chapter are to define deadlocks, explain

why understanding and preventing deadlocks are crucial in operating

systems, and provide an overview of the strategies for preventing

deadlocks.

1.1 Definition of deadlocks

In the context of operating systems, deadlocks refer to a situation where

a set of processes are blocked and unable to proceed, as they are waiting

for resources that are held by other processes in the set. Deadlocks can

PAGE 5

have a significant impact on the performance and reliability of operating

systems and can result in significant loss of time, resources, and even

data. Therefore, it is important to understand the concept of deadlocks,

their causes, and the various methods used to prevent, detect, and

resolve them.

A deadlock is a situation where a set of processes is blocked and unable

to proceed, as they are waiting for resources that are held by other

processes in the set. In other words, each process is waiting for a

resource that is currently held by another process in the set, and hence

none of the processes can proceed. Deadlocks can occur when a set of

processes compete for a finite set of resources, and each process requires

a resource that is held by another process.

There are four necessary conditions that must be present for a deadlock

to occur:

 Resource types and allocation policies: The system must have a

finite number of resources that are divided into several types, and

the allocation of these resources must follow a certain policy.

 Hold and wait: A process must hold at least one resource and be

waiting for additional resources that are currently held by other

processes.

 No preemption: Resources cannot be preempted, i.e., they cannot

be forcibly removed from a process that is holding them.

 Circular wait: A set of processes must be waiting for resources in

a circular chain, where each process is waiting for a resource that

is held by the next process in the chain.

Deadlocks can have a significant impact on the performance and

reliability of operating systems. Therefore, it is important to understand

the concept of deadlocks, their causes, and the various methods used to

prevent, detect, and resolve them. In the next chapter, we will discuss

the various methods used to prevent, detect, and resolve deadlocks in

operating systems.

PAGE 6

1.2 Resources

Resources are an important part of any operating system. They are

objects to which some process has been granted exclusive access. These

resources can take many forms, including hardware devices like printers,

scanners, and Blu-ray drives, as well as software objects like data records,

files, and other system resources.

Resources can be categorized in several ways. For example, they can be

classified as sharable or non-sharable resources. A sharable resource is

one that can be used by multiple processes at the same time. For

example, a printer can be used by multiple users simultaneously. On the

other hand, a non-sharable resource is one that can be used by only one

process at a time. For example, a Blu-ray drive can be used by only one

process at a time.

Another way to categorize resources is by their availability. Some

resources are always available, while others are created dynamically

when requested by a process. For example, a printer is always available,

while a database record is created dynamically when requested by a

process.

A computer system can have many different types of resources, and

managing them can be a complex task. To avoid deadlocks, the

operating system must carefully manage the allocation and release of

resources.

When multiple processes compete for resources, deadlocks can occur.

A deadlock is a situation in which two or more processes are waiting

indefinitely for each other to release resources. To avoid deadlocks, the

operating system must ensure that resources are allocated and released

in a way that does not allow a circular wait to occur.

PAGE 7

1.2.1 Preemptable resources

In operating systems, resources can be classified as preemptable or non-

preemptable. Preemptable resources are those that can be taken away

from the process owning them without any negative impact. This is in

contrast to non-preemptable resources, which cannot be taken away

from the process owning them without causing serious problems.

Memory is a good example of a preemptable resource. A process may be

using a certain amount of memory, but if it is preempted, its memory

can be swapped out to disk without causing any ill effects. When the

process resumes execution, its memory can be swapped back in from

disk, and the process can continue where it left off.

Let's consider an example to illustrate this concept further. Imagine a

system with 1 GB of user memory, one printer, and two 1-GB processes

that each want to print something. Process A requests and obtains the

printer, then starts to compute the values to print. Before it has finished

the computation, it exceeds its time quantum and is swapped out to disk.

While Process A is swapped out, Process B requests and obtains the

printer. Since the printer is a non-preemptable resource, Process A

cannot proceed until it gets the printer back. However, since memory is

a preemptable resource, its memory can be swapped out to disk without

any ill effects. When Process A is ready to continue, its memory can be

swapped back in from disk and it can continue with the printing process.

Preemptable resources are important in operating systems because they

allow for efficient use of system resources. By preempting processes that

are not currently using their resources, the system can free up those

resources for other processes to use. This can lead to better overall

system performance and more efficient use of system resources.

In conclusion, preemptable resources are resources that can be taken

away from the process owning them without causing any negative

impact. Memory is a common example of a preemptable resource in

PAGE 8

operating systems, and their use is important for efficient use of system

resources.

1.2.2 Nonpreemptable resources

In contrast to preemptable resources, nonpreemptable resources are

those that cannot be taken away from their current owner without

potentially causing failure. A common example of a nonpreemptable

resource is a Blu-ray recorder. If a process is in the middle of burning a

Blu-ray and the recorder is suddenly taken away and given to another

process, the result will likely be a garbled or unusable disc.

Nonpreemptable resources must therefore be carefully managed by the

operating system to ensure that they are only granted to processes that

can safely and reliably complete their tasks.

Managing nonpreemptable resources involves allocating and

deallocating them in a way that minimizes the risk of contention and

deadlock. This typically requires the use of more sophisticated

synchronization mechanisms than those used for preemptable

resources. For example, one approach to managing nonpreemptable

resources is to use a token-based protocol, in which processes must

acquire a token before they can access the resource. The token is passed

from process to process, ensuring that only one process at a time has

access to the resource. This approach can be effective but can also lead

to contention and deadlock if the token becomes unavailable.

Another approach to managing nonpreemptable resources is to use

priority-based scheduling. In this approach, processes are assigned

priorities based on their resource needs and the urgency of their tasks.

Processes with higher priorities are given access to the resource before

processes with lower priorities. This approach can be effective but can

also lead to starvation if lower-priority processes are never given access

to the resource.

Overall, managing nonpreemptable resources is a critical aspect of

operating system design and requires careful consideration of the trade-

PAGE 9

offs between performance, reliability, and fairness. By carefully

managing these resources, operating systems can ensure that processes

can complete their tasks without the risk of failure or data corruption.

1.3 Resource acquisition

Resource acquisition is a crucial aspect of managing shared resources in

an operating system. Different resources have different requirements,

and the way that they are acquired and released must be carefully

managed to ensure that no process is left waiting indefinitely for a

resource to become available.

For some types of resources, such as records in a database system, it is

up to the user processes to manage the usage of resources themselves.

In these cases, semaphores or mutexes can be used to control access to

the resource.

Each resource is associated with a semaphore or mutex, which is

initialized to 1. When a process wants to use the resource, it must first

acquire the semaphore or mutex by performing a "down" operation on

it. This effectively decrements the semaphore or mutex count and waits

until it becomes available if it is currently held by another process. Once

the semaphore or mutex is acquired, the process can use the resource.

When the process is finished with the resource, it must release it by

performing an "up" operation on the semaphore or mutex. This

effectively increments the count and makes the resource available for

another process to use.

The use of semaphores and mutexes to manage resource acquisition

ensures that multiple processes can access the resource without

conflicting with one another. However, it is important to note that this

approach can lead to deadlock if processes are not careful to release the

resource when they are finished using it. In addition, it can be difficult

PAGE 10

to manage the acquisition and release of resources in a large and

complex system with many different types of resources.

Overall, resource acquisition is a critical aspect of operating system

design, and different types of resources require different approaches to

ensure efficient and reliable management. By carefully managing

resource acquisition, an operating system can ensure that processes can

access the resources they need without encountering conflicts or delays.

1.4 Importance of understanding and preventing

deadlocks

Deadlocks are one of the most significant problems in operating systems

that can lead to system crashes, data loss, and user frustration. As a

result, it is crucial to understand and prevent deadlocks in operating

systems. In this chapter, we will discuss the importance of

understanding and preventing deadlocks in operating systems.

Importance of understanding deadlocks:

 Prevent system crashes: Deadlocks can cause the entire system to

crash. Understanding how deadlocks occur can help prevent these

crashes and ensure the stability of the operating system.

 Improve system performance: Deadlocks can cause resource

contention and delays, resulting in reduced system performance.

By understanding how deadlocks occur, we can design systems to

avoid them, which can improve system performance.

 Ensure data integrity: Deadlocks can cause data loss or corruption.

Understanding how deadlocks occur can help prevent these

problems, ensuring the integrity of the data stored in the

operating system.

Importance of preventing deadlocks:

PAGE 11

 Reduce system downtime: Deadlocks can cause system downtime,

which can be costly for businesses. Preventing deadlocks can help

reduce system downtime, leading to improved productivity and

reduced costs.

 Improve user experience: Deadlocks can cause programs to freeze,

leading to a poor user experience. Preventing deadlocks can help

ensure that programs run smoothly, providing a better user

experience.

 Ensure system reliability: Deadlocks can cause system failures,

leading to data loss and other problems. Preventing deadlocks can

help ensure system reliability and reduce the risk of data loss or

other problems.

In conclusion, understanding and preventing deadlocks is critical for

ensuring the stability, performance, and reliability of operating systems.

By taking measures to prevent deadlocks, we can reduce system

downtime, improve user experience, and ensure data integrity and

system reliability.

1.5 Overview of the goals of the chapter

Deadlocks occur when two or more processes are waiting for a resource

that is held by another process, and none of the processes can proceed

until the resource is released. This results in a circular waiting pattern,

which can lead to a system deadlock. Understanding the causes and

effects of deadlocks is crucial in ensuring that systems remain reliable

and efficient.

The goals of this chapter are to provide a comprehensive overview of

deadlocks, including their definition, causes, prevention techniques,

and resolution methods. We will examine the necessary conditions for

a deadlock to occur and the implications of deadlocks in an operating

system. Additionally, we will look at how to detect and avoid deadlocks,

along with the advantages and disadvantages of different approaches.

PAGE 12

We will also discuss the impact of deadlocks on system performance and

reliability.

By the end of this chapter, readers will have a clear understanding of

what deadlocks are, the conditions that cause them, and the methods

used to prevent and resolve them. This knowledge will help system

administrators and developers identify and mitigate potential deadlocks

in their systems, leading to improved system reliability and performance.

2 Necessary Conditions for Deadlocks

Welcome to the chapter on "Necessary Conditions for Deadlocks". In

this chapter, we will be discussing the necessary conditions that can lead

to deadlocks in an operating system. Deadlocks are one of the most

critical problems in operating systems and can cause system crashes,

data loss, and other serious issues. Therefore, understanding the

necessary conditions for deadlocks is essential for any operating system

developer.

We will start by defining what deadlocks are and why it is essential to

prevent them. Then, we will discuss the four necessary conditions that

can lead to deadlocks, which include resource types and allocation

policies, hold and wait, no preemption, and circular wait. By

understanding these conditions, you can identify and prevent deadlocks

in your operating system.

So, let's dive into the chapter and explore the necessary conditions for

deadlocks!

2.1 Resource types and allocation policies

In order to understand deadlocks, it is important to understand the

types of resources that can be involved in a deadlock situation.

PAGE 13

Resources can be classified as either reusable or consumable. Reusable

resources, such as printers or communication channels, can be used by

multiple processes at the same time. Consumable resources, such as

memory or CPU time, are used up as processes run and cannot be shared.

Resource allocation policies determine how resources are allocated to

processes. In a system where resources are allocated on a first-come,

first-served basis, processes may end up holding resources for longer

than necessary, leading to potential deadlock situations.

2.2 Mutual exclusion

Mutual exclusion is a fundamental requirement for concurrent systems

that deal with shared resources. It refers to the idea that only one

process can access a shared resource at any given time, to prevent

conflicting updates and ensure data consistency. The mutual exclusion

condition is a key concept in operating systems, as it ensures that only

one process can hold a specific resource at any given time, thereby

preventing multiple processes from accessing and modifying the same

resource simultaneously.

The mutual exclusion condition can be expressed as follows: each

resource is either currently assigned to exactly one process, or it is

available. This means that a process must first request a resource before

it can use it, and only one process can be granted access to the resource

at a time. Once the process has finished using the resource, it must

release it back to the system so that other processes can use it.

In order to implement mutual exclusion, operating systems typically

provide synchronization mechanisms such as semaphores, mutexes,

and monitors. These mechanisms ensure that only one process can

acquire a lock on a resource at any given time, effectively enforcing

mutual exclusion.

PAGE 14

The mutual exclusion condition is crucial in preventing race conditions,

which can occur when two or more processes access the same shared

resource simultaneously, leading to inconsistent results. By enforcing

mutual exclusion, operating systems can ensure that each process has

exclusive access to a resource when it needs it, preventing conflicts and

ensuring data consistency.

2.3 Hold and wait

In addition to the mutual exclusion condition, the hold and wait

condition is another necessary condition for a deadlock to occur. This

condition can arise when a process is holding onto a resource while also

waiting for another resource that is currently being held by another

process.

To illustrate this, let's consider a scenario where two processes, A and B,

each need two resources to complete their tasks. Process A currently

holds resource 1 but needs resource 2, while process B currently holds

resource 2 but needs resource 1. If both processes are allowed to hold

onto their currently held resources and wait for the other process to

release the needed resource, then a deadlock will occur.

The hold and wait condition can be avoided by requiring a process to

request and acquire all necessary resources before beginning execution.

This can be achieved through various methods such as the banker's

algorithm or using non-preemptive resources.

Alternatively, processes can be allowed to release their currently held

resources and then reacquire them in a predetermined order. This

approach can help avoid deadlocks by preventing a process from

holding onto resources while waiting for another resource to become

available.

Overall, the hold and wait condition highlights the importance of

carefully managing resource allocation to prevent situations where

PAGE 15

processes are waiting for resources to become available while holding

onto resources themselves. By proactively addressing this condition, we

can help reduce the likelihood of deadlocks occurring in a system.

2.4 No preemption

The no preemption condition states that resources cannot be taken

away from a process without that process voluntarily releasing them.

This means that if a process is holding onto a resource and not releasing

it, other processes cannot preempt that resource. For example, if process

A is holding resource R1 and process B needs resource R1 to complete its

execution, process B cannot forcibly take resource R1 from process A.

Process A must voluntarily release resource R1 before process B can

acquire it.

The no preemption condition is necessary for a deadlock to occur

because it prevents the system from resolving a deadlock by forcibly

taking resources away from processes. If the system were allowed to

forcibly take resources away from processes, it would be possible to

break a deadlock by forcibly taking a resource from one process and

giving it to another process. However, if the no preemption condition is

in effect, the system cannot break a deadlock by forcibly taking

resources away from processes.

To illustrate the no preemption condition, consider a system with two

processes, P1 and P2, and two resources, R1 and R2. Suppose that process

P1 is holding onto resource R1 and waiting for resource R2, which is

being held by process P2. Similarly, process P2 is holding onto resource

R2 and waiting for resource R1, which is being held by process P1. This

situation creates a deadlock, as neither process can proceed without

releasing a resource that it is holding.

Now, suppose that the system is allowed to preempt resources from

processes. In this case, the system could forcibly take resource R1 from

PAGE 16

process P1 and give it to process P2, and forcibly take resource R2 from

process P2 and give it to process P1. This would resolve the deadlock, as

both processes would now have the resources they need to proceed.

However, if the no preemption condition is in effect, the system cannot

forcibly take resources from processes, and the deadlock remains.

2.5 Circular wait

The circular wait condition is one of the necessary conditions for a

deadlock to occur. In a system with multiple processes and resources,

circular wait happens when a set of processes are waiting for resources

that are held by other processes in a circular chain.

For example, process A is waiting for a resource held by process B,

process B is waiting for a resource held by process C, and process C is

waiting for a resource held by process A. This creates a circular chain of

processes waiting for resources, which prevents any of them from

proceeding and leads to a deadlock.

Deadlocks can be avoided by breaking the circular wait condition. One

way to do this is to impose an ordering on the resources, such that all

processes request resources in the same order. This eliminates the

possibility of circular wait, as resources are requested in a specific order,

and each process can acquire the resources it needs without having to

wait for another process.

Another way to avoid deadlocks is through resource allocation. The

operating system can use algorithms like Banker's algorithm, which

determines if a requested resource allocation will result in a safe state or

not. If the allocation will not result in a safe state, the request is denied,

and the process must wait for the requested resource.

Overall, understanding these necessary conditions for deadlocks is

crucial for designing and implementing operating systems that are

PAGE 17

robust and reliable. In the following sections, we will explore methods

for detecting, preventing, and resolving deadlocks.

3 Deadlock modelling

3.1 Resource allocation graph

Resource Allocation Graph (RAG) is a graphical representation of

resources that are being used by a set of processes. In deadlocks, a RAG

is used to represent the allocation and request of resources by different

processes. The RAG shows the relationships between resources and

processes, and helps to determine whether a deadlock exists.

In a RAG, processes are represented by circles and resources by

rectangles. The circles are connected to the rectangles by arrows, which

represent the allocation of resources from the resource to the process.

Additionally, the rectangles can be connected to each other by another

set of arrows, which represent the requests of resources from one

resource to another.

A RAG can be used to detect whether a deadlock exists in the system. A

deadlock is said to occur if and only if there exists a cycle in the graph.

This cycle represents a circular wait, which is one of the necessary

conditions for a deadlock. If a cycle is detected, it means that there is at

least one process that is holding a resource and is waiting for another

resource that is being held by a different process.

Moreover, a RAG can also be used to resolve deadlocks. If a cycle is

detected in the RAG, the resources involved in the cycle can be

examined to determine which resource to preempt, if any. The

preempted resource can then be allocated to the process that is waiting

for it, and the cycle can be broken.

PAGE 18

Example: Here's an example pseudocode for constructing a resource

allocation graph:

initialize graph G = (V, E)

initialize set of processes P = {P1, P2, ..., Pn}

initialize set of resources R = {R1, R2, ..., Rm}

for each process Pi in P:

 add node Pi to V

for each resource Rj in R:

 add node Rj to V

for each resource allocation edge (Pi, Rj) in E:

 add edge (Pi, Rj) to G

for each request edge (Rj, Pi) in E:

 add edge (Rj, Pi) to G

In this pseudocode, we first initialize an empty graph G, as well as the

sets of processes P and resources R. We then add nodes to G for each

process and resource.

Next, we iterate through the set of edges E and add an edge to G for each

resource allocation or request. An edge from a process node Pi to a

resource node Rj represents an allocation of Rj to Pi, while an edge from

a resource node Rj to a process node Pi represents a request from Pi for

Rj. This algorithm can be used to construct a resource allocation graph,

which can then be used to detect and prevent deadlocks in a system.

PAGE 19

In conclusion, the Resource Allocation Graph is a useful tool for

detecting and resolving deadlocks in operating systems. It provides a

clear visualization of the relationships between processes and resources,

making it easier to understand and identify potential deadlocks.

3.2 Dealing with deadlocks

Deadlocks are a challenging problem for operating systems, as they can

bring an entire system to a standstill. Fortunately, there are several

strategies that can be used to deal with deadlocks.

The first strategy is simply to ignore the problem and hope it goes away.

While this approach might work in some cases, it is not a reliable

solution and can lead to long periods of system inactivity.

The second strategy is detection and recovery. This approach involves

allowing deadlocks to occur, detecting when they happen, and taking

action to recover from them. This can be done by periodically checking

the system for deadlocks and releasing resources as necessary to break

the deadlock. While this approach can be effective, it can also be costly

in terms of system resources and may not be feasible in all situations.

The third strategy is dynamic avoidance through careful resource

allocation. This involves monitoring resource usage in real-time and

carefully allocating resources to prevent deadlocks from occurring. This

approach requires sophisticated algorithms and can be difficult to

implement in practice.

The final strategy is prevention by structurally negating one of the four

conditions necessary for a deadlock to occur. For example, by ensuring

that resources are only ever allocated to a single process at a time, the

hold and wait condition can be negated. This approach requires careful

design and can be challenging to implement, but is often the most

effective way to prevent deadlocks from occurring.

PAGE 20

Overall, there is no single best approach for dealing with deadlocks, and

the appropriate strategy will depend on the specific circumstances of

the system in question. Nevertheless, by carefully monitoring resource

usage and adopting appropriate prevention and recovery strategies, it is

possible to minimize the impact of deadlocks and ensure that systems

remain available and responsive even in the face of these challenging

situations.

3.3 The ostrich algorithm

The ostrich algorithm is a simple approach to dealing with deadlocks

that involves ignoring the problem and pretending it doesn't exist. This

approach is often viewed as unacceptable by mathematicians, who

believe that deadlocks must be prevented at all costs. However,

engineers tend to take a more practical approach and consider the

frequency and severity of the problem.

When deciding whether to use the ostrich algorithm, engineers may ask

questions such as: How often do deadlocks occur? How often does the

system crash for other reasons? And how serious are the consequences

of a deadlock? If deadlocks occur infrequently compared to other system

failures, engineers may not be willing to pay a large performance or

convenience penalty to prevent them.

While the ostrich algorithm may seem like a tempting solution, it is not

a sustainable approach to handling deadlocks in a production system.

Ignoring the problem can lead to system instability, and in the worst-

case scenario, it can result in catastrophic failures that can bring down

the entire system. As such, it is generally recommended to use one of

the other strategies for dealing with deadlocks, such as detection and

recovery, dynamic avoidance, or prevention.

PAGE 21

3.4 Communication deadlocks

Communication deadlocks occur when processes are waiting for each

other to communicate and exchange data or messages. This type of

deadlock can occur in a distributed system or in a system with multiple

processes communicating through message passing. When two

processes are waiting for each other to send or receive a message, they

can deadlock if neither process releases the resources it is holding until

it receives the message it is waiting for.

One example of a communication deadlock is a message buffer deadlock,

where two processes are waiting for each other to release a message

buffer. For example, Process A may be waiting for Process B to release a

buffer so that it can send a message, while Process B may be waiting for

Process A to release a buffer so that it can receive a message. This

situation can result in a deadlock if neither process releases the buffer it

is holding.

Another example of a communication deadlock is a resource deadlock

caused by a message. For example, a process may be waiting for a

message from another process before it can release a resource, while the

other process may be waiting for the same resource before it can send

the message. This situation can also result in a deadlock if neither

process releases the resource it is holding.

To prevent communication deadlocks, it is important to design

protocols that allow processes to release resources in a timely manner.

One approach is to use timeouts, which allow processes to release

resources if they do not receive a message within a certain period of time.

Another approach is to use a centralized scheduler or a distributed

algorithm to coordinate the exchange of messages and ensure that

resources are released in a way that prevents deadlocks.

Overall, communication deadlocks can be just as problematic as

resource deadlocks, and it is important for operating system designers

PAGE 22

to be aware of the potential for both types of deadlocks in their systems.

By designing protocols that allow processes to release resources in a

timely manner and by coordinating the exchange of messages, operating

system designers can prevent communication deadlocks and ensure the

smooth operation of their systems.

4 Deadlock detection

4.1 Deadlock detection with one resource of each type

Deadlocks can be a real challenge for operating systems, but there are

various methods to detect and resolve them. In this chapter, we will

discuss one method for detecting deadlocks when there is only one

resource of each type.

To begin with, we can create a resource graph that shows the

relationships between the resources and the processes that use them.

The graph will contain nodes representing the processes and the

resources, with directed edges connecting a process to the resource it is

currently holding and the resource to the process that is waiting for it.

In this system with only one resource of each type, we can assume that

a process can hold onto at most one resource at any given time.

Therefore, the graph will not contain multiple edges connecting a

process to different resources of the same type.

If this resource graph contains one or more cycles, a deadlock exists. A

cycle represents a situation where a process is waiting for a resource that

is held by another process, which in turn is waiting for a resource held

by a third process, and so on, until the cycle completes. Any process that

is part of a cycle is deadlocked and cannot make any progress until the

deadlock is resolved.

PAGE 23

On the other hand, if there are no cycles in the resource graph, the

system is not deadlocked. The processes are all able to acquire the

resources they need to complete their tasks without waiting indefinitely

for other processes to release their resources.

Using this method to detect deadlocks in a system with one resource of

each type is relatively simple and straightforward. However, this

approach becomes more complicated when there are multiple resources

of the same type or when processes can hold multiple resources at the

same time. In the next chapter, we will discuss a more complex method

for detecting deadlocks in these types of systems.

In order to detect deadlocks in a system where there is only one resource

of each type, we can use an algorithm known as the cycle detection

algorithm. The algorithm works by constructing a resource graph that

shows the relationships between processes and resources. If this graph

contains one or more cycles, then a deadlock exists in the system.

The cycle detection algorithm operates by performing a series of steps

for each node in the graph. First, we initialize an empty list L and mark

all arcs as unmarked. Then, we add the current node to the end of L and

check to see if it appears in the list two times. If it does, then the graph

contains a cycle, and the algorithm terminates.

If there are any unmarked outgoing arcs from the current node, we pick

one at random and mark it. We then follow it to the new current node

and go back to step 3. If there are no unmarked outgoing arcs, we have

reached a dead end. We remove this node and go back to the previous

node, make that one the current node, and go to step 3.

If we reach the initial node again and there are no cycles, then the

algorithm terminates. By following these steps, we can detect deadlocks

in a system with one resource of each type.

PAGE 24

It's worth noting that this algorithm assumes that there is only one

resource of each type in the system. If there are multiple resources of a

particular type, a different algorithm would be needed to detect

deadlocks. However, the cycle detection algorithm is a useful starting

point for understanding the principles of deadlock detection in

operating systems.

4.2 Deadlock detection with multiple resources of each

type

In more complex systems, with multiple copies of some of the resources,

a different algorithm is required to detect deadlocks. In this case, a

matrix-based approach can be used to detect deadlock among n

processes, P1 through Pn.

Let the number of resource classes be m, with E1 resources of class 1, E2

resources of class 2, and so on, with Ei resources of class i (1 ≤ i ≤ m). The

existing resource vector, E, gives the total number of instances of each

resource in existence. For example, if class 1 is tape drives, then E1 = 2

means the system has two tape drives.

At any instant, some of the resources are assigned and are not available.

The available resource vector, A, indicates the number of instances of

each resource that are currently available and unassigned. For example,

if both tape drives are assigned, A1 will be 0.

To detect deadlocks, two arrays are used: C, the current allocation

matrix, and R, the request matrix. The current allocation matrix, C, has

n rows and m columns, with each element Cij indicating the number of

resources of type j currently allocated to process Pi. The request matrix,

R, has the same dimensions as C and indicates the number of resources

of each type that each process is requesting.

PAGE 25

The detection algorithm checks whether there is a safe sequence of

processes that can complete their execution. A safe sequence is a

sequence of processes such that for each process Pi, the resources it

needs to complete its execution are available either currently or after

completing the execution of some other process Pj. If a safe sequence

exists, then there is no deadlock.

The detection algorithm works by initializing the work vector, W, to the

available resource vector, A. Then, for each process Pi, the algorithm

checks whether Pi can complete its execution by comparing the number

of resources it needs, as specified in the request matrix, R, with the

number of resources currently available, as specified in the work vector,

W. If Pi can complete its execution, then it releases its resources to the

system and adds them to the work vector. The algorithm continues this

process until all processes can complete their execution or no process

can be completed.

If there is no safe sequence of processes, then a deadlock exists. In this

case, the algorithm identifies the deadlocked processes by constructing

a graph, with one node for each process that is deadlocked, and one edge

for each resource that the process is waiting for. The graph is then

searched for a cycle, and if one is found, the deadlocked processes are

identified.

In summary, the matrix-based algorithm for deadlock detection with

multiple resources of each type involves using two arrays, C and R, to

represent the current allocation and resource request matrices. The

algorithm works by checking for the existence of a safe sequence of

processes and identifying deadlocked processes by constructing a graph

and searching for a cycle.

In this section, we'll discuss the matrix-based algorithm used to detect

deadlocks in a system with n processes and m resource classes. As

mentioned earlier, let's assume there are E1 resources of class 1, E2

PAGE 26

resources of class 2, and so on, up to Em resources of class m.

Additionally, we have an available resource vector A, which specifies the

number of instances of each resource that are currently available and

unassigned. The current allocation matrix, C, shows the current

allocation of resources to processes, while the request matrix, R, shows

the additional resources that each process needs to complete its

execution.

The deadlock detection algorithm can be described in the following

steps:

1. Look for an unmarked process, Pi, for which the ith row of R is

less than or equal to A.

2. If such a process is found, add the ith row of C to A, mark the

process, and go back to step 1.

3. If no such process exists, the algorithm terminates.

In step 1, we're trying to find a process whose resource requests can be

satisfied with the available resources. If we find such a process, we add

its allocated resources to the available resource vector and mark the

process as having been examined. We then start over from step 1 and

continue until all processes have been marked, or until there are no

more unmarked processes that can be satisfied.

This algorithm is a form of a banker's algorithm that determines

whether the system is in a safe state or not. The system is considered to

be in a safe state if there exists a sequence of processes such that each

process can acquire all the resources it needs before any of the other

processes in the sequence request any resources.

In conclusion, this matrix-based algorithm provides an efficient way to

detect deadlocks in a system with multiple resources of each type. By

following these simple steps, we can identify which processes are

deadlocked and take appropriate measures to resolve the issue.

PAGE 27

5 Recovery from deadlock

We will delve into the methods of resolving deadlocks, including killing

processes, resource preemption, and rollback and recovery. By the end

of this chapter, you will have a comprehensive understanding of the

causes and prevention of deadlocks and the techniques to resolve them.

5.1 Killing processes

In some cases, it may be necessary to kill one or more processes to break

a deadlock. This is often seen as a last resort, as it can result in loss of

data or incomplete transactions. In this chapter, we will discuss the

process of killing processes as a method of resolving deadlocks.

When a deadlock is detected, the operating system may choose to kill

one or more of the processes involved in the deadlock. This is done to

free up resources that are being held by those processes and break the

deadlock. The operating system must carefully select which process or

processes to kill in order to minimize the impact on the system as a

whole.

When choosing which process to kill, the operating system should

consider several factors, such as the importance of the process, the

amount of resources it is currently holding, and the potential impact on

other processes. If the process being killed is part of a larger transaction

or operation, the operating system should ensure that any necessary

rollback or recovery procedures are carried out to minimize data loss.

Once the process or processes have been selected for termination, the

operating system will send a signal to those processes to instruct them

to terminate. The process being killed should release any resources it is

currently holding to ensure that they can be used by other processes in

the system.

PAGE 28

Killing processes can have a significant impact on system performance,

particularly if the process being killed is a critical system process. This

can lead to system instability, crashes, or even data loss.

To minimize the impact of killing processes, the operating system

should ensure that any necessary recovery procedures are carried out to

restore the system to a stable state. In addition, the operating system

should monitor system performance after the processes have been killed

to ensure that there are no lingering issues that may impact system

reliability.

Killing processes is a drastic measure that should only be taken as a last

resort when other deadlock resolution methods have failed. The

operating system must carefully consider the impact of killing processes

on the system as a whole, and take steps to minimize any negative

impact on system performance or reliability.

5.2 Resource preemption

In cases where deadlocks cannot be prevented or avoided, the next step

is to resolve the deadlock. One method of resolving deadlocks is through

resource preemption. Resource preemption is the act of forcibly

removing resources from a process in order to free them up and allow

other processes to proceed.

Resource preemption can be a useful strategy in resolving deadlocks.

However, it can also be a complex and potentially dangerous technique,

as forcibly removing resources from a process can result in data loss or

corruption if not done carefully. In this chapter, we will explore the

concept of resource preemption in deadlocks resolution.

Resource preemption involves the following basic principles:

 Priority: The resources being preempted must have a well-defined

priority scheme. This priority scheme is used to determine which

PAGE 29

process should have its resources preempted in order to break the

deadlock.

 Rollback: When a resource is preempted from a process, the

process may need to be rolled back to a previous state in order to

release the resource. This involves undoing any work that has

been done since the resource was acquired.

 Avoidance of Starvation: Resource preemption must be done in a

way that does not cause starvation of any process. This means that

resources should be preempted in a fair and equitable way, and

that all processes should have an equal chance of obtaining the

resources they need.

There are several methods of resource preemption, including:

 Victim Selection: The first step in resource preemption is to select

a process to be the victim. The victim is the process whose

resources will be preempted. The selection process typically

involves choosing the process with the lowest priority or the

process that has been waiting the longest.

 Rollback: Once a victim has been selected, the process must be

rolled back to a previous state in order to release the resources.

This involves undoing any work that has been done since the

resource was acquired.

 Re-allocation: Once the resources have been preempted, they

must be allocated to another process. This may involve choosing

a process from a waiting list or using a priority scheme to

determine which process should receive the resources.

 Notification: Finally, the process that has had its resources

preempted must be notified of the preemption. This allows the

process to take any necessary action to recover from the

preemption.

Resource preemption is a complex technique that should be used with

caution. It is important to have a well-defined priority scheme in place,

PAGE 30

as well as a plan for rolling back processes and reallocating resources.

Additionally, care should be taken to ensure that resource preemption

does not cause starvation of any process.

Resource preemption is a powerful technique for resolving deadlocks.

By forcibly removing resources from a process, resource preemption can

break deadlocks and allow other processes to proceed. However,

resource preemption must be used with care, as it can result in data loss

or corruption if not done properly. By following the basic principles of

resource preemption and using well-defined methods, deadlocks can be

resolved safely and efficiently.

5.3 Rollback and recovery

In some cases, killing processes or resource preemption may not be

feasible solutions for resolving deadlocks. Another approach is to use

rollback and recovery techniques to undo the actions that led to the

deadlock and restore the system to a consistent state. In this chapter,

we will discuss the use of rollback and recovery techniques for resolving

deadlocks in operating systems.

Rollback and recovery techniques involve undoing the actions that led

to the deadlock and restoring the system to a consistent state. This can

be done by rolling back transactions and re-executing them in a

different order. Rollback and recovery techniques can be used to resolve

deadlocks in systems where processes communicate with each other

through transactions. A transaction is a sequence of operations that

must be completed as a whole. In case of a deadlock, the transactions

involved in the deadlock can be rolled back and re-executed in a

different order to avoid the deadlock.

PAGE 31

5.3.1 Two-Phase Commit Protocol

The two-phase commit protocol is a popular rollback and recovery

technique used for resolving deadlocks in distributed systems. In this

protocol, a coordinator is responsible for managing the transactions and

ensuring that they are executed in a consistent manner. The protocol

consists of two phases:

 Commit Request Phase: In this phase, the coordinator sends a

message to all the participants asking them if they are ready to

commit the transaction. If all the participants reply with a yes, the

coordinator sends a message to all the participants asking them to

commit the transaction.

 Commit Phase: In this phase, the participants commit the

transaction and send a message to the coordinator confirming

that the transaction has been committed.

If a participant does not reply to the commit request or replies with a

no, the coordinator aborts the transaction and rolls it back. This ensures

that the system is always in a consistent state and avoids deadlocks.

5.3.2 Checkpointing

Checkpointing is another technique used for rollback and recovery in

operating systems. In this technique, the state of the system is saved at

regular intervals in a checkpoint file. If a deadlock occurs, the system

can be restored to a consistent state by rolling back to the last

checkpoint and re-executing the transactions from that point.

Rollback and recovery techniques are often used in distributed systems

where processes communicate with each other through transactions.

They are effective in resolving deadlocks and ensuring that the system

remains in a consistent state. However, they can be costly in terms of

time and resources required for rollback and recovery. Compared to

other techniques such as killing processes or resource preemption,

PAGE 32

rollback and recovery techniques are more complex and require more

sophisticated algorithms to be implemented.

In conclusion, rollback and recovery techniques are an effective way of

resolving deadlocks in operating systems. They involve undoing the

actions that led to the deadlock and restoring the system to a consistent

state. The two-phase commit protocol and checkpointing are popular

rollback and recovery techniques used for resolving deadlocks in

distributed systems. However, they can be costly in terms of time and

resources required for rollback and recovery.

6 Deadlock Avoidance

Deadlock is a situation that occurs in an operating system when two or

more processes are blocked, waiting for each other to release resources.

It can cause a significant delay in system performance and result in a

loss of data. In this chapter, we will discuss the concept of deadlock

avoidance, which is an important aspect of operating system design.

Deadlock avoidance is the approach that an operating system uses to

prevent deadlocks from occurring. In this chapter, we will explore the

various techniques and algorithms that can be used to prevent

deadlocks in a system. We will first discuss the concept of safe and

unsafe states and how they relate to deadlock avoidance. Then we will

delve into the Banker's algorithm for deadlock avoidance, which is

widely used in operating systems.

Deadlock avoidance is a technique used to prevent the occurrence of

deadlocks by ensuring that the system remains in a safe state. In this

chapter, we will discuss the concept of safe and unsafe states in the

context of deadlocks avoidance.

PAGE 33

6.1 Safe State

A safe state is a system state in which all processes can complete their

execution without leading to a deadlock. In other words, a safe state is

a state in which the system can allocate resources to all the processes in

some order and still avoid a deadlock. A system can be considered to be

in a safe state if there is at least one sequence of resource allocations

that can lead to a state where all processes have obtained their required

resources and completed their execution.

6.2 Unsafe State

An unsafe state is a system state in which the system may or may not

lead to a deadlock. In other words, an unsafe state is a state in which the

system cannot allocate resources to all the processes in some order

without leading to a deadlock. A system can be considered to be in an

unsafe state if there is no sequence of resource allocations that can lead

to a state where all processes have obtained their required resources and

completed their execution.

6.3 Resource Allocation Graph

The resource allocation graph is a technique used to check if a system is

in a safe or unsafe state. The resource allocation graph consists of two

types of nodes: process nodes and resource nodes. A process node

represents a process, and a resource node represents a resource.

In the resource allocation graph, a directed edge from a process node to

a resource node represents a process requesting a resource, and a

directed edge from a resource node to a process node represents a

resource being held by a process. A cycle in the resource allocation

graph indicates the presence of a deadlock.

PAGE 34

6.4 Banker's Algorithm

The banker’s algorithm is a scheduling algorithm that can prevent

deadlocks by checking if a request can be granted without leading to an

unsafe state. It is based on the analogy of a small-town banker who

grants lines of credit to customers.

In the banker’s algorithm, each process is assigned a maximum demand

for each resource type, which represents the maximum number of

resources the process will need at any given time. The system also

maintains a current allocation of resources to each process and an

available resource vector, which represents the number of resources of

each type that are currently available.

When a process requests resources, the banker’s algorithm checks

whether granting the request will lead to an unsafe state, i.e., a state

where deadlock may occur. To do this, the algorithm simulates the

granting of the request by subtracting the requested resources from the

available resource vector and adding them to the process’s current

allocation. It then checks whether there exists a safe sequence of

processes that can complete their work using the available resources. If

such a sequence exists, the request is granted; otherwise, it is denied.

The safe sequence is determined using a variation of the deadlock

detection algorithm presented earlier. Starting from the current

available resource vector, the algorithm searches for a process whose

maximum demand can be satisfied using the available resources. If such

a process is found, its allocated resources are released, and the process

is removed from the system. The resources released by the process are

added back to the available resource vector, and the search continues

until either all processes have been satisfied or no process can be

satisfied.

PAGE 35

If the request cannot be granted, the process is forced to wait until the

required resources become available. This may cause delays and reduce

system efficiency, but it ensures that deadlock cannot occur.

In summary, the banker’s algorithm is a scheduling algorithm that can

prevent deadlocks by checking if a request can be granted without

leading to an unsafe state. It is based on the analogy of a small-town

banker who grants lines of credit to customers and ensures that the

resources are allocated in a safe and efficient manner.

The banker's algorithm consists of the following steps:

 When a process requests a resource, the system checks if the

request can be granted without leading to an unsafe state.

 If the request can be granted, the system allocates the resource to

the process.

 If the request cannot be granted, the process is blocked until the

resource becomes available.

 When a process releases a resource, the system checks if this

release can lead to a safe state.

 If the release leads to a safe state, the system deallocates the

resource from the process and grants the resource to the next

process in the queue.

The Banker's algorithm uses a set of rules to determine whether a

resource request should be granted or not. The rules are as follows:

 If a process requests resources, they are immediately denied if the

resources they request are not currently available.

 If a process requests resources, they are immediately denied if

granting the request will cause the system to enter an unsafe state.

 If a process requests resources, they are granted the resources if

they are immediately available, and granting the resources will

not cause the system to enter an unsafe state.

 If a process requests resources that are not immediately available,

they are placed in a queue until the resources become available.

PAGE 36

When the resources become available, the algorithm checks if

granting the request will cause the system to enter an unsafe state.

If it does not, the request is granted, and the process can continue.

Example: The concept of safe and unsafe states is typically used in

conjunction with the Banker's algorithm for deadlock avoidance. Here

is a pseudocode example:

/* Assume we have n processes and m resource types */

/* Function to check if a state is safe */

boolean isSafe(int available[], int max[][m], int allocation[][m],

int n) {

 int work[m];

 boolean finish[n];

 int i, j;

 /* Initialize work and finish arrays */

 for (i = 0; i < m; i++) {

 work[i] = available[i];

 }

 for (i = 0; i < n; i++) {

 finish[i] = false;

 }

 /* Find an unfinished process with needs less than or equal to

work */

 for (i = 0; i < n; i++) {

 if (finish[i] == false) {

PAGE 37

 boolean needsMet = true;

 for (j = 0; j < m; j++) {

 if (max[i][j] - allocation[i][j] > work[j]) {

 needsMet = false;

 break;

 }

 }

 if (needsMet) {

 /* Release resources from process i */

 for (j = 0; j < m; j++) {

 work[j] += allocation[i][j];

 }

 /* Mark process i as finished */

 finish[i] = true;

 /* Restart the search for an unfinished process */

 i = -1;

 }

 }

 }

 /* If all processes are finished, the state is safe */

 for (i = 0; i < n; i++) {

 if (finish[i] == false) {

 return false;

 }

PAGE 38

 }

 return true;

}

This code assumes that the available resources, maximum resource

needs, and current resource allocations are stored in arrays available,

max, and allocation, respectively. The n parameter is the number of

processes in the system, and m is the number of resource types. The

function returns true if the state is safe and false otherwise.

In this chapter, we have discussed the concept of safe and unsafe states

in the context of deadlock avoidance. We have also discussed the

resource allocation graph and the banker's algorithm for deadlock

avoidance. By using these techniques, operating systems can ensure that

the system remains in a safe state, thereby preventing deadlocks from

occurring.

7 Deadlock prevention

7.1 Attacking the mutual-exclusion condition

Mutual exclusion is a fundamental requirement for preventing race

conditions and maintaining data consistency. However, as we have seen,

it can also lead to deadlocks. In order to prevent deadlocks by attacking

the mutual-exclusion condition, we need to find ways to allow multiple

processes to access shared resources concurrently without interfering

with each other.

One way to achieve this is to make data read-only. This means that

multiple processes can access the same data at the same time without

causing any conflicts. This approach works well for situations where

data is being read, but it is not suitable for situations where data is being

modified.

PAGE 39

Another way to attack the mutual-exclusion condition is to use spooling.

Spooling is a technique where data is temporarily stored in a buffer or

queue until it can be processed. For example, when multiple processes

want to print output on a shared printer, the output is first spooled to a

temporary buffer. Then, a separate process, known as the printer

daemon, accesses the printer and prints out the output from the buffer.

By using spooling, multiple processes can generate output at the same

time without interfering with each other. Since the printer daemon

never requests any other resources, we can eliminate deadlock for the

printer.

In some cases, it may also be possible to use non-exclusive access control

mechanisms to allow multiple processes to access shared resources

concurrently. For example, in a database management system, multiple

processes can access the same database concurrently by using locking

and transaction management mechanisms.

In summary, attacking the mutual-exclusion condition involves finding

ways to allow multiple processes to access shared resources

concurrently without interfering with each other. This can be achieved

by making data read-only, using spooling, or using non-exclusive access

control mechanisms. By using these techniques, we can prevent

deadlocks caused by mutual exclusion while still maintaining data

consistency and integrity.

7.2 Attacking the hold-and-wait condition

While requiring all resources to be requested before execution starts

may eliminate deadlocks, it is often impractical. A more flexible

approach is to use a technique called resource ordering. With resource

ordering, resources are given a fixed order, and a process may only

request resources in that order. If a process needs a resource that is later

in the order, it must release all resources that come earlier in the order

PAGE 40

before making the request. This technique ensures that a process never

holds resources while waiting for others.

Another approach to attacking the hold-and-wait condition is to use a

two-phase locking protocol. In this protocol, a process may request

resources one at a time, but once a resource is acquired, it is held until

the process releases all resources. This technique ensures that a process

will never request a resource while holding another, thereby avoiding

the hold-and-wait condition. However, it may lead to resource

starvation, as a process that holds a resource cannot request any others

until it releases the held resource.

Yet another technique is to require that a process release all its resources

whenever it is blocked, and then request all of them again when it is

unblocked. This approach is known as restartable atomic actions and is

typically used in database systems. While effective, it can be expensive,

as it requires redoing all actions that have been completed up to the

point of the block.

In summary, there are several ways to attack the hold-and-wait

condition, including resource ordering, two-phase locking, and

restartable atomic actions. Each technique has its advantages and

disadvantages, and the choice of technique depends on the specific

requirements of the system being designed.

7.3 Attacking the no-preemption condition

The third condition stated by Coffman et al. is the no-preemption

condition. It states that resources cannot be taken away from a process

unless that process releases them voluntarily. This condition makes it

difficult to prevent deadlocks because it is hard to force a process to

release resources that it is holding. However, there are some strategies

that can be used to attack this condition and prevent deadlocks.

PAGE 41

One approach is to use virtualization to create the illusion of

preemption. For example, in the printer and plotter scenario discussed

earlier, spooling printer output to disk creates a virtual printer that can

be preempted if necessary. The printer daemon has exclusive access to

the physical printer, but other processes can write to the spool area and

create a queue of print jobs. The daemon reads the spool files and sends

them to the printer as resources become available. If a process needs the

plotter while waiting for the printer, it can be allocated the plotter

resource without affecting the printer resource. When the printer

resource becomes available, the process can resume printing without

losing any data.

Another approach to attacking the no-preemption condition is to use

timeouts to force processes to release resources. A timeout mechanism

can be built into the resource allocation algorithm so that if a process

holds a resource for too long, it is forcibly released. This approach is

effective for some resources, such as network connections, where it is

not too disruptive to terminate a connection and start over. However, it

may not work for resources that hold state, such as files or database

records, because terminating the process could lead to data corruption

or inconsistency.

A third approach to attacking the no-preemption condition is to use

priority-based scheduling to allocate resources. In a priority-based

system, processes are assigned a priority level that determines their

access to resources. A process with a higher priority can preempt a

process with a lower priority if it needs the same resource. This

approach can work well for real-time systems where certain tasks have

strict timing requirements. However, it may not work well for general-

purpose systems where fairness and equality are important.

In summary, the no-preemption condition makes it difficult to prevent

deadlocks, but virtualization, timeouts, and priority-based scheduling

are all effective strategies for attacking this condition. Each strategy has

PAGE 42

its strengths and weaknesses, and the choice of strategy depends on the

specific requirements of the system.

7.4 Attacking the circular wait condition

Attacking the circular wait condition is the final step in preventing

deadlocks. One way to eliminate circular wait is to enforce a rule that a

process can only hold one resource at a time. This approach may work

in some scenarios, but it can be impractical for processes that require

multiple resources simultaneously.

Another approach is to impose a total ordering of all resources and

require processes to request resources in that order. For example, if

resources A, B, and C have an order such that A < B < C, then a process

can only request B after obtaining A and can only request C after

obtaining B. This approach can prevent circular wait, but it requires a

strict ordering of all resources, which may be difficult to achieve in some

systems.

A more flexible approach is to allow processes to request resources in

any order but to impose a limit on the number of resources a process

can hold at any given time. This limit can be set to the maximum

number of resources that any process will need, which can prevent

circular wait by limiting the number of processes that can be involved

in a circular wait situation.

Another way to prevent circular wait is to use a resource allocation

graph (RAG) to track resource requests and allocations. The RAG is a

directed graph where nodes represent processes and resources, and

edges represent requests and allocations. If the graph contains a cycle,

then there is a circular wait situation, and deadlock is possible. To

prevent deadlock, the system can use an algorithm to detect cycles in

the RAG and break them by releasing resources held by one of the

processes involved in the cycle.

PAGE 43

In conclusion, the circular wait condition can be eliminated by

enforcing a rule that a process can hold only one resource at a time,

imposing a strict ordering of all resources, limiting the number of

resources a process can hold at any given time, or using a resource

allocation graph to detect and break cycles. Each of these approaches

has its own strengths and weaknesses, and the choice depends on the

specific requirements of the system.

7.5 Prevention through resource ordering and

allocation policies

Prevention through resource ordering and allocation policies is an

approach used to avoid deadlocks in operating systems. This approach

involves imposing a particular order on the acquisition of resources,

which helps to avoid the conditions that cause deadlocks.

The idea behind this approach is to define a hierarchy of resources and

require that resources be acquired in a specific order. This way, each

process will acquire the resources it needs in the right order, preventing

circular wait conditions that cause deadlocks.

For instance, if two resources A and B are needed by a process, and the

required order is A then B, then the process must first acquire resource

A before acquiring resource B. This ensures that resource B is not

already held by another process that might cause a deadlock.

This approach can be implemented using various methods, such as

using a resource allocation table that defines the order in which

resources must be acquired or using a priority-based approach where

higher priority processes are given preference in acquiring resources.

One common resource ordering policy is the "first-come, first-served"

approach. This approach ensures that resources are allocated to

processes in the order in which they request them. However, this

PAGE 44

approach can lead to inefficient use of resources since a process that is

holding a resource might block other processes from using it even when

it is not actively using it.

Another approach is the "priority-based" approach, where higher

priority processes are given preference in acquiring resources. This

approach ensures that critical processes are given access to the

resources they need before lower priority processes. However, this

approach can also lead to inefficiencies if a higher priority process is

waiting for a lower priority process to release a resource it needs.

Overall, prevention through resource ordering and allocation policies is

an effective approach to avoid deadlocks in operating systems. However,

it is important to choose the right resource allocation policy that

balances efficiency and fairness.

7.6 Prevention through timeouts and deadlock

detection

Preventing deadlocks is an essential aspect of operating system design.

One approach to prevent deadlocks is through the use of timeouts and

deadlock detection. In this chapter, we will discuss the concept of

timeouts and deadlock detection, and their role in preventing deadlocks.

A timeout is a mechanism that enables a process to give up waiting for

a resource after a certain period. Timeouts can be used to avoid

deadlocks by enforcing a time limit on how long a process is allowed to

wait for a resource. If the resource is not available within the specified

time limit, the process is interrupted, and the resource is released,

allowing other processes to access it.

Another approach to preventing deadlocks is through deadlock

detection. Deadlock detection involves periodically checking the

resource allocation graph for cycles, which would indicate the presence

PAGE 45

of a deadlock. When a cycle is detected, the operating system can take

one of two actions: either preempt resources to break the deadlock, or

kill one of the processes involved in the cycle. Deadlock detection can

be implemented using algorithms such as the Banker's algorithm.

Timeouts and deadlock detection can be used together to prevent

deadlocks. In this approach, processes are allowed to wait for a resource

for a certain period, after which the operating system checks for

deadlocks. If a deadlock is detected, the operating system can take

appropriate action, such as releasing resources or killing processes.

Timeouts and deadlock detection are essential techniques for

preventing deadlocks in operating systems. Timeouts provide a

mechanism for processes to release resources if they are not available

within a certain time, while deadlock detection allows the operating

system to identify and resolve deadlocks before they cause system-wide

issues. By using a combination of these techniques, operating systems

can ensure that deadlocks are prevented or resolved quickly, improving

system performance and reliability.

7.7 Two-phase locking

Two-phase locking is a technique used in many database systems to

prevent deadlocks. It is based on the idea of acquiring all necessary locks

before beginning any real work. In the first phase, the process tries to

lock all the records it needs, one at a time. If it succeeds, it begins the

second phase, performing its updates and releasing the locks. No real

work is done in the first phase.

The two-phase locking algorithm can be summarized as follows:

 In the growing phase, a transaction can acquire locks but cannot

release any locks.

 In the shrinking phase, a transaction can release locks but cannot

acquire any locks.

PAGE 46

 Once a transaction enters the shrinking phase, it cannot return to

the growing phase.

The two-phase locking algorithm guarantees serializability, meaning

that the transactions are executed as if they occurred one at a time in

some order, even though they may actually execute concurrently.

Serializability ensures that the results of concurrent transactions are

equivalent to the results of executing the transactions serially.

One potential drawback of two-phase locking is that it can lead to

deadlock if transactions hold locks for an extended period of time. To

avoid this, some database systems use a timeout mechanism, where a

transaction is forced to release its locks after a certain period of time if

it has not completed its updates.

In summary, two-phase locking is a technique used in database systems

to prevent deadlocks. It ensures serializability by acquiring all necessary

locks before beginning any real work, and releasing them only after all

work has been completed. While it can lead to deadlocks if locks are

held for an extended period of time, a timeout mechanism can be used

to mitigate this risk.

8 Other issues

8.1 Livelock

Livelock is a situation where two or more processes keep changing their

state in response to changes in the other process's state, but no progress

is made. In other words, the processes are not deadlocked, but they are

unable to proceed with their tasks because they are constantly

responding to the actions of the other process.

One common cause of livelock is when two or more processes are

waiting for a shared resource to become available, but each process

PAGE 47

releases the resource when it detects that the other process is waiting

for it. This results in a situation where the resource is constantly being

passed back and forth between the processes, but neither process can

actually make progress.

Another cause of livelock is when two or more processes are trying to

coordinate their actions, but each process is waiting for the other

process to take the first step. For example, consider a situation where

two robots are trying to navigate through a narrow corridor. If each

robot keeps moving aside to let the other robot pass, they may end up

moving back and forth without ever making any progress.

To avoid livelock, it is important to design algorithms that are resilient

to unexpected events and that can handle situations where processes

need to coordinate their actions. One approach is to use timeouts to

ensure that processes do not wait indefinitely for a resource or a

response from another process. Another approach is to use randomized

algorithms that introduce some degree of randomness into the decision-

making process, which can help to break deadlocks and prevent

livelocks.

Overall, livelock is a complex issue that requires careful consideration

when designing distributed systems and algorithms. By understanding

the causes and implications of livelock, it is possible to design systems

that are more resilient and that can handle unexpected events in a

graceful manner.

8.2 Livelock vs Deadlock

Livelock and deadlock are not always straightforward to identify and can

occur in unexpected ways. For example, in some operating systems, the

number of processes allowed is limited by the number of entries in the

process table. When a program attempts to fork a new process but fails

due to a full process table, a reasonable strategy might be to wait for a

PAGE 48

random time and try again. However, this can lead to livelock if multiple

processes are attempting to fork at the same time and repeatedly fail

due to the same resource constraint.

In this scenario, the processes are all attempting to acquire the same

finite resource (i.e., an entry in the process table) and are repeatedly

failing and retrying at the same time. This can lead to a situation where

none of the processes are able to make progress, even though they are

all technically executing.

To avoid this type of livelock, a better strategy might be for the processes

to wait for a random time and then retry the fork operation at different

times, rather than all attempting to retry at the same time. This way,

there is a higher likelihood that at least one process will be able to

acquire the necessary resource and make progress, rather than all of

them continuously failing and retrying.

8.3 Starvation

Starvation is a phenomenon that occurs when a process is perpetually

denied access to a resource it requires to execute, even though the

resource is available. This problem is closely related to deadlock and

livelock, as all three can occur due to poor resource allocation policies.

When a system is dynamic, requests for resources occur frequently, and

there is a need to allocate resources fairly. However, the resource

allocation policy may not be optimal and can lead to some processes

never getting the resources they need, even though they are not

deadlocked.

A common example of starvation is the allocation of a printer. In a

scenario where multiple processes want to use the printer

simultaneously, a decision must be made about who gets to use it first.

However, if the system's policy is to always give the printer to the same

PAGE 49

process, other processes may be starved of access to the printer

indefinitely.

One way to prevent starvation is to implement a fairness policy that

ensures every process gets a chance to use the resource. This policy

could be based on a round-robin algorithm, where each process gets a

turn to use the resource in a predetermined order.

Another solution is to implement a priority-based resource allocation

policy. Processes with higher priority levels are given priority access to

the resource, ensuring that they are not starved of the resources they

need.

It is important to note that, although a fair allocation policy may prevent

starvation, it may also lead to some resources being underutilized.

Therefore, a balance must be struck between preventing starvation and

maximizing resource utilization.

In conclusion, starvation is a problem that occurs when a process is

perpetually denied access to a resource it needs, even though the

resource is available. To prevent starvation, a fair resource allocation

policy must be implemented that ensures every process gets a chance to

use the resource.

9 Case Study: Deadlocks in Linux

Deadlocks are one of the most challenging problems in operating

system design and implementation. A deadlock occurs when two or

more processes are waiting for resources held by each other, leading to

a state of impasse where none of the processes can proceed. This can

have severe consequences, such as system crashes, loss of data, and

reduced system performance.

In this chapter, we will discuss the necessary conditions for deadlocks,

including resource types, allocation policies, hold and wait, no

PAGE 50

preemption, and circular wait. We will also explore various methods of

detection and prevention, including the resource allocation graph,

Banker's algorithm, prevention through resource ordering and

allocation policies, and prevention through timeouts and deadlock

detection.

Furthermore, we will discuss methods of deadlock resolution, including

killing processes, resource preemption, and rollback and recovery. We

will also delve into the concept of deadlock avoidance, including safe

and unsafe states, the Banker's algorithm for deadlock avoidance, and a

comparison with other resource allocation algorithms.

Finally, we will take a closer look at the case study of deadlocks in Linux.

We will provide an overview of Linux's approach to handling deadlocks

and compare it with other operating systems. Additionally, we will

examine the impact of deadlocks on Linux's performance and reliability.

9.1 Overview of Linux's approach to handling deadlocks

Linux is an open-source operating system that is widely used in various

applications. Linux has a sophisticated approach to handle deadlocks,

which is an essential feature of an operating system. This chapter will

provide an overview of Linux's approach to handling deadlocks.

The Linux operating system employs a combination of prevention,

detection, and resolution techniques to deal with deadlocks. The Linux

kernel has a deadlock detection and resolution mechanism that can

identify and resolve deadlocks. The deadlock resolution mechanism in

Linux is based on resource preemption and rollback techniques.

The Linux kernel's deadlock detection mechanism is based on a

resource allocation graph (RAG), which is similar to the one discussed

in the previous chapter. The Linux kernel maintains a RAG that

represents the current state of the system's resources and their

allocation. Whenever a new process requests a resource, the kernel

PAGE 51

checks whether the request creates a cycle in the RAG. If a cycle exists,

the kernel identifies the processes involved in the cycle and takes

appropriate actions to resolve the deadlock.

Example: Sure, here's a simple pseudocode for detecting a cycle in a

resource allocation graph:

1. Mark all nodes as unvisited.

2. For each node in the graph:

 a. If the node is unvisited, perform depth-first search (DFS)

traversal.

 b. While traversing, mark the current node as visited.

 c. If we encounter a node that is already marked as visited,

then there is a cycle in the graph.

 d. After DFS traversal is complete, clear the visited marks for

all nodes.

3. If no cycle is found after DFS traversal of all nodes, the graph

does not have any deadlock.

Note that this is a simplified pseudocode and there are more efficient

algorithms for cycle detection in graphs, such as Tarjan's algorithm or

Kosaraju's algorithm.

In Linux, the kernel employs the Ostrich algorithm for deadlock

detection. The Ostrich algorithm is a heuristic-based algorithm that

uses a combination of cycle detection and process suspension to detect

and resolve deadlocks. Whenever a deadlock is detected, the kernel

suspends one or more processes involved in the deadlock to break the

cycle and resolve the deadlock.

Example: Here's an example pseudocode for the Ostrich algorithm for

deadlock detection:

// Initialize the data structures

let work = available

PAGE 52

let finish = array of size n, filled with false

let deadlock_detected = false

let deadlock_processes = empty list

// Repeat until all processes have finished or a deadlock is

detected

while there are unfinished processes and not deadlock_detected:

 let found = false

 // Check each unfinished process

 for each process in processes:

 if finish[process] == false and need[process] <= work:

 // Found a process that can complete

 found = true

 work += allocation[process]

 finish[process] = true

 // If no process can complete, a deadlock has occurred

 if found == false:

 deadlock_detected = true

 // Find all processes involved in the deadlock

 for each process in processes:

 if finish[process] == false:

 deadlock_processes.add(process)

PAGE 53

// If a deadlock was detected, print the list of processes involved

if deadlock_detected:

 print("Deadlock detected. Processes involved:",

deadlock_processes)

Note that this is a simplified example and may not be suitable for all

situations. The actual implementation may vary depending on the

specific requirements and constraints of the system.

Apart from deadlock detection and resolution, Linux also employs

several prevention techniques to avoid deadlocks altogether. One of the

primary prevention techniques used in Linux is resource ordering. In

resource ordering, resources are allocated to processes in a predefined

order, thereby preventing the possibility of a circular wait. Linux also

uses timeout mechanisms to prevent deadlocks, where a process is

forced to release a resource after a specified period to avoid resource

starvation.

In conclusion, Linux's approach to handling deadlocks is a combination

of prevention, detection, and resolution techniques. The kernel employs

the Ostrich algorithm for deadlock detection, and resource preemption

and rollback techniques for deadlock resolution. Linux also uses

prevention techniques such as resource ordering and timeout

mechanisms to avoid deadlocks altogether. Overall, Linux's approach to

handling deadlocks is an essential feature of the operating system that

ensures the system's reliability and performance.

9.2 Comparison with other operating systems

In this chapter, we will compare the approaches taken by different

operating systems in handling deadlocks. Deadlocks are a common

PAGE 54

problem faced by most operating systems, and different operating

systems have different ways of handling them.

Windows and Linux are two popular operating systems that take

different approaches to handle deadlocks. Windows uses a combination

of prevention, detection, and resolution techniques to handle deadlocks.

On the other hand, Linux uses prevention and detection techniques.

Windows uses a resource allocation graph to detect deadlocks. If a cycle

is found in the graph, it indicates a deadlock. Windows also uses

timeouts to detect deadlocks. If a process is waiting for a resource for

too long, it is considered to be deadlocked, and Windows takes

appropriate action to resolve the deadlock.

Windows also uses a combination of prevention and resolution

techniques to handle deadlocks. Windows prevents deadlocks by

ensuring that processes request all the resources they need at once. This

eliminates the hold and wait condition. Windows also uses resource

preemption to resolve deadlocks. If a process is holding a resource that

another process needs, Windows preempts the resource from the

holding process to resolve the deadlock.

Linux takes a different approach to handle deadlocks. Linux primarily

uses prevention techniques to prevent deadlocks from occurring in the

first place. Linux ensures that a process requests all the resources it

needs before it begins executing. This eliminates the hold and wait

condition.

Linux also uses a timeout mechanism to detect deadlocks. If a process is

waiting for a resource for too long, it is considered to be deadlocked,

and Linux takes appropriate action to resolve the deadlock.

In terms of handling deadlocks, both Windows and Linux have their

advantages and disadvantages. Windows is better at handling complex

deadlocks that involve multiple resources and processes, while Linux is

better at preventing deadlocks from occurring in the first place.

PAGE 55

Overall, it is important for operating systems to have effective deadlock

handling mechanisms to ensure the reliability and stability of the system.

The choice of approach depends on the specific requirements and

constraints of the system.

10 Conclusion

In conclusion, deadlocks are a complex issue that can have serious

consequences for the reliability and performance of an operating system.

It is essential for operating system designers and developers to have a

deep understanding of the necessary conditions for deadlocks, as well

as the methods of detection, prevention, and resolution.

In this chapter, we have explored the various aspects of deadlocks,

including their definition, necessary conditions, detection and

prevention methods, resolution techniques, and avoidance strategies.

We also discussed a case study on deadlocks in Linux, which highlights

the importance of proper handling of deadlocks for the smooth

functioning of a complex operating system.

By implementing effective mechanisms for dealing with deadlocks,

operating system designers and developers can ensure that their

systems are more reliable and robust. It is important to continuously

evaluate and update these mechanisms to adapt to changing technology

and system requirements.

Overall, understanding and preventing deadlocks is an essential aspect

of operating system design and maintenance. With the right approach,

we can minimize the risk of deadlocks and ensure that our systems

continue to operate efficiently and reliably.

