

Scheduling

OPERATING SYSTEMS

Sercan Külcü | Operating Systems | 16.04.2023

PAGE 1

Contents

Contents .. 1

1 Introduction ... 4

1.1 Definition of CPU scheduling ... 4

1.2 Importance of CPU scheduling in operating systems 5

1.3 Overview of the goals of CPU scheduling 6

1.4 Process Behavior .. 8

1.5 Scheduling decisions ... 8

1.6 Categories of Scheduling ... 9

2 Scheduling Algorithms .. 11

2.1 First-Come-First-Serve (FCFS) ... 11

2.2 Shortest-Job-First (SJF) .. 14

2.2.1 Non-Preemptive SJF Scheduling: .. 15

2.2.2 Preemptive SJF Scheduling: ... 17

2.3 Shortest Remaining Time Next (SRTN) 20

2.4 Priority Scheduling ... 21

2.5 Round-Robin (RR) ... 24

2.6 Multiple queues .. 27

2.7 Shortest process next (SPN) .. 33

2.8 Guaranteed scheduling ..36

2.9 Lottery scheduling ... 40

2.10 Fair-share scheduling ... 44

2.11 Multilevel Feedback Queue (MLFQ) 48

2.12 Comparison of scheduling algorithms 52

2.12.1 Turnaround Time ... 52

PAGE 2

2.12.2 Waiting Time ... 52

2.12.3 Response Time ... 52

2.12.4 Fairness .. 53

2.12.5 Throughput .. 53

2.13 Incorporating I/O ... 54

3 Process and Thread Prioritization ... 55

3.1 Process Priorities .. 55

3.2 Thread Priorities .. 56

3.3 Importance of Prioritization in CPU Scheduling 56

3.4 Methods of Prioritization .. 56

3.4.1 Static Priorities .. 56

3.4.2 Dynamic Priorities .. 57

3.4.3 Aging ... 57

4 Scheduling in Multiprocessor and Multicore Systems 57

4.1 Definition of multiprocessor and multicore systems 58

4.2 Importance of Scheduling in Multiprocessor and Multicore

Systems .. 60

4.3 Methods of Scheduling in Multiprocessor and Multicore Systems

 60

4.4 Challenges in Scheduling in Multiprocessor and Multicore

Systems ... 61

5 Case Study: CPU Scheduling in Linux Operating System 61

5.1 Overview of Linux CPU scheduling ... 62

5.2 Policies Used in the Linux CPU Scheduling Algorithm:63

5.3 Comparison with CPU scheduling in other operating systems 65

6 Conclusion .. 66

PAGE 3

PAGE 4

Chapter 5:
Scheduling

1 Introduction

Welcome to the chapter on CPU scheduling in operating systems! In

this chapter, we will discuss the fundamental concepts and goals of CPU

scheduling.

Firstly, we will provide a definition of CPU scheduling and highlight its

significance in modern operating systems. CPU scheduling is the

process by which an operating system selects a process from a pool of

processes to allocate the CPU to. This process is crucial as the CPU is

the most valuable resource in a system, and efficient utilization of the

CPU is essential for optimal system performance.

Next, we will explore the goals of CPU scheduling. These goals include

maximizing CPU utilization, ensuring fair allocation of CPU time among

processes, minimizing response time, and ensuring that processes are

executed in a predictable manner. We will discuss how these goals are

achieved and the various techniques used to accomplish them.

So, let's dive into the world of CPU scheduling and learn how it impacts

the performance and efficiency of modern operating systems.

1.1 Definition of CPU scheduling

In a modern operating system, multiple processes compete for CPU time,

which is a scarce and valuable resource. CPU scheduling is the process

of determining which process should be allocated CPU time and for how

PAGE 5

long. It is a crucial aspect of operating system design, as efficient

scheduling algorithms can significantly improve system performance

and user experience.

CPU scheduling involves maintaining a queue of ready processes and

selecting which process to run next. The scheduler must make decisions

quickly and efficiently, taking into account factors such as process

priority, CPU utilization, and fairness.

The goal of CPU scheduling is to maximize CPU utilization while

providing fair access to CPU resources for all processes. A good

scheduling algorithm should balance the needs of different processes,

preventing any single process from monopolizing the CPU and causing

other processes to wait too long.

CPU scheduling algorithms can be preemptive or non-preemptive. In a

preemptive algorithm, the scheduler can interrupt a running process to

allocate CPU time to another process. In a non-preemptive algorithm,

the running process must voluntarily give up the CPU before another

process can run.

Overall, CPU scheduling is a critical component of operating system

design. An effective scheduling algorithm can improve system

performance, responsiveness, and fairness, while a poorly designed

algorithm can result in slow and unresponsive systems.

1.2 Importance of CPU scheduling in operating systems

CPU scheduling is a crucial component of any operating system,

responsible for managing the allocation of the CPU's resources to

various processes and threads. It is a fundamental task that directly

affects the performance, responsiveness, and fairness of an operating

system.

PAGE 6

The primary goal of CPU scheduling is to maximize CPU utilization

while ensuring that processes and threads are executed in a fair and

efficient manner. In a multi-tasking environment, where multiple

processes and threads compete for the CPU's resources, effective CPU

scheduling can significantly improve the overall system's performance.

By using CPU scheduling, an operating system can provide a fast and

responsive user experience, allowing users to interact with the system

while simultaneously running multiple applications in the background.

Effective CPU scheduling can also improve the overall throughput of the

system, enabling more work to be accomplished in less time.

Moreover, effective CPU scheduling can also ensure that high-priority

processes and threads are executed first, ensuring that critical tasks are

completed promptly. It can also help prevent processes and threads

from monopolizing the CPU, allowing other processes and threads to

run and use resources, which improves the overall system's fairness.

Overall, CPU scheduling is a vital component of an operating system,

playing a critical role in ensuring that the system performs optimally, is

responsive, efficient, and fair. In the following sections, we will discuss

the various goals and methods of CPU scheduling, which will provide a

deeper understanding of how operating systems allocate resources to

processes and threads.

1.3 Overview of the goals of CPU scheduling

CPU scheduling is an essential component of an operating system that

helps manage the allocation of CPU time among competing processes.

The primary objective of CPU scheduling is to increase the system's

overall efficiency by minimizing the CPU idle time and maximizing the

CPU utilization while ensuring that the system remains responsive to

user requests.

PAGE 7

In addition to improving the system's performance, CPU scheduling has

several other goals, including:

 Fairness: CPU scheduling should ensure that all processes receive

a fair share of the CPU time and that no process is given an unfair

advantage over others.

 Priority: Some processes may have higher priority than others,

such as real-time processes, which require immediate attention.

The scheduling algorithm must ensure that higher priority

processes receive the necessary CPU time while not completely

starving lower priority processes.

 Response time: The time between a user request and the system's

response should be as short as possible. The scheduling algorithm

should prioritize processes that are interactive or waiting for user

input, ensuring that the system remains responsive.

 Throughput: The number of processes completed per unit time

should be maximized. The scheduling algorithm should aim to

complete as many processes as possible in a given time period.

 Predictability: The behavior of the scheduling algorithm should

be predictable, and the scheduling decisions should be

transparent to the user and the system.

Achieving these goals is not always easy and often requires a trade-off

between them. For example, a scheduling algorithm that maximizes

throughput may not provide the best response time or fairness. Thus,

the selection of a scheduling algorithm depends on the system's

characteristics, workload, and the specific goals to be achieved.

In the next chapters, we will discuss different scheduling algorithms and

techniques used by modern operating systems to achieve these goals.

PAGE 8

1.4 Process Behavior

One of the primary characteristics of process behavior is that most

processes alternate bursts of computing with I/O requests. Typically,

the CPU runs for a period, then a system call is made to read from or

write to a file. Once the system call completes, the CPU resumes

computing until more data is needed or there is more data to write. It's

important to note that certain I/O activities are still considered

computing, such as updating the screen with video RAM because the

CPU is still in use.

I/O operations in this context refer to the process entering the blocked

state while waiting for an external device to complete its work. This can

include waiting for a file to load or saving a file to disk. During this time,

the process is not actively running, and the CPU can work on other tasks.

Understanding process behavior is essential for optimizing system

performance. The operating system can use this knowledge to schedule

processes efficiently, prioritizing those that are actively computing and

delaying those that are in a blocked state. By doing so, the system can

maximize its utilization of resources, ensuring that every process

receives the necessary resources to complete its work.

1.5 Scheduling decisions

Scheduling decisions are an integral part of operating systems. When to

schedule a process is one of the most critical questions an operating

system needs to answer. In this chapter, we will explore the four key

situations when scheduling decisions need to be made.

The first situation occurs when a new process is created. The scheduler

must decide whether to run the parent process or the child process. Both

processes are in the ready state, and the scheduler can legitimately

choose either process to run next.

PAGE 9

The second situation is when a process exits. Since the process can no

longer run, the scheduler must select another process from the set of

ready processes. If no process is ready, a system-supplied idle process is

run.

The third situation arises when a process blocks on I/O, a semaphore,

or some other reason. Another process must be selected to run.

Sometimes the reason for blocking may play a role in the selection

process. For example, if an important process is waiting for another

process to exit its critical region, letting that process run next will enable

the important process to continue.

The fourth situation occurs when an I/O interrupt happens. If the

interrupt came from an I/O device that has completed its work, a

process that was blocked waiting for the I/O may now be ready to run.

The scheduler must decide whether to run the newly ready process, the

process that was running at the time of the interrupt, or some third

process.

The scheduler must make these decisions promptly and efficiently to

ensure the system operates optimally. To achieve this, scheduling

algorithms employ various strategies, such as round-robin, priority-

based scheduling, and lottery scheduling. In conclusion, scheduling

decisions are critical to the smooth operation of an operating system,

and the timing of such decisions is influenced by various factors.

1.6 Categories of Scheduling

When designing a scheduling algorithm, the environment in which it

will operate must be taken into account. There are three main categories

of environments: batch, interactive, and real-time.

In a batch environment, jobs are submitted in advance and then

executed without user interaction. The goal of the scheduler in this

environment is to maximize throughput, or the number of jobs

PAGE 10

completed per unit of time. A typical algorithm used in batch

environments is the First-Come, First-Served (FCFS) algorithm, in

which jobs are executed in the order they are received.

In an interactive environment, the goal of the scheduler is to minimize

response time, or the time between when a user submits a request and

when a response is returned. In this environment, users are directly

interacting with the system, so a fast response time is essential for a

good user experience. Interactive scheduling algorithms often use time-

sharing, where each user is allocated a slice of time in which they can

interact with the system. One common algorithm used in interactive

environments is the Round-Robin algorithm, where each user is given a

fixed time slice in which to execute their jobs.

In a real-time environment, the goal of the scheduler is to ensure that

critical tasks are completed within their deadlines. In this environment,

there are hard deadlines that must be met, such as controlling a physical

process like an assembly line or a nuclear power plant. Real-time

scheduling algorithms must take into account the importance of

meeting these deadlines and ensure that critical tasks are given priority

over non-critical tasks. One common algorithm used in real-time

environments is the Earliest Deadline First (EDF) algorithm, in which

the job with the earliest deadline is given priority.

It is important to note that these categories are not mutually exclusive,

and many systems operate in a mixed environment. For example, a web

server may have both batch jobs running in the background and

interactive requests from users. In this case, the scheduler must balance

the needs of both environments to ensure the system operates

efficiently and responsively.

PAGE 11

2 Scheduling Algorithms

In this chapter, we will explore one of the most important functions of

operating systems - CPU scheduling. We'll begin with a definition of

CPU scheduling and discuss its importance in modern operating

systems. Then, we'll dive into the various scheduling algorithms used by

operating systems, including First-Come-First-Serve (FCFS), Shortest-

Job-First (SJF), Priority Scheduling, Round-Robin (RR), and Multilevel

Feedback Queue (MLFQ). We'll explore the strengths and weaknesses

of each algorithm, and discuss how they are implemented in practice.

Finally, we'll conclude with a comparison of the different scheduling

algorithms and provide recommendations on when to use each one. So,

let's get started!

2.1 First-Come-First-Serve (FCFS)

In the world of operating systems, scheduling algorithms play a critical

role in managing resources efficiently. The First-Come-First-Serve

(FCFS) algorithm is the simplest scheduling algorithm, which is

commonly used in operating systems. In this chapter, we will discuss

FCFS scheduling in detail, including its definition, advantages,

disadvantages, and how it works.

The FCFS scheduling algorithm is the simplest scheduling algorithm

that works on a non-preemptive basis. In this algorithm, the process

that arrives first is executed first. The FCFS algorithm is implemented

using a queue data structure, where the arriving processes are added to

the tail of the queue, and the processor executes the process that is at

the front of the queue.

The main advantage of the FCFS scheduling algorithm is that it is simple

to implement and understand. It is also a fair scheduling algorithm

because it follows the principle of first-come-first-serve, which means

PAGE 12

that the process that arrives first will get executed first. Additionally, it

is suitable for batch processing systems where there is no need for

interactivity between the user and the system.

The FCFS scheduling algorithm has several disadvantages. One of the

significant drawbacks is that it does not take into account the CPU burst

time of a process. If a long process arrives first, it will hold the CPU for

an extended period, causing other processes to wait, which may lead to

poor performance. This problem is known as the convoy effect.

Additionally, the FCFS algorithm is not suitable for interactive systems

because it does not provide good response times.

The FCFS scheduling algorithm works by implementing a queue data

structure. When a process arrives, it is added to the tail of the queue.

The processor executes the process that is at the front of the queue. The

CPU remains busy until the process completes its execution, and the

next process is dequeued from the queue.

If a new process arrives while the processor is busy, it is added to the tail

of the queue. The FCFS algorithm does not interrupt the currently

executing process, even if a higher priority process arrives.

The FCFS scheduling algorithm is a simple and fair scheduling

algorithm that is widely used in operating systems. However, it has

several disadvantages, such as poor performance due to the convoy

effect and lack of responsiveness in interactive systems. Therefore, it is

not suitable for real-time and interactive systems.

Example: Here's a pseudocode for the First-Come-First-Serve (FCFS)

CPU scheduling algorithm:

// Initialize the ready queue with processes

ready_queue = [P1, P2, P3, ..., PN]

// Set the current process to the first one in the queue

current_process = ready_queue[0]

PAGE 13

// Execute each process in order of arrival

for process in ready_queue:

 // Switch to the next process

 current_process = process

 // Execute the process

 execute(current_process)

In this pseudocode, we start by initializing the ready queue with all the

processes that are ready to be executed. We set the current process to

the first process in the queue.

Then, we loop through each process in the ready queue, and for each

process, we switch to it as the current process and execute it. Since FCFS

executes processes in the order of their arrival, this pseudocode ensures

that each process is executed in the same order it arrived in the ready

queue.

Example:

Input:

Process 1: Arrival Time = 0, Burst Time = 4

Process 2: Arrival Time = 2, Burst Time = 2

Process 3: Arrival Time = 4, Burst Time = 3

Process 4: Arrival Time = 6, Burst Time = 1

Output:

Process 1: Waiting Time = 0, Turnaround Time = 4

Process 2: Waiting Time = 2, Turnaround Time = 4

PAGE 14

Process 3: Waiting Time = 4, Turnaround Time = 7

Process 4: Waiting Time = 7, Turnaround Time = 8

Explanation:

Process 1 arrives at time 0 and executes for 4 units of time.

Process 2 arrives at time 2 but has to wait for 2 units of time (until

process 1 completes) before executing for 2 units of time.

Process 3 arrives at time 4 but has to wait for 4 units of time (until

process 2 completes) before executing for 3 units of time.

Process 4 arrives at time 6 but has to wait for 7 units of time (until

process 3 completes) before executing for 1 unit of time.

Waiting time for each process is calculated as the time spent waiting in

the ready queue before executing, while turnaround time is the total

time spent by a process from arrival to completion (i.e., waiting time +

burst time).

2.2 Shortest-Job-First (SJF)

In operating systems, scheduling algorithms are used to determine

which process should be given the CPU time and for how long. One of

the most commonly used scheduling algorithms is Shortest-Job-First

(SJF) scheduling. The basic idea behind SJF scheduling is to prioritize

the process with the shortest burst time to run first, allowing for quicker

turnaround times and improved performance. In this chapter, we will

take a detailed look at SJF scheduling, its advantages and disadvantages,

and its implementation.

The SJF scheduling algorithm is based on the assumption that the

process with the shortest burst time should be scheduled first. In other

words, the process that will take the least amount of time to execute

should be given priority. When a process enters the ready queue, its

PAGE 15

burst time is calculated, and the process with the shortest burst time is

selected for execution.

There are two variations of the SJF scheduling algorithm: non-

preemptive SJF and preemptive SJF.

2.2.1 Non-Preemptive SJF Scheduling:

In non-preemptive SJF scheduling, once a process has been assigned the

CPU, it will continue to run until its completion. This means that a

process cannot be interrupted by another process with a shorter burst

time. Non-preemptive SJF scheduling is also known as Shortest-Job-

Next (SJN) or Non-Preemptive Priority Scheduling.

Example: The following pseudocode illustrates the implementation of

non-preemptive SJF scheduling:

1. Sort the processes in the ready queue by their burst times

(shortest to longest).

2. While the ready queue is not empty:

 a. Dequeue the first process in the queue.

 b. Assign the CPU to this process.

 c. Wait for the process to complete.

Example: Here's an example input and output for the SJF (Shortest Job

First) scheduling algorithm:

Input:

Process Arrival Time Burst Time

P1 0 5

P2 1 3

P3 2 2

P4 3 4

PAGE 16

Output:

Process Arrival Burst Completion Turnaround

 Waiting

P1 0 5 5 5 0

P3 2 2 7 5 3

P2 1 3 10 9 6

P4 3 4 14 11 7

Explanation:

The SJF algorithm schedules processes based on their burst time, with

the shortest job being scheduled first. In this example, the arrival time

and burst time for each process are provided in the input table.

Initially, there are no processes in the ready queue, and P1 arrives at time

0. P1 is the only process in the queue and starts executing immediately.

At time 1, P2 arrives and its burst time is shorter than P1's remaining

burst time, so P2 is scheduled next. At time 2, P3 arrives and its burst

time is shorter than P1's remaining burst time, so P3 is scheduled next.

At time 3, P4 arrives and its burst time is shorter than P1's remaining

burst time, but longer than P3's remaining burst time, so P1 continues

executing.

After P1 completes, P3 is the shortest job in the ready queue and starts

executing. P2 is scheduled next as its burst time is shorter than P4's

remaining burst time. Finally, P4 completes the execution.

The output table shows the completion time, turnaround time, and

waiting time for each process. The completion time is the time when the

process finishes execution. The turnaround time is the difference

between the completion time and the arrival time, which represents the

time a process spends in the system. The waiting time is the difference

between the turnaround time and the burst time, which represents the

time a process spends waiting in the ready queue.

PAGE 17

2.2.2 Preemptive SJF Scheduling:

In preemptive SJF scheduling, a running process can be preempted by a

newly arrived process with a shorter burst time. This means that the

process with the shortest remaining burst time will be given priority to

execute, regardless of whether it is currently running or not. Preemptive

SJF scheduling is also known as Shortest-Remaining-Time-First (SRTF).

Example: The following pseudocode illustrates the implementation of

preemptive SJF scheduling:

1. Initialize the currently running process to null.

2. While the ready queue is not empty:

 a. Sort the processes in the ready queue by their remaining

burst times (shortest to longest).

 b. If the currently running process has a longer remaining

burst time than the first process in the queue:

 i. Preempt the currently running process.

 ii. Enqueue the preempted process back into the ready queue.

 iii. Dequeue the first process in the queue.

 iv. Assign the CPU to this process.

 c. Wait for the process to complete.

Example: Here's an example input and output for the preemptive SJF

(Shortest Job First) scheduling algorithm:

Input:

Process Arrival Time Burst Time

P1 0 5

P2 2 3

P3 4 4

PAGE 18

P4 6 2

Output:

Time Process Remaining Burst Time

0 P1 5

1 P1 4

2 P2 3

3 P2 2

4 P2 1

5 P1 3

6 P4 2

7 P4 1

8 P3 4

9 P3 3

10 P3 2

11 P3 1

12 P1 2

13 P1 1

In this scenario, the pre-emptive sjf algorithm selects the process with

the shortest remaining burst time. At time 0, process P1 arrives and

starts executing. At time 2, process P2 arrives, but since P1 has a shorter

remaining burst time, the scheduler pre-empts P1 and allows P2 to

execute. At time 4, process P3 arrives, but P2 still has a shorter

remaining burst time, so P3 is not selected. At time 5, P1 is selected again

since it has the shortest remaining burst time. At time 6, process P4

arrives and has a shorter remaining burst time than P1, so P1 is pre-

PAGE 19

empted and P4 starts executing. At time 8, process P3 finally gets

selected since it has the shortest remaining burst time. The remaining

burst times for each process are shown in the output table, and the

algorithm ends at time 13 when all processes have completed.

The SJF scheduling algorithm has several advantages, including:

 It reduces average waiting time, as processes with shorter burst

times are executed first.

 It minimizes average turnaround time, as processes are executed

in the order of their burst times.

 It improves system efficiency, as CPU time is allocated to the

process that requires it the most.

Despite its advantages, the SJF scheduling algorithm also has some

disadvantages, including:

 It is difficult to predict burst times accurately, which can lead to

poor scheduling decisions.

 It can cause long waiting times for processes with long burst times,

as they will be scheduled last.

 It can result in starvation of processes with longer burst times, as

they may never get the opportunity to execute.

To implement SJF scheduling, the operating system must know the

length of the next CPU burst for each process. One way to estimate this

is to use the length of the previous CPU burst, although this method

may not always be accurate. Another way is to use an exponential

average of the previous burst lengths, which gives more weight to recent

bursts.

Once the estimated burst lengths are known, the processes can be

scheduled based on the shortest estimated burst length. If a new process

arrives with a shorter estimated burst length than the currently running

PAGE 20

process, the currently running process is preempted and the new

process is scheduled to run.

SJF scheduling can either be non-preemptive or preemptive. Non-

preemptive SJF scheduling means that once a process starts running, it

will continue to run until it completes its CPU burst. Preemptive SJF

scheduling means that if a new process arrives with a shorter estimated

burst length, the currently running process is preempted and the new

process is scheduled to run.

Preemptive SJF scheduling can lead to starvation if a long process keeps

being preempted by shorter processes, and therefore never completes.

One way to mitigate this is to use a priority queue, where processes with

shorter estimated burst lengths have higher priorities.

Overall, SJF scheduling is a good choice for systems where the length of

CPU bursts is known or can be estimated accurately. It can lead to

shorter average waiting times and turnaround times compared to FCFS

scheduling, and is fairer in terms of allocating CPU time to processes

with shorter burst lengths.

2.3 Shortest Remaining Time Next (SRTN)

Shortest Remaining Time Next (SRTN) is a preemptive version of the

shortest job first scheduling algorithm. It is a CPU scheduling algorithm

that is used in operating systems to minimize the average waiting time

for processes. The idea behind this algorithm is to always select the

process that has the shortest remaining burst time. Burst time is the

amount of time a process needs to complete its execution.

In SRTN, the scheduler keeps track of the remaining time for each

process in the ready queue. Whenever a new process arrives or the

running process becomes blocked, the scheduler selects the process

with the shortest remaining time to execute. If a process with a shorter

PAGE 21

burst time arrives while another process is running, the running process

is preempted, and the new process is executed.

SRTN is an optimal algorithm because it reduces the average waiting

time for processes. However, it requires knowledge of the total

execution time for each process in advance, which is not always

available. In addition, it suffers from the same problem as SJF where

long-running processes may suffer from starvation.

SRTN can be implemented using priority queues, where processes with

shorter remaining times have higher priority. This ensures that shorter

processes are always executed first, regardless of the order in which they

arrive.

Overall, SRTN is a powerful scheduling algorithm that can improve the

performance of the system, especially for processes with short burst

times. However, it requires accurate estimation of the remaining

execution time of each process, which can be difficult to obtain in

practice.

2.4 Priority Scheduling

Priority scheduling is a non-preemptive CPU scheduling algorithm in

which each process is assigned a priority, and the process with the

highest priority is executed first. In priority scheduling, each process is

assigned a priority based on its characteristics, such as the amount of

CPU time it needs, its importance to the system, and the amount of I/O

it requires. A process with a higher priority value will be executed before

a process with a lower priority value.

Priority scheduling can be implemented in different ways. One common

approach is to use static priorities, where the priority of a process is set

at the time of its creation and remains constant throughout its

execution. Another approach is to use dynamic priorities, where the

PAGE 22

priority of a process changes during its execution based on certain

criteria.

There are various factors that can be used to assign priorities to

processes. Some of the commonly used factors are:

 CPU Burst Time: The time that a process requires to complete its

execution is an important factor in determining its priority. A

process that requires a shorter CPU burst time is given a higher

priority than a process that requires a longer CPU burst time.

 Deadline: If a process has a strict deadline by which it must

complete its execution, it is given a higher priority than other

processes.

 I/O Requirement: Processes that require more I/O operations are

given a lower priority than processes that require less I/O

operations.

 Memory Requirement: Processes that require more memory

resources are given a lower priority than processes that require

less memory resources.

In priority scheduling, the scheduler selects the process with the highest

priority from the ready queue and assigns the CPU to it. If two processes

have the same priority, they are executed in a First-Come-First-Serve

(FCFS) manner.

One of the advantages of priority scheduling is that it allows the system

to be more responsive to high-priority processes. For example, if a

critical system process requires immediate attention, it can be assigned

a higher priority, and the scheduler will ensure that it is executed before

other processes. Another advantage is that it allows the system to be

more efficient by maximizing the use of available resources. By

executing high-priority processes first, priority scheduling can ensure

that the system makes the most efficient use of CPU time.

However, priority scheduling also has some disadvantages. One

potential problem is that lower-priority processes may suffer from

PAGE 23

starvation, which means that they may never get a chance to execute if

there are always high-priority processes waiting in the ready queue.

Another problem is that priority inversion may occur, where a low-

priority process holds a resource that a high-priority process needs,

causing the high-priority process to be blocked.

Overall, priority scheduling is a useful CPU scheduling algorithm that

can be used to ensure that the system is responsive to high-priority

processes and efficient in its use of resources. However, it is important

to carefully assign priorities to processes and to take steps to avoid

problems such as starvation and priority inversion.

Example: Here's a pseudocode for Priority Scheduling:

1. Initialize an empty ready queue for each priority level

2. for each process do the following:

3. set priority of the process

4. enqueue the process in the corresponding ready queue

5. while there are processes in the ready queues do the following:

6. select the highest priority process from the non-empty ready

queue

7. execute the selected process for a time slice

8. if the process is still runnable, re-enqueue it in the

corresponding ready queue

In this pseudocode, we first initialize a separate ready queue for each

priority level. Each process is then assigned a priority and enqueued in

the corresponding ready queue. The scheduling algorithm then selects

the highest priority process from the non-empty ready queues and

executes it for a time slice. If the process is still runnable after the time

slice, it is re-enqueued in the corresponding ready queue. The process

repeats until there are no more processes in the ready queues.

PAGE 24

2.5 Round-Robin (RR)

Round-Robin (RR) is a CPU scheduling algorithm in which each process

is assigned a fixed time slice or time quantum. When a process arrives

in the ready queue, it is assigned the CPU for a fixed time quantum,

usually in the range of 10 to 100 milliseconds. If the process completes

its execution before the time quantum expires, it voluntarily

relinquishes the CPU. However, if the time quantum expires before the

process completes its execution, the process is preempted, and the CPU

is assigned to the next process in the ready queue. The preempted

process is then placed at the end of the ready queue, where it waits for

its turn to come again.

The RR algorithm is widely used in real-time systems, where it is

essential to ensure that all processes get a fair share of CPU time,

regardless of their priorities. It is also used in interactive systems, where

it is important to provide a responsive user interface.

One of the advantages of the RR algorithm is that it provides fairness in

the sense that all processes get an equal share of CPU time. This is

achieved by giving each process a fixed time quantum, after which it is

preempted and replaced by the next process in the ready queue.

Another advantage of the RR algorithm is that it provides good response

time, as processes are executed in a round-robin fashion, with each

process getting a chance to run for a fixed time quantum.

However, one of the disadvantages of the RR algorithm is that it may

result in unnecessary context switches, as processes are preempted even

if they do not require the entire time quantum to complete their

execution. This can lead to a decrease in the overall system performance.

To mitigate this issue, the time quantum must be chosen carefully, to

balance between fairness and responsiveness.

Example: Pseudocode for Round-Robin (RR) Scheduling Algorithm:

1. Initialize the ready queue and set the time quantum (q).

PAGE 25

2. While the ready queue is not empty:

 a. Dequeue the first process from the ready queue.

 b. If the process can complete its execution within the time

quantum (q):

 i. Execute the process for the required CPU time.

 ii. Update the process's state to completed.

 c. Else:

 i. Execute the process for the time quantum (q).

 ii. Update the process's state to ready.

 iii. Enqueue the process at the end of the ready queue.

In summary, the Round-Robin (RR) CPU scheduling algorithm provides

fairness and good response time by giving each process a fixed time

quantum to execute, after which it is preempted and replaced by the

next process in the ready queue. It is widely used in real-time and

interactive systems, but it may result in unnecessary context switches if

the time quantum is not chosen carefully.

Example: Here's an example input and output for the Round Robin

scheduling algorithm:

Input:

Process Arrival Time Burst Time

P1 0 10

P2 1 4

P3 2 3

P4 3 5

Time Quantum: 2

Output:

PAGE 26

Time Process Remaining Time

0 P1 8

2 P2 2

4 P3 1

6 P4 3

8 P1 6

10 P2 0

12 P3 0

13 P4 1

15 P1 4

17 P4 0

18 P1 2

19 P1 0

In this example, there are four processes arriving at different times with

different burst times. The time quantum is set to 2 units.

At time 0, the first process P1 is scheduled and given the full burst time

of 10 units, since it is the only process present.

At time 2, P2 arrives and is scheduled, but is only given 2 units of CPU

time, as that is the time quantum. At the end of its time quantum, P2's

remaining time is 2 units.

At time 4, P3 arrives and is scheduled for 2 units, P3's remaining time is

1 unit.

At time 6, P4 arrives and is scheduled for 2 units, P4's remaining time is

3 units.

PAGE 27

At time 8, P1 is scheduled again P1’s remaining time, which is now 6

units.

At time 10, P2 is scheduled again and completes its execution with 0

remaining time.

At time 12, P3 is scheduled again and completes its execution with 0

remaining time.

At time 13, P4 is scheduled again, P4’s remaining time is now 1 units.

At time 15, P1 is scheduled again P1’s remaining time, which is now 4

units.

At time 17, P4 is scheduled again and completes its execution with 0

remaining time.

At time 18, P1 is scheduled again P1’s remaining time, which is now 2

units.

At time 19, P1 completes its execution with 0 remaining time, resulting

in all processes being completed.

2.6 Multiple queues

Multiple queues are a common approach for scheduling processes in

many modern operating systems. The basic idea is to have several

separate queues of processes waiting to be executed. The processes are

grouped into the different queues based on their priority level, and the

scheduler selects processes from each queue in turn. This approach

allows the scheduler to give higher priority to certain processes while

still ensuring that all processes get some CPU time.

One of the earliest examples of a priority scheduler using multiple

queues was in the CTSS operating system, which ran on the IBM 7094

computer. CTSS had a unique problem in that process switching was

slow due to the limited memory capacity of the 7094. Thus, the

PAGE 28

designers of CTSS came up with a clever solution to optimize process

scheduling. They assigned different priority classes to the processes,

where higher-priority processes were given a larger quantum to run

than lower-priority processes. The highest-priority processes were run

for one quantum, while lower-priority processes were given longer

quanta. When a process used up all the quanta allocated to it, it was

moved down one class.

Modern operating systems use a similar approach with multiple priority

queues. Processes are assigned to a specific queue based on their priority

level, and the scheduler selects processes from each queue in turn. Some

operating systems, such as Linux, use a round-robin approach, where

each process in a queue is given a fixed amount of CPU time before the

scheduler moves on to the next process. Other operating systems, such

as Windows, use a priority-based approach, where processes in higher-

priority queues are given more CPU time than those in lower-priority

queues.

The advantage of using multiple queues is that it allows the scheduler

to give higher priority to certain processes while still ensuring that all

processes get some CPU time. For example, in a real-time system,

processes with hard deadlines may be assigned to a higher-priority

queue than processes with soft deadlines. Similarly, in a desktop

environment, interactive processes, such as the user's mouse and

keyboard input, may be assigned to a higher-priority queue than

background processes, such as file backups.

In conclusion, multiple queues are an effective and efficient approach

for scheduling processes in modern operating systems. They allow the

scheduler to give higher priority to certain processes while still ensuring

that all processes get some CPU time. The use of multiple queues has

been a standard approach in operating systems since the early days of

computing, and it remains a key component of modern operating

system design.

PAGE 29

Example: Here's an example Java code that demonstrates multiple

queues scheduling algorithm:

import java.util.ArrayList;

import java.util.LinkedList;

import java.util.Queue;

public class MultipleQueuesScheduler {

 // Define constants for the number of priority queues and

quantum values

 private static final int NUM_QUEUES = 3;

 private static final int[] QUANTUM_VALUES = {10, 20, 40};

 // Create an array of queues to represent the multiple priority

queues

 private Queue<Process>[] queues = new Queue[NUM_QUEUES];

 // Constructor to initialize the queues

 public MultipleQueuesScheduler() {

 for (int i = 0; i < NUM_QUEUES; i++) {

 queues[i] = new LinkedList<>();

 }

 }

 // Method to add a process to the appropriate queue based on

its priority

 public void addProcess(Process process) {

PAGE 30

 int priority = process.getPriority();

 if (priority < NUM_QUEUES) {

 queues[priority].add(process);

 } else {

 queues[NUM_QUEUES - 1].add(process);

 }

 }

 // Method to run the scheduler and execute the processes

 public void run() {

 for (int i = 0; i < NUM_QUEUES; i++) {

 int quantum = QUANTUM_VALUES[i];

 Queue<Process> currentQueue = queues[i];

 while (!currentQueue.isEmpty()) {

 Process currentProcess = currentQueue.remove();

 int remainingTime =

currentProcess.getRemainingTime();

 if (remainingTime <= quantum) {

 currentProcess.execute(remainingTime);

 } else {

 currentProcess.execute(quantum);

 currentProcess.setRemainingTime(remainingTime

- quantum);

 currentQueue.add(currentProcess);

 }

 }

PAGE 31

 }

 }

 // Inner class to represent a process

 private static class Process {

 private int priority;

 private int remainingTime;

 public Process(int priority, int remainingTime) {

 this.priority = priority;

 this.remainingTime = remainingTime;

 }

 public int getPriority() {

 return priority;

 }

 public int getRemainingTime() {

 return remainingTime;

 }

 public void setRemainingTime(int remainingTime) {

 this.remainingTime = remainingTime;

 }

PAGE 32

 public void execute(int time) {

 System.out.println("Executing process with priority "

+ priority + " for " + time + " time units.");

 }

 }

 // Main method to test the scheduler

 public static void main(String[] args) {

 MultipleQueuesScheduler scheduler = new

MultipleQueuesScheduler();

 scheduler.addProcess(new Process(0, 30));

 scheduler.addProcess(new Process(2, 60));

 scheduler.addProcess(new Process(1, 20));

 scheduler.addProcess(new Process(3, 50));

 scheduler.run();

 }

}

In this example, the MultipleQueuesScheduler class represents the

scheduler that uses multiple priority queues with different quantum

values. The Process inner class represents a process with a priority level

and a remaining execution time. The addProcess method adds a process

to the appropriate priority queue based on its priority level, and the run

method executes the processes in each priority queue using the

corresponding quantum value.

In the main method, we create a MultipleQueuesScheduler instance and

add four processes with different priority levels and remaining

execution times. Finally, we call the run method to execute the

processes according to their priority levels and the quantum values of

the priority queues.

PAGE 33

2.7 Shortest process next (SPN)

Shortest process next (SPN) is a scheduling algorithm that is similar to

shortest job first (SJF). The difference is that in SPN, the scheduler

selects the process with the shortest expected processing time instead

of the shortest actual processing time.

The expected processing time is calculated based on the process's

previous execution history. The algorithm works well for interactive

systems, where processes typically execute a series of short tasks.

When a new process arrives, the scheduler calculates the expected

processing time of the process based on its previous execution history.

The process with the shortest expected processing time is selected to

run next. If a new process arrives with a shorter expected processing

time than the currently running process, the scheduler preempts the

running process and starts the new process.

One of the main advantages of SPN is that it provides a good balance

between short response times and high throughput. It ensures that

short processes are executed first, thereby reducing response time. At

the same time, it does not ignore longer processes entirely, ensuring that

they get executed too.

One disadvantage of SPN is that it requires an accurate estimate of the

expected processing time. If the estimate is inaccurate, the algorithm

may select the wrong process, leading to poor performance.

Example: Here's an example Java code that demonstrates the shortest

process next (SPN) scheduling algorithm:

import java.util.*;

public class SPNScheduler {

PAGE 34

 public static void main(String[] args) {

 // Create a list of processes with their arrival times and

burst times

 int[][] processes = {{1, 0, 6}, {2, 1, 8}, {3, 2, 7}, {4,

3, 3}, {5, 4, 4}};

 // Sort the processes by their arrival times

 Arrays.sort(processes, Comparator.comparingInt(a ->

a[1]));

 // Initialize variables for the current time and total

waiting time

 int currentTime = 0;

 int totalWaitingTime = 0;

 // Create a priority queue to store the processes by their

burst times

 PriorityQueue<int[]> queue = new

PriorityQueue<>(Comparator.comparingInt(a -> a[2]));

 // Loop through each process

 for (int i = 0; i < processes.length; i++) {

 int[] process = processes[i];

 // If the process has not arrived yet, skip it

 if (process[1] > currentTime) {

 i--;

PAGE 35

 currentTime++;

 continue;

 }

 // Add the process to the queue

 queue.add(process);

 // Get the shortest process from the queue

 int[] shortestProcess = queue.poll();

 // Calculate the waiting time for the process

 int waitingTime = currentTime - shortestProcess[1];

 // Add the waiting time to the total waiting time

 totalWaitingTime += waitingTime;

 // Increment the current time by the process's burst

time

 currentTime += shortestProcess[2];

 }

 // Calculate the average waiting time

 double averageWaitingTime = (double) totalWaitingTime /

processes.length;

 // Print the average waiting time

PAGE 36

 System.out.println("Average waiting time: " +

averageWaitingTime);

 }

}

This code uses a two-dimensional array to represent the processes, with

each row containing the process ID, arrival time, and burst time. It sorts

the processes by their arrival times, and then loops through each process,

adding it to a priority queue sorted by its burst time. It then gets the

shortest process from the queue and calculates the waiting time for that

process. Finally, it increments the current time by the process's burst

time and repeats the process until all processes have been executed. At

the end, it calculates the average waiting time and prints it to the

console.

2.8 Guaranteed scheduling

Guaranteed scheduling is a unique approach to scheduling that makes

actual promises to users about their computer system's performance.

This approach aims to provide a guarantee of a specific level of system

performance for each user or process.

One of the most realistic and straightforward guarantees that can be

made is that each user or process will receive a specific portion of the

CPU power. This is based on the idea that if n users are logged in, then

each user will receive approximately 1/n of the CPU power. Similarly, if

n processes are running, then all things being equal, each process should

get 1/n of the CPU cycles.

The goal of guaranteed scheduling is to ensure that users or processes

have predictable and consistent performance, which is particularly

important in time-critical environments. For example, in real-time

systems, where the system must respond to external events within a

PAGE 37

specified time frame, guaranteed scheduling can provide the assurance

that processes will be executed in a timely and predictable manner.

One of the challenges of guaranteed scheduling is ensuring that the

guarantees can be met. In a system with multiple users or processes, it

can be challenging to allocate CPU resources fairly and ensure that each

user or process receives their guaranteed share. In addition, the actual

amount of CPU power required by each user or process can vary over

time, which can make it difficult to maintain the promised level of

performance.

To implement guaranteed scheduling, an operating system may use a

variety of techniques, such as priority-based scheduling and time-slicing.

For example, in a priority-based scheduling approach, each user or

process is assigned a priority level, which determines how much CPU

power they will receive. In a time-slicing approach, the CPU is divided

into time slices, and each user or process is allocated a specific amount

of CPU time within each time slice.

In summary, guaranteed scheduling is an approach to scheduling that

aims to provide users or processes with a specific level of performance.

By making real promises to users about their system's performance,

guaranteed scheduling can provide predictable and consistent

performance, which is particularly important in time-critical

environments. However, implementing guaranteed scheduling can be

challenging, and requires careful management of CPU resources to

ensure that promises are kept.

Example: The guaranteed scheduling algorithm is not something that

can be implemented directly in Java, as it requires low-level operating

system support to guarantee resource allocation. However, we can

simulate the behavior of this algorithm in Java by using a simple

algorithm that allocates CPU time equally to all running processes.

Here is an example Java code that demonstrates the basic idea of

guaranteed scheduling:

PAGE 38

import java.util.ArrayList;

public class GuaranteedScheduling {

 // Define a simple Process class that represents a running

process

 static class Process {

 private String name;

 private int cpuTime;

 public Process(String name, int cpuTime) {

 this.name = name;

 this.cpuTime = cpuTime;

 }

 public String getName() {

 return name;

 }

 public int getCpuTime() {

 return cpuTime;

 }

 public void setCpuTime(int cpuTime) {

 this.cpuTime = cpuTime;

 }

 }

PAGE 39

 public static void main(String[] args) {

 // Create a list of processes to run

 ArrayList<Process> processes = new ArrayList<>();

 processes.add(new Process("Process 1", 5));

 processes.add(new Process("Process 2", 2));

 processes.add(new Process("Process 3", 4));

 // Allocate CPU time equally to all processes

 int timeQuantum = 1;

 int totalTime = processes.size();

 int time = 0;

 while (!processes.isEmpty()) {

 Process p = processes.remove(0);

 System.out.println("Running " + p.getName() + " (CPU

time left: " + p.getCpuTime() + ")");

 p.setCpuTime(p.getCpuTime() - timeQuantum);

 time += timeQuantum;

 if (p.getCpuTime() > 0) {

 processes.add(p);

 } else {

 System.out.println(p.getName() + " completed at

time " + time);

 }

 }

 }

PAGE 40

}

In this example, we create a list of three processes, each with a different

amount of CPU time required. We then simulate guaranteed scheduling

by allocating CPU time equally to each process, with a time quantum of

1. We run each process in turn until it has completed, and then move on

to the next process in the list.

Note that this code is just a simple example, and does not actually

guarantee equal allocation of CPU time in a real-world operating system.

However, it should give you an idea of how the guaranteed scheduling

algorithm might work in practice.

2.9 Lottery scheduling

One of the most elegant and innovative scheduling algorithms that

exists is lottery scheduling. Its use of randomness is one of its key

features, and it offers at least three significant advantages over more

traditional approaches.

Firstly, randomness avoids strange corner-case behaviors that a more

traditional algorithm may struggle to handle. For instance, consider the

LRU (least recently used) replacement policy, which is examined in

greater depth in a later chapter on virtual memory. Although LRU is

often a good replacement algorithm, it can achieve worst-case

performance for certain cyclic-sequential workloads. Random, on the

other hand, has no such worst-case scenario.

Secondly, random is lightweight, requiring little state to track

alternatives. In a traditional fair-share scheduling algorithm,

monitoring how much CPU each process has received necessitates per-

process accounting, which must be updated after each process runs.

Random, on the other hand, only needs minimal per-process state (e.g.,

the number of tickets each process has).

PAGE 41

Finally, random can be very quick. As long as generating a random

number is rapid, making the decision is equally fast, and thus random

can be utilized in several scenarios where speed is required. Of course,

the quicker the need, the more random tends towards pseudo-random.

The use of lottery scheduling is a powerful technique that can be

employed in various scenarios. This method assigns each process a

certain number of tickets, and the scheduler then selects a winning

ticket at random. The process with the matching ticket is then allocated

the CPU. The higher the number of tickets a process has, the more likely

it is to win the lottery and get access to the CPU. The process that wins

the lottery can then execute for a set amount of time or until it blocks

on I/O or some other event.

Lottery scheduling is a versatile technique that can be adapted to fit a

wide range of situations. It has been used in operating systems for

purposes such as load balancing, where it helps to ensure that the

resources of a system are distributed fairly among processes.

Additionally, it can be utilized for scheduling jobs on large-scale

computer systems, which require the distribution of workloads across

multiple nodes.

Example: Here's a pseudocode implementation of lottery scheduling:

// Each process is assigned a number of "lottery tickets" based on

its priority

// The total number of tickets is fixed and can be adjusted as

needed

// A process with more tickets is more likely to be selected for

execution

struct Process {

 int pid;

 int tickets;

PAGE 42

}

// Initialize the list of processes and their tickets

List<Process> processes;

processes.add(new Process(1, 10));

processes.add(new Process(2, 5));

processes.add(new Process(3, 3));

// Set the total number of tickets

int total_tickets = 18;

// Main loop for scheduling

while (true) {

 // Randomly select a winning ticket number

 int winner = random(1, total_tickets);

 // Iterate over the list of processes and check if the winner's

ticket matches

 for (Process process : processes) {

 if (winner <= process.tickets) {

 // Found the winning process, execute it

 execute(process.pid);

 break;

 }

 else {

PAGE 43

 // Subtract the number of tickets for the current process

and continue

 winner -= process.tickets;

 }

 }

}

Note that this is a simplified pseudocode implementation for

demonstration purposes and may not include all necessary features such

as handling I/O requests, priority adjustments, and synchronization.

Example:

Input:

P1 with 10 tickets

P2 with 20 tickets

P3 with 30 tickets

P4 with 40 tickets

Output:

Total tickets: 100

Winning ticket: 36

Process P3 wins the lottery and is executed.

Winning ticket: 71

Process P4 wins the lottery and is executed.

Winning ticket: 16

Process P2 wins the lottery and is executed.

Winning ticket: 92

PAGE 44

Process P4 wins the lottery and is executed.

Winning ticket: 6

Process P1 wins the lottery and is executed.

2.10 Fair-share scheduling

Fair-share scheduling is a type of scheduling algorithm that takes into

account the ownership of processes while scheduling them. In other

words, it ensures that each user gets a fair share of the CPU time,

irrespective of the number of processes they have running on the system.

The main idea behind fair-share scheduling is to allocate a portion of

the CPU time to each user or group of users, based on the resources they

are entitled to. For example, if two users are promised equal CPU time,

say 50% each, then the system will ensure that they each get that

amount of CPU time, regardless of the number of processes they have

running.

One way to implement fair-share scheduling is to use a feedback control

algorithm. This algorithm uses feedback from the system to adjust the

amount of CPU time allocated to each user. The feedback can be in the

form of CPU usage statistics, which are used to compute the relative

shares of CPU time for each user. These shares are then used to

determine how much CPU time each user should be allocated.

Another way to implement fair-share scheduling is to use a time-sharing

algorithm, such as round-robin scheduling, in combination with a

resource allocation mechanism. The resource allocation mechanism is

used to allocate resources to each user, based on their entitlements.

Once the resources are allocated, the time-sharing algorithm is used to

schedule processes among the users.

Example: Here is an example Java code that demonstrates the fair share

scheduling algorithm:

PAGE 45

import java.util.ArrayList;

import java.util.Collections;

import java.util.Comparator;

import java.util.List;

public class FairShareScheduling {

 // Process class to store process details

 static class Process {

 String name;

 int time;

 String owner;

 Process(String name, int time, String owner) {

 this.name = name;

 this.time = time;

 this.owner = owner;

 }

 }

 // User class to store user details

 static class User {

 String name;

 double share;

 User(String name, double share) {

PAGE 46

 this.name = name;

 this.share = share;

 }

 }

 // Scheduler method to assign CPU time to processes based on

user shares

 public static void scheduler(List<Process> processes,

List<User> users) {

 // Calculate total share of CPU time allocated to all users

 double totalShare = 0;

 for (User user : users) {

 totalShare += user.share;

 }

 // Calculate share of CPU time allocated to each user

 for (User user : users) {

 user.share = user.share / totalShare;

 }

 // Sort processes by owner to group processes by user

 Collections.sort(processes, Comparator.comparing(p ->

p.owner));

 // Assign CPU time to processes based on user shares

 double[] shares = new double[users.size()];

 int[] counts = new int[users.size()];

PAGE 47

 int idx = 0;

 for (Process process : processes) {

 while (!process.owner.equals(users.get(idx).name)) {

 idx++;

 }

 shares[idx] += users.get(idx).share;

 counts[idx]++;

 process.time -= (int) Math.ceil(users.get(idx).share *

process.time);

 }

 // Print CPU time assigned to each process

 for (int i = 0; i < processes.size(); i++) {

 Process process = processes.get(i);

 System.out.println("Process " + process.name + "

assigned " + counts[i] * shares[i] * 100 + "% of CPU time.");

 }

 }

 public static void main(String[] args) {

 // Create processes

 List<Process> processes = new ArrayList<>();

 processes.add(new Process("P1", 20, "User1"));

 processes.add(new Process("P2", 30, "User2"));

 processes.add(new Process("P3", 40, "User1"));

 processes.add(new Process("P4", 10, "User3"));

PAGE 48

 // Create users and assign share of CPU time

 List<User> users = new ArrayList<>();

 users.add(new User("User1", 2));

 users.add(new User("User2", 1));

 users.add(new User("User3", 1));

 // Call scheduler method to assign CPU time to processes

based on user shares

 scheduler(processes, users);

 }

}

In this code, we first define a Process class to store the name, execution

time, and owner of each process. We also define a User class to store the

name and share of CPU time allocated to each user. We then define a

scheduler method to assign CPU time to processes based on user shares.

In the scheduler method, we first calculate the total share of CPU time

allocated to all users and then calculate the share of CPU time allocated

to each user. We then sort the processes by owner to group processes

by user. We assign CPU time to each process based on its owner's share

of CPU time and subtract the assigned time from the process's execution

time.

2.11 Multilevel Feedback Queue (MLFQ)

Multilevel Feedback Queue (MLFQ) scheduling is a dynamic scheduling

algorithm that employs multiple priority queues to schedule processes.

It is an extension of the priority scheduling algorithm, but with the

PAGE 49

added advantage of dynamically adjusting priorities based on process

behavior.

The MLFQ scheduling algorithm works by maintaining a set of queues,

each with a different priority level. Each queue has a different time

quantum assigned to it, with higher priority queues having smaller time

quanta. When a process enters the system, it is assigned to the highest

priority queue. The process runs until its quantum expires, or it blocks

for I/O. If the process uses up its entire quantum, it is demoted to the

next lower priority queue. If a process blocks before its quantum expires,

it is placed at the back of the same priority queue. This allows I/O-

bound processes to move up in priority faster than CPU-bound

processes.

The MLFQ scheduling algorithm attempts to provide the benefits of

both short-term and long-term scheduling. Short-term scheduling is

achieved by using smaller time quanta for higher priority processes,

while long-term scheduling is achieved by periodically demoting

processes to lower priority queues. This allows CPU-bound processes to

complete without starving I/O-bound processes.

MLFQ scheduling also incorporates a feature known as aging, which

increases the priority of a process that has been waiting in a lower

priority queue for a long time. This ensures that processes that have

been waiting for a long time are eventually given a chance to execute,

preventing indefinite starvation.

MLFQ scheduling has been shown to perform well in most scenarios,

but there are some cases where it can perform poorly. For example, if a

process has a burst of CPU activity that is longer than the time quantum

of the highest priority queue, it will be demoted to a lower priority

queue before it completes its burst. This can result in unnecessary

context switching and decreased performance.

Example: Here is an example pseudocode implementation of the MLFQ

scheduling algorithm:

PAGE 50

initialize all queues

set time quantum for each queue

set priority of initial queue

while (true) {

 if (any queue is not empty) {

 select the highest priority non-empty queue

 remove the first process from the queue

 run the process for its time quantum

 if (process is complete) {

 remove the process from the system

 } else if (process blocked for I/O) {

 place the process at the back of the same queue

 } else if (process used up its quantum) {

 demote the process to the next lower priority queue

 }

 } else {

 wait for a process to arrive

 }

 check for aging of processes in lower priority queues

 adjust priorities of processes as necessary

}

In this pseudocode, the algorithm first initializes all the priority queues,

sets the time quantum for each queue, and sets the initial queue priority.

PAGE 51

The algorithm then enters a loop that continues indefinitely, waiting for

processes to arrive and scheduling them as necessary.

If any of the queues are non-empty, the algorithm selects the highest

priority non-empty queue and removes the first process from the queue.

The process is then run for its time quantum. If the process completes

during its quantum, it is removed from the system. If the process blocks

for I/O, it is placed at the back of the same queue. If the process uses up

its quantum, it is demoted to the next lower priority queue.

If all the queues are empty, the algorithm waits for a process to arrive.

Additionally, the algorithm checks for aging of processes in lower

priority queues and adjusts their priorities as necessary. This ensures

that processes that have been waiting for a long time are eventually

given a chance

The above-mentioned factors make MLFQ scheduling a popular choice

for operating systems. However, it is not perfect and has some potential

drawbacks. One of the main issues with MLFQ scheduling is that it can

lead to process starvation, where a low-priority process never gets a

chance to execute if there are always high-priority processes in the

system. Another issue is that the complexity of the algorithm can lead

to higher overhead and longer response times.

Despite these potential drawbacks, MLFQ scheduling remains a popular

choice for modern operating systems, particularly for systems that

require high levels of concurrency and responsiveness. The ability to

prioritize processes based on their behavior and requirements,

combined with the flexibility of the algorithm, makes MLFQ scheduling

an attractive option for many different types of systems.

Overall, MLFQ scheduling represents a significant advancement in the

field of CPU scheduling, offering a flexible and effective way to manage

system resources in complex and dynamic environments. As operating

systems continue to evolve and become more complex, it is likely that

PAGE 52

MLFQ scheduling will remain a key part of their design and

implementation.

2.12 Comparison of scheduling algorithms

In this chapter, we will compare and contrast the different CPU

scheduling algorithms discussed in the previous chapters. We will

evaluate them based on various criteria such as turnaround time,

waiting time, response time, fairness, and throughput.

2.12.1 Turnaround Time

Turnaround time is the time taken to complete a process, from the

moment it is submitted to the moment it is completed. A scheduling

algorithm that minimizes the turnaround time is preferred. Among the

algorithms discussed, SJF has the lowest average turnaround time since

it schedules the shortest jobs first. FCFS has a high turnaround time,

especially for long processes, as it schedules processes in the order they

arrive.

2.12.2 Waiting Time

Waiting time is the time spent by a process waiting in the ready queue

before it is scheduled to run. A scheduling algorithm that minimizes the

waiting time is preferred. SJF also has the lowest average waiting time

as it schedules shorter processes first. On the other hand, FCFS has a

higher average waiting time, especially for long processes.

2.12.3 Response Time

Response time is the time taken for a process to start responding after

it is submitted. A scheduling algorithm that minimizes the response

time is preferred, especially for interactive systems. Round-robin has the

PAGE 53

lowest average response time as it schedules processes for short time

slices, ensuring that each process gets a chance to run quickly. SJF has a

high response time since it prioritizes short processes over long ones.

2.12.4 Fairness

Fairness refers to how evenly the CPU time is allocated among processes.

A fair scheduling algorithm ensures that each process gets an equal

share of the CPU time. Round-robin is the most fair algorithm as it

schedules processes in a circular fashion, giving each process a fixed

time slice. FCFS and SJF are not fair since they prioritize some processes

over others.

2.12.5 Throughput

Throughput refers to the number of processes completed per unit time.

A scheduling algorithm that maximizes the throughput is preferred.

Round-robin has the highest throughput since it schedules processes for

short time slices, ensuring that each process gets a chance to run quickly.

SJF also has a high throughput since it schedules shorter processes first.

FCFS has a lower throughput, especially for long processes.

Overall, the best scheduling algorithm depends on the specific

requirements of the system. SJF is best suited for systems with short

processes, while round-robin is best suited for interactive systems.

Priority scheduling is useful in real-time systems where certain

processes require priority over others. MLFQ is useful in systems with a

mix of long and short processes.

In conclusion, the choice of scheduling algorithm depends on the

specific requirements of the system. The scheduler should be designed

to balance the competing goals of minimizing turnaround time, waiting

time, and response time while also ensuring fairness and maximizing

throughput.

PAGE 54

2.13 Incorporating I/O

A scheduler plays a crucial role in determining which processes to run

on a CPU at any given time. However, its job becomes even more

challenging when a process initiates an I/O request. During this time,

the process is blocked and waiting for I/O completion, which means the

CPU remains idle. Therefore, the scheduler needs to make a decision to

schedule another job on the CPU.

In addition, the scheduler must also decide what to do when the I/O

completes. When the I/O operation completes, an interrupt is raised,

and the OS moves the process that initiated the I/O from the blocked

state back to the ready state. The scheduler then has to decide whether

to continue running the currently-executing process or switch to the

newly-ready process.

The OS should consider various factors while making scheduling

decisions. For example, it could choose to prioritize processes with short

I/O operations to minimize the wait time. The scheduler could also

prioritize CPU-bound processes to maximize CPU utilization during I/O

operations. Additionally, the OS could use priority-based scheduling,

where higher priority processes are given preference over lower priority

ones.

One approach that operating systems often use is the concept of

priority-based scheduling with round-robin. In this approach, each

process is assigned a priority level, and the scheduler runs the highest

priority process first. If a process with a higher priority enters the ready

state while a lower priority process is running, the scheduler preempts

the lower priority process and switches to the higher priority process.

Furthermore, in the round-robin scheduling, the scheduler allocates a

fixed time slice to each process, and if the process completes its time

slice before its execution finishes, the process is moved to the back of

PAGE 55

the ready queue. The process is then run again when it becomes the

head of the ready queue.

Overall, the scheduler must make decisions based on a variety of factors,

such as process priority, CPU utilization, and I/O wait times. By using

efficient algorithms and techniques, the scheduler can maximize system

throughput and minimize the waiting time for processes.

3 Process and Thread Prioritization

In this chapter, we will be discussing the important topic of process and

thread prioritization in CPU scheduling. We will begin by defining what

process and thread priorities are and why they are important in the

context of CPU scheduling. We will then explore the different methods

of prioritization, including static priorities, dynamic priorities, and

aging. By the end of this chapter, you will have a clear understanding of

how prioritization plays a crucial role in ensuring optimal performance

and resource utilization in modern operating systems. So let's dive in!

In operating systems, process and thread priorities are an essential

aspect of CPU scheduling. They are used to determine which processes

or threads should be given access to the CPU and in what order. The

priority of a process or thread is a numerical value that indicates its

relative importance compared to other processes or threads.

3.1 Process Priorities

Process priorities are set by the operating system and can be fixed or

dynamic. Fixed priorities are assigned to processes when they are

created and do not change during the lifetime of the process. Dynamic

priorities can change based on the behavior of the process, the system

load, or other factors.

PAGE 56

3.2 Thread Priorities

Thread priorities are a more fine-grained form of prioritization, allowing

the operating system to make scheduling decisions on a per-thread basis.

Each thread within a process can be assigned its own priority level,

which is used by the scheduler to determine when and for how long the

thread will run.

3.3 Importance of Prioritization in CPU Scheduling

Prioritization is crucial in CPU scheduling because it allows the

operating system to make intelligent decisions about which processes

or threads should be given access to the CPU at any given time. Without

prioritization, the system would be unable to distinguish between

critical processes and less important ones, leading to inefficient use of

system resources and potential performance issues.

3.4 Methods of Prioritization

There are several methods for setting process and thread priorities,

including static priorities, dynamic priorities, and aging.

3.4.1 Static Priorities

Static priorities are fixed values that are assigned to processes or threads

when they are created. They do not change during the lifetime of the

process or thread and are typically set by the system administrator or

the program developer. Static priorities are useful for ensuring that

critical processes or threads always have access to the CPU, but they can

also lead to inefficient use of system resources if not set correctly.

PAGE 57

3.4.2 Dynamic Priorities

Dynamic priorities change over time based on the behavior of the

process or thread, the system load, or other factors. Dynamic priorities

allow the system to adapt to changing conditions and ensure that

critical processes or threads receive the resources they need to complete

their tasks efficiently.

3.4.3 Aging

Aging is a technique used in some scheduling algorithms to prevent

processes or threads from being starved of resources. As a process or

thread waits in a queue, its priority may increase over time, ensuring

that it eventually receives the resources it needs to complete its task.

In conclusion, process and thread priorities are a critical component of

CPU scheduling in operating systems. They allow the system to make

intelligent decisions about which processes or threads should be given

access to the CPU and when, ensuring that critical processes receive the

resources they need to complete their tasks efficiently. By using

methods such as static and dynamic priorities, and aging, the operating

system can provide a fair and efficient scheduling environment for all

processes and threads.

4 Scheduling in Multiprocessor and Multicore Systems

As computer hardware has continued to advance, we have seen a shift

towards using multiple processors or cores within a single machine,

which can greatly increase the amount of work that can be performed

simultaneously. However, this also creates new challenges in terms of

how to efficiently allocate and manage resources between different

processes or threads.

PAGE 58

In this chapter, we will discuss the various methods of scheduling in

multiprocessor and multicore systems. This includes approaches such

as load balancing, processor affinity, and gang scheduling. We will also

examine the trade-offs involved in these approaches, including

considerations such as communication overhead, cache locality, and

fairness.

Overall, this chapter aims to provide a comprehensive overview of the

key issues involved in scheduling in modern multiprocessor and

multicore systems. By understanding these concepts, you will be better

equipped to develop efficient and effective scheduling strategies for

your own applications and systems.

4.1 Definition of multiprocessor and multicore systems

Multiprocessor and multicore systems are computing systems that

contain more than one processor or core. A processor or core is a central

processing unit (CPU) that can execute instructions and carry out

computations. Traditional computers typically have a single processor

or core, which means that they can only execute one task at a time.

Multiprocessor and multicore systems, on the other hand, have the

ability to execute multiple tasks simultaneously, leading to an increase

in overall system performance.

Multiprocessor systems can be classified into two main categories:

tightly coupled and loosely coupled systems. In tightly coupled systems,

the processors share the same memory and communicate with each

other through a bus or a switch. This allows them to work together on a

single task, making them ideal for applications that require a lot of

computing power, such as scientific simulations, financial modeling,

and database management.

Loosely coupled systems, on the other hand, consist of multiple

independent processors that communicate with each other through a

PAGE 59

network. Each processor has its own memory and can execute its own

set of instructions, making them ideal for applications that require high

availability and fault tolerance, such as web servers and data centers.

Multicore systems, on the other hand, consist of a single processor that

contains multiple cores. Each core is capable of executing instructions

and carrying out computations independently, which allows for

parallelism within a single processor. This parallelism results in an

increase in performance without the need for additional hardware,

making multicore systems ideal for desktop computers, laptops, and

mobile devices.

Multiprocessor and multicore systems require specialized hardware and

software to effectively utilize their capabilities. Operating systems need

to be designed to take advantage of the multiple processors or cores,

and software applications need to be written with parallelism in mind.

Additionally, there may be issues with scalability, load balancing, and

synchronization that need to be addressed to ensure optimal

performance.

In conclusion, multiprocessor and multicore systems are computing

systems that contain multiple processors or cores, allowing for

increased performance and parallelism. Tightly coupled systems share

memory and communicate through a bus or switch, while loosely

coupled systems communicate through a network. Multicore systems

contain multiple cores within a single processor. To effectively utilize

these systems, specialized hardware and software are required, and

issues with scalability, load balancing, and synchronization need to be

addressed.

PAGE 60

4.2 Importance of Scheduling in Multiprocessor and

Multicore Systems

In a multiprocessor or multicore system, tasks can be executed in

parallel on different processors or cores. However, the system must be

able to manage the tasks efficiently, ensuring that each processor or core

is kept busy and that tasks are completed in a timely manner. The

scheduling algorithm must be designed to take into account the number

of processors or cores available, the nature of the tasks to be executed,

and the resources required by each task. Without efficient scheduling,

the system will not be able to make full use of all available resources,

leading to lower performance and reduced efficiency.

4.3 Methods of Scheduling in Multiprocessor and

Multicore Systems

There are several methods of scheduling in multiprocessor and

multicore systems. One approach is to use a centralized scheduler,

where all scheduling decisions are made by a single entity. Another

approach is to use a distributed scheduler, where scheduling decisions

are made by each processor or core independently. The distributed

scheduler can be further divided into two categories: homogeneous and

heterogeneous. In a homogeneous system, all processors or cores have

identical characteristics, while in a heterogeneous system, processors or

cores have different characteristics such as processing speed, cache size,

and memory access.

PAGE 61

4.4 Challenges in Scheduling in Multiprocessor and

Multicore Systems

Scheduling in multiprocessor and multicore systems presents several

challenges. One of the main challenges is load balancing, which involves

distributing tasks evenly across all processors or cores. If tasks are not

distributed evenly, some processors or cores may be idle while others

are overloaded, leading to reduced performance. Another challenge is

synchronization, which involves coordinating the activities of multiple

processors or cores to ensure that they do not interfere with each other.

Scheduling in multiprocessor and multicore systems is a critical

component of operating system design. Efficient scheduling algorithms

are necessary to ensure that all processors or cores are utilized optimally

and that tasks are completed in a timely manner. With the continued

growth in computing power, scheduling in multiprocessor and

multicore systems will remain a vital area of research and development

in the field of operating systems.

5 Case Study: CPU Scheduling in Linux Operating

System

In modern operating systems, CPU scheduling is a critical component

responsible for assigning processes and threads to available CPU

resources. The efficient utilization of CPU resources is essential to

achieve optimal system performance, responsiveness, and fairness.

Therefore, operating system designers have implemented various

scheduling algorithms and methods to achieve these goals.

In this chapter, we will discuss a case study of CPU scheduling in the

Linux operating system. We will examine the features of the Linux

scheduler, compare it with other operating systems, and evaluate its

impact on system performance, responsiveness, and fairness.

PAGE 62

First, we will provide an overview of CPU scheduling in general and its

importance in operating systems. Then, we will discuss the methods and

algorithms used for CPU scheduling, including First-Come-First-Serve

(FCFS), Shortest-Job-First (SJF), Priority Scheduling, Round-Robin (RR),

and Multilevel Feedback Queue (MLFQ). We will also examine process

and thread prioritization, including static and dynamic priorities and

aging.

Next, we will examine CPU scheduling in multiprocessor and multicore

systems, which are becoming increasingly common in modern

computing environments. We will discuss the methods used to schedule

processes and threads across multiple processors and cores.

Finally, we will focus on the Linux operating system and examine its

CPU scheduling features, including its Completely Fair Scheduler (CFS).

We will compare the Linux scheduler with other operating systems and

evaluate its impact on system performance, responsiveness, and fairness.

Overall, this chapter will provide an in-depth understanding of CPU

scheduling, its methods and algorithms, and its critical role in achieving

optimal system performance, responsiveness, and fairness. We will also

gain insights into the Linux scheduler and its impact on system

performance, making this chapter an essential read for anyone

interested in operating system design and performance.

5.1 Overview of Linux CPU scheduling

Linux is one of the most popular operating systems that is widely used

in various applications ranging from personal computers to data centers.

The Linux kernel has evolved significantly over the years, and so has its

CPU scheduling algorithm. The scheduling algorithm in Linux is

responsible for determining which processes should run and for how

long. The algorithm used in Linux is a combination of several scheduling

policies that operate in a hierarchical fashion. In this chapter, we will

PAGE 63

discuss the overview of the Linux CPU scheduling algorithm, its design

principles, and the policies used in the algorithm.

The Linux kernel implements a preemptive, priority-based scheduling

algorithm. This means that the scheduler is responsible for preempting

a running process and allowing another process to run if it has a higher

priority. The priority of a process is determined by several factors,

including the process's nice value, which is a user-defined parameter

that ranges from -20 to +19. A higher nice value indicates that the

process is less important, whereas a lower nice value indicates that the

process is more important.

The Linux scheduler uses a runqueue data structure to keep track of the

processes that are ready to run. Each runqueue contains a set of

processes that have the same priority. The scheduler selects the highest

priority runqueue that is not empty and selects the process at the head

of the queue to run. If there are multiple processes in the runqueue with

the same priority, the scheduler uses a round-robin scheduling policy to

ensure that each process gets a fair share of CPU time.

The Linux scheduler has several design principles that govern its

operation. These include fairness, responsiveness, and scalability.

Fairness means that each process should get a fair share of CPU time,

regardless of its priority or the resources it is using. Responsiveness

means that the scheduler should be able to quickly respond to changes

in the system load or to user requests. Scalability means that the

scheduler should be able to handle a large number of processes and

threads efficiently.

5.2 Policies Used in the Linux CPU Scheduling

Algorithm:

The Linux scheduler uses several policies to determine the priority of a

process. These policies include the Completely Fair Scheduler (CFS), the

PAGE 64

Round Robin Scheduler, the Real-time Scheduler, and the Idle Process

Scheduler.

The CFS is the default scheduler in Linux and is designed to provide

fairness and responsiveness. The CFS uses a red-black tree data

structure to keep track of the processes in the system. Each node in the

tree represents a process, and the nodes are sorted based on the

process's virtual runtime, which is a measure of the CPU time the

process has received. The process with the smallest virtual runtime is

selected to run next.

The Round Robin Scheduler is used to provide fair sharing of the CPU

among processes of the same priority. Each process is given a time slice,

and the scheduler ensures that each process gets a fair share of CPU time

by using a round-robin policy to switch between processes when their

time slice is up.

The Real-time Scheduler is used to provide guaranteed response times

for time-critical applications. Real-time processes are given a higher

priority than other processes and are scheduled first. The Real-time

Scheduler is divided into two classes: the SCHED_FIFO and SCHED_RR.

SCHED_FIFO is a First-In-First-Out (FIFO) scheduling policy that is

used for processes that need to run for a long time without being

preempted. SCHED_RR is a Round-Robin scheduling policy that is used

for processes that need to be preempted after a certain amount of time.

The Idle Process Scheduler is used to keep the CPU busy when there are

no processes to run. The Idle Process Scheduler runs a special idle

process that executes when there are no other processes to run. The idle

process consumes very little CPU time and is used to keep the

The Completely Fair Scheduler (CFS) is another popular scheduling

algorithm used in Linux. It aims to give each process a fair share of the

CPU based on the amount of work it has to do. The CFS maintains a red-

black tree of processes, sorted by their virtual runtime. The virtual

runtime of a process is the amount of time it has spent running on the

PAGE 65

CPU divided by its priority. This way, the CFS ensures that every process

gets an equal share of the CPU, regardless of its priority.

Another interesting feature of the CFS is that it is not limited to a fixed

time slice like Round-Robin scheduling. Instead, it dynamically adjusts

the time slice of each process based on the number of runnable

processes in the system. This ensures that the CPU time is used

efficiently, and no process is left waiting for too long.

In addition to the CFS, Linux also supports other scheduling algorithms

such as the Real-Time (RT) scheduler and the Completely Fair Queuing

(CFQ) scheduler. The RT scheduler is designed for real-time

applications that require a guaranteed amount of CPU time, while the

CFQ scheduler is optimized for disk I/O performance.

Overall, Linux CPU scheduling is a complex and evolving field, with a

wide range of algorithms and techniques to choose from. The Linux

kernel developers continue to refine and improve the scheduling

subsystem, in order to provide the best possible performance,

responsiveness, and fairness for all users and processes.

5.3 Comparison with CPU scheduling in other

operating systems

As we have seen, Linux CPU scheduling is a complex and sophisticated

system that balances multiple factors to provide efficient and fair CPU

allocation. But how does it compare with CPU scheduling in other

operating systems?

Let's start with the most well-known operating system, Microsoft

Windows. The CPU scheduling algorithm in Windows is also based on

priority levels, but it uses a feedback mechanism to adjust the priority

of a process based on its recent behavior. This means that if a process

has been using the CPU heavily, its priority will be reduced to prevent it

PAGE 66

from monopolizing the CPU for too long. The Windows scheduler also

allows for real-time priority levels, which can be used for critical tasks

that require immediate attention.

In macOS, the CPU scheduling algorithm is similar to that of Linux in

that it uses a multi-level feedback queue, but it places a greater

emphasis on interactivity. This means that macOS prioritizes processes

that are likely to generate user-visible output, such as a keystroke or a

mouse click. macOS also uses a technique called thread throttling to

limit the CPU usage of background processes and prevent them from

slowing down foreground processes.

In the realm of real-time operating systems, such as those used in

embedded systems and robotics, CPU scheduling takes on an even

greater level of importance. Real-time operating systems require precise

timing and predictable response times, and as such, they often use a

fixed-priority scheduling algorithm. This means that each task is

assigned a priority level, and the scheduler always selects the task with

the highest priority to execute next.

Overall, while the specific details of CPU scheduling algorithms may

differ between operating systems, the goal is always the same: to provide

efficient and fair allocation of the CPU's processing power. Each

operating system has its own unique approach to achieving this goal,

based on its particular requirements and design philosophy.

6 Conclusion

In conclusion, CPU scheduling is a crucial aspect of modern operating

systems, allowing for efficient utilization of system resources and

enabling concurrency and parallelism. The different scheduling

algorithms, process and thread prioritization methods, and scheduling

techniques for multiprocessor and multicore systems offer a range of

options for achieving the goals of CPU scheduling.

PAGE 67

While each approach has its advantages and disadvantages, the

selection of the most appropriate scheduling technique depends on the

specific system requirements and workload characteristics. Additionally,

case studies like Linux CPU scheduling provide valuable insights into

the design decisions and performance trade-offs involved in real-world

implementations of CPU scheduling.

Overall, a thorough understanding of CPU scheduling is essential for

developing efficient and responsive operating systems that can handle

the diverse computing needs of today's applications.

