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Chapter 5:  
Scheduling 

 

1 Introduction 

Welcome to the chapter on CPU scheduling in operating systems! In 

this chapter, we will discuss the fundamental concepts and goals of CPU 

scheduling. 

Firstly, we will provide a definition of CPU scheduling and highlight its 

significance in modern operating systems. CPU scheduling is the 

process by which an operating system selects a process from a pool of 

processes to allocate the CPU to. This process is crucial as the CPU is 

the most valuable resource in a system, and efficient utilization of the 

CPU is essential for optimal system performance. 

Next, we will explore the goals of CPU scheduling. These goals include 

maximizing CPU utilization, ensuring fair allocation of CPU time among 

processes, minimizing response time, and ensuring that processes are 

executed in a predictable manner. We will discuss how these goals are 

achieved and the various techniques used to accomplish them. 

So, let's dive into the world of CPU scheduling and learn how it impacts 

the performance and efficiency of modern operating systems. 

1.1 Definition of CPU scheduling 

In a modern operating system, multiple processes compete for CPU time, 

which is a scarce and valuable resource. CPU scheduling is the process 

of determining which process should be allocated CPU time and for how 
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long. It is a crucial aspect of operating system design, as efficient 

scheduling algorithms can significantly improve system performance 

and user experience. 

CPU scheduling involves maintaining a queue of ready processes and 

selecting which process to run next. The scheduler must make decisions 

quickly and efficiently, taking into account factors such as process 

priority, CPU utilization, and fairness. 

The goal of CPU scheduling is to maximize CPU utilization while 

providing fair access to CPU resources for all processes. A good 

scheduling algorithm should balance the needs of different processes, 

preventing any single process from monopolizing the CPU and causing 

other processes to wait too long. 

CPU scheduling algorithms can be preemptive or non-preemptive. In a 

preemptive algorithm, the scheduler can interrupt a running process to 

allocate CPU time to another process. In a non-preemptive algorithm, 

the running process must voluntarily give up the CPU before another 

process can run. 

Overall, CPU scheduling is a critical component of operating system 

design. An effective scheduling algorithm can improve system 

performance, responsiveness, and fairness, while a poorly designed 

algorithm can result in slow and unresponsive systems. 

1.2 Importance of CPU scheduling in operating systems 

CPU scheduling is a crucial component of any operating system, 

responsible for managing the allocation of the CPU's resources to 

various processes and threads. It is a fundamental task that directly 

affects the performance, responsiveness, and fairness of an operating 

system. 
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The primary goal of CPU scheduling is to maximize CPU utilization 

while ensuring that processes and threads are executed in a fair and 

efficient manner. In a multi-tasking environment, where multiple 

processes and threads compete for the CPU's resources, effective CPU 

scheduling can significantly improve the overall system's performance. 

By using CPU scheduling, an operating system can provide a fast and 

responsive user experience, allowing users to interact with the system 

while simultaneously running multiple applications in the background. 

Effective CPU scheduling can also improve the overall throughput of the 

system, enabling more work to be accomplished in less time. 

Moreover, effective CPU scheduling can also ensure that high-priority 

processes and threads are executed first, ensuring that critical tasks are 

completed promptly. It can also help prevent processes and threads 

from monopolizing the CPU, allowing other processes and threads to 

run and use resources, which improves the overall system's fairness. 

Overall, CPU scheduling is a vital component of an operating system, 

playing a critical role in ensuring that the system performs optimally, is 

responsive, efficient, and fair. In the following sections, we will discuss 

the various goals and methods of CPU scheduling, which will provide a 

deeper understanding of how operating systems allocate resources to 

processes and threads. 

1.3 Overview of the goals of CPU scheduling 

CPU scheduling is an essential component of an operating system that 

helps manage the allocation of CPU time among competing processes. 

The primary objective of CPU scheduling is to increase the system's 

overall efficiency by minimizing the CPU idle time and maximizing the 

CPU utilization while ensuring that the system remains responsive to 

user requests. 
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In addition to improving the system's performance, CPU scheduling has 

several other goals, including: 

 Fairness: CPU scheduling should ensure that all processes receive 

a fair share of the CPU time and that no process is given an unfair 

advantage over others. 

 Priority: Some processes may have higher priority than others, 

such as real-time processes, which require immediate attention. 

The scheduling algorithm must ensure that higher priority 

processes receive the necessary CPU time while not completely 

starving lower priority processes. 

 Response time: The time between a user request and the system's 

response should be as short as possible. The scheduling algorithm 

should prioritize processes that are interactive or waiting for user 

input, ensuring that the system remains responsive. 

 Throughput: The number of processes completed per unit time 

should be maximized. The scheduling algorithm should aim to 

complete as many processes as possible in a given time period. 

 Predictability: The behavior of the scheduling algorithm should 

be predictable, and the scheduling decisions should be 

transparent to the user and the system. 

Achieving these goals is not always easy and often requires a trade-off 

between them. For example, a scheduling algorithm that maximizes 

throughput may not provide the best response time or fairness. Thus, 

the selection of a scheduling algorithm depends on the system's 

characteristics, workload, and the specific goals to be achieved. 

In the next chapters, we will discuss different scheduling algorithms and 

techniques used by modern operating systems to achieve these goals. 
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1.4 Process Behavior 

One of the primary characteristics of process behavior is that most 

processes alternate bursts of computing with I/O requests. Typically, 

the CPU runs for a period, then a system call is made to read from or 

write to a file. Once the system call completes, the CPU resumes 

computing until more data is needed or there is more data to write. It's 

important to note that certain I/O activities are still considered 

computing, such as updating the screen with video RAM because the 

CPU is still in use. 

I/O operations in this context refer to the process entering the blocked 

state while waiting for an external device to complete its work. This can 

include waiting for a file to load or saving a file to disk. During this time, 

the process is not actively running, and the CPU can work on other tasks. 

Understanding process behavior is essential for optimizing system 

performance. The operating system can use this knowledge to schedule 

processes efficiently, prioritizing those that are actively computing and 

delaying those that are in a blocked state. By doing so, the system can 

maximize its utilization of resources, ensuring that every process 

receives the necessary resources to complete its work. 

1.5 Scheduling decisions 

Scheduling decisions are an integral part of operating systems. When to 

schedule a process is one of the most critical questions an operating 

system needs to answer. In this chapter, we will explore the four key 

situations when scheduling decisions need to be made. 

The first situation occurs when a new process is created. The scheduler 

must decide whether to run the parent process or the child process. Both 

processes are in the ready state, and the scheduler can legitimately 

choose either process to run next. 
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The second situation is when a process exits. Since the process can no 

longer run, the scheduler must select another process from the set of 

ready processes. If no process is ready, a system-supplied idle process is 

run. 

The third situation arises when a process blocks on I/O, a semaphore, 

or some other reason. Another process must be selected to run. 

Sometimes the reason for blocking may play a role in the selection 

process. For example, if an important process is waiting for another 

process to exit its critical region, letting that process run next will enable 

the important process to continue. 

The fourth situation occurs when an I/O interrupt happens. If the 

interrupt came from an I/O device that has completed its work, a 

process that was blocked waiting for the I/O may now be ready to run. 

The scheduler must decide whether to run the newly ready process, the 

process that was running at the time of the interrupt, or some third 

process. 

The scheduler must make these decisions promptly and efficiently to 

ensure the system operates optimally. To achieve this, scheduling 

algorithms employ various strategies, such as round-robin, priority-

based scheduling, and lottery scheduling. In conclusion, scheduling 

decisions are critical to the smooth operation of an operating system, 

and the timing of such decisions is influenced by various factors. 

1.6 Categories of Scheduling 

When designing a scheduling algorithm, the environment in which it 

will operate must be taken into account. There are three main categories 

of environments: batch, interactive, and real-time. 

In a batch environment, jobs are submitted in advance and then 

executed without user interaction. The goal of the scheduler in this 

environment is to maximize throughput, or the number of jobs 
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completed per unit of time. A typical algorithm used in batch 

environments is the First-Come, First-Served (FCFS) algorithm, in 

which jobs are executed in the order they are received. 

In an interactive environment, the goal of the scheduler is to minimize 

response time, or the time between when a user submits a request and 

when a response is returned. In this environment, users are directly 

interacting with the system, so a fast response time is essential for a 

good user experience. Interactive scheduling algorithms often use time-

sharing, where each user is allocated a slice of time in which they can 

interact with the system. One common algorithm used in interactive 

environments is the Round-Robin algorithm, where each user is given a 

fixed time slice in which to execute their jobs. 

In a real-time environment, the goal of the scheduler is to ensure that 

critical tasks are completed within their deadlines. In this environment, 

there are hard deadlines that must be met, such as controlling a physical 

process like an assembly line or a nuclear power plant. Real-time 

scheduling algorithms must take into account the importance of 

meeting these deadlines and ensure that critical tasks are given priority 

over non-critical tasks. One common algorithm used in real-time 

environments is the Earliest Deadline First (EDF) algorithm, in which 

the job with the earliest deadline is given priority. 

It is important to note that these categories are not mutually exclusive, 

and many systems operate in a mixed environment. For example, a web 

server may have both batch jobs running in the background and 

interactive requests from users. In this case, the scheduler must balance 

the needs of both environments to ensure the system operates 

efficiently and responsively. 
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2 Scheduling Algorithms 

In this chapter, we will explore one of the most important functions of 

operating systems - CPU scheduling. We'll begin with a definition of 

CPU scheduling and discuss its importance in modern operating 

systems. Then, we'll dive into the various scheduling algorithms used by 

operating systems, including First-Come-First-Serve (FCFS), Shortest-

Job-First (SJF), Priority Scheduling, Round-Robin (RR), and Multilevel 

Feedback Queue (MLFQ). We'll explore the strengths and weaknesses 

of each algorithm, and discuss how they are implemented in practice. 

Finally, we'll conclude with a comparison of the different scheduling 

algorithms and provide recommendations on when to use each one. So, 

let's get started! 

2.1 First-Come-First-Serve (FCFS) 

In the world of operating systems, scheduling algorithms play a critical 

role in managing resources efficiently. The First-Come-First-Serve 

(FCFS) algorithm is the simplest scheduling algorithm, which is 

commonly used in operating systems. In this chapter, we will discuss 

FCFS scheduling in detail, including its definition, advantages, 

disadvantages, and how it works. 

The FCFS scheduling algorithm is the simplest scheduling algorithm 

that works on a non-preemptive basis. In this algorithm, the process 

that arrives first is executed first. The FCFS algorithm is implemented 

using a queue data structure, where the arriving processes are added to 

the tail of the queue, and the processor executes the process that is at 

the front of the queue. 

The main advantage of the FCFS scheduling algorithm is that it is simple 

to implement and understand. It is also a fair scheduling algorithm 

because it follows the principle of first-come-first-serve, which means 
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that the process that arrives first will get executed first. Additionally, it 

is suitable for batch processing systems where there is no need for 

interactivity between the user and the system. 

The FCFS scheduling algorithm has several disadvantages. One of the 

significant drawbacks is that it does not take into account the CPU burst 

time of a process. If a long process arrives first, it will hold the CPU for 

an extended period, causing other processes to wait, which may lead to 

poor performance. This problem is known as the convoy effect. 

Additionally, the FCFS algorithm is not suitable for interactive systems 

because it does not provide good response times. 

The FCFS scheduling algorithm works by implementing a queue data 

structure. When a process arrives, it is added to the tail of the queue. 

The processor executes the process that is at the front of the queue. The 

CPU remains busy until the process completes its execution, and the 

next process is dequeued from the queue. 

If a new process arrives while the processor is busy, it is added to the tail 

of the queue. The FCFS algorithm does not interrupt the currently 

executing process, even if a higher priority process arrives. 

The FCFS scheduling algorithm is a simple and fair scheduling 

algorithm that is widely used in operating systems. However, it has 

several disadvantages, such as poor performance due to the convoy 

effect and lack of responsiveness in interactive systems. Therefore, it is 

not suitable for real-time and interactive systems. 

Example: Here's a pseudocode for the First-Come-First-Serve (FCFS) 

CPU scheduling algorithm: 

// Initialize the ready queue with processes 

ready_queue = [P1, P2, P3, ..., PN] 

 

// Set the current process to the first one in the queue 

current_process = ready_queue[0] 



PAGE 13 

 

// Execute each process in order of arrival 

for process in ready_queue: 

    // Switch to the next process 

    current_process = process 

     

    // Execute the process 

    execute(current_process) 

In this pseudocode, we start by initializing the ready queue with all the 

processes that are ready to be executed. We set the current process to 

the first process in the queue. 

Then, we loop through each process in the ready queue, and for each 

process, we switch to it as the current process and execute it. Since FCFS 

executes processes in the order of their arrival, this pseudocode ensures 

that each process is executed in the same order it arrived in the ready 

queue. 

Example:  

Input: 

Process 1: Arrival Time = 0, Burst Time = 4 

Process 2: Arrival Time = 2, Burst Time = 2 

Process 3: Arrival Time = 4, Burst Time = 3 

Process 4: Arrival Time = 6, Burst Time = 1 

Output: 

Process 1: Waiting Time = 0, Turnaround Time = 4 

Process 2: Waiting Time = 2, Turnaround Time = 4 
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Process 3: Waiting Time = 4, Turnaround Time = 7 

Process 4: Waiting Time = 7, Turnaround Time = 8 

Explanation: 

Process 1 arrives at time 0 and executes for 4 units of time. 

Process 2 arrives at time 2 but has to wait for 2 units of time (until 

process 1 completes) before executing for 2 units of time. 

Process 3 arrives at time 4 but has to wait for 4 units of time (until 

process 2 completes) before executing for 3 units of time. 

Process 4 arrives at time 6 but has to wait for 7 units of time (until 

process 3 completes) before executing for 1 unit of time. 

Waiting time for each process is calculated as the time spent waiting in 

the ready queue before executing, while turnaround time is the total 

time spent by a process from arrival to completion (i.e., waiting time + 

burst time). 

2.2 Shortest-Job-First (SJF) 

In operating systems, scheduling algorithms are used to determine 

which process should be given the CPU time and for how long. One of 

the most commonly used scheduling algorithms is Shortest-Job-First 

(SJF) scheduling. The basic idea behind SJF scheduling is to prioritize 

the process with the shortest burst time to run first, allowing for quicker 

turnaround times and improved performance. In this chapter, we will 

take a detailed look at SJF scheduling, its advantages and disadvantages, 

and its implementation. 

The SJF scheduling algorithm is based on the assumption that the 

process with the shortest burst time should be scheduled first. In other 

words, the process that will take the least amount of time to execute 

should be given priority. When a process enters the ready queue, its 



PAGE 15 

burst time is calculated, and the process with the shortest burst time is 

selected for execution. 

There are two variations of the SJF scheduling algorithm: non-

preemptive SJF and preemptive SJF. 

2.2.1 Non-Preemptive SJF Scheduling: 

In non-preemptive SJF scheduling, once a process has been assigned the 

CPU, it will continue to run until its completion. This means that a 

process cannot be interrupted by another process with a shorter burst 

time. Non-preemptive SJF scheduling is also known as Shortest-Job-

Next (SJN) or Non-Preemptive Priority Scheduling. 

Example: The following pseudocode illustrates the implementation of 

non-preemptive SJF scheduling: 

1. Sort the processes in the ready queue by their burst times 

(shortest to longest). 

2. While the ready queue is not empty: 

    a. Dequeue the first process in the queue. 

    b. Assign the CPU to this process. 

    c. Wait for the process to complete. 

Example: Here's an example input and output for the SJF (Shortest Job 

First) scheduling algorithm: 

Input: 

Process Arrival Time Burst Time 

P1 0 5 

P2 1 3 

P3 2 2 

P4 3 4 
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Output: 

Process Arrival Burst  Completion  Turnaround

 Waiting  

P1 0 5 5 5 0 

P3 2 2 7 5 3 

P2 1 3 10 9 6 

P4 3 4 14 11 7 

Explanation: 

The SJF algorithm schedules processes based on their burst time, with 

the shortest job being scheduled first. In this example, the arrival time 

and burst time for each process are provided in the input table. 

Initially, there are no processes in the ready queue, and P1 arrives at time 

0. P1 is the only process in the queue and starts executing immediately. 

At time 1, P2 arrives and its burst time is shorter than P1's remaining 

burst time, so P2 is scheduled next. At time 2, P3 arrives and its burst 

time is shorter than P1's remaining burst time, so P3 is scheduled next. 

At time 3, P4 arrives and its burst time is shorter than P1's remaining 

burst time, but longer than P3's remaining burst time, so P1 continues 

executing. 

After P1 completes, P3 is the shortest job in the ready queue and starts 

executing. P2 is scheduled next as its burst time is shorter than P4's 

remaining burst time. Finally, P4 completes the execution. 

The output table shows the completion time, turnaround time, and 

waiting time for each process. The completion time is the time when the 

process finishes execution. The turnaround time is the difference 

between the completion time and the arrival time, which represents the 

time a process spends in the system. The waiting time is the difference 

between the turnaround time and the burst time, which represents the 

time a process spends waiting in the ready queue. 
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2.2.2 Preemptive SJF Scheduling: 

In preemptive SJF scheduling, a running process can be preempted by a 

newly arrived process with a shorter burst time. This means that the 

process with the shortest remaining burst time will be given priority to 

execute, regardless of whether it is currently running or not. Preemptive 

SJF scheduling is also known as Shortest-Remaining-Time-First (SRTF). 

Example: The following pseudocode illustrates the implementation of 

preemptive SJF scheduling: 

1. Initialize the currently running process to null. 

2. While the ready queue is not empty: 

    a. Sort the processes in the ready queue by their remaining 

burst times (shortest to longest). 

    b. If the currently running process has a longer remaining 

burst time than the first process in the queue: 

        i. Preempt the currently running process. 

        ii. Enqueue the preempted process back into the ready queue. 

        iii. Dequeue the first process in the queue. 

        iv. Assign the CPU to this process. 

    c. Wait for the process to complete. 

Example: Here's an example input and output for the preemptive SJF 

(Shortest Job First) scheduling algorithm: 

Input: 

Process Arrival Time Burst Time 

P1 0 5 

P2 2 3 

P3 4 4 
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P4 6 2 

Output: 

Time  Process Remaining Burst Time 

0 P1 5 

1 P1 4 

2 P2 3 

3 P2 2 

4 P2 1 

5 P1 3 

6 P4 2 

7 P4 1 

8 P3 4 

9 P3 3 

10 P3 2 

11 P3 1 

12 P1 2 

13 P1 1 

In this scenario, the pre-emptive sjf algorithm selects the process with 

the shortest remaining burst time. At time 0, process P1 arrives and 

starts executing. At time 2, process P2 arrives, but since P1 has a shorter 

remaining burst time, the scheduler pre-empts P1 and allows P2 to 

execute. At time 4, process P3 arrives, but P2 still has a shorter 

remaining burst time, so P3 is not selected. At time 5, P1 is selected again 

since it has the shortest remaining burst time. At time 6, process P4 

arrives and has a shorter remaining burst time than P1, so P1 is pre-
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empted and P4 starts executing. At time 8, process P3 finally gets 

selected since it has the shortest remaining burst time. The remaining 

burst times for each process are shown in the output table, and the 

algorithm ends at time 13 when all processes have completed. 

 

The SJF scheduling algorithm has several advantages, including: 

 It reduces average waiting time, as processes with shorter burst 

times are executed first. 

 It minimizes average turnaround time, as processes are executed 

in the order of their burst times. 

 It improves system efficiency, as CPU time is allocated to the 

process that requires it the most. 

Despite its advantages, the SJF scheduling algorithm also has some 

disadvantages, including: 

 It is difficult to predict burst times accurately, which can lead to 

poor scheduling decisions. 

 It can cause long waiting times for processes with long burst times, 

as they will be scheduled last. 

 It can result in starvation of processes with longer burst times, as 

they may never get the opportunity to execute. 

To implement SJF scheduling, the operating system must know the 

length of the next CPU burst for each process. One way to estimate this 

is to use the length of the previous CPU burst, although this method 

may not always be accurate. Another way is to use an exponential 

average of the previous burst lengths, which gives more weight to recent 

bursts. 

Once the estimated burst lengths are known, the processes can be 

scheduled based on the shortest estimated burst length. If a new process 

arrives with a shorter estimated burst length than the currently running 
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process, the currently running process is preempted and the new 

process is scheduled to run. 

SJF scheduling can either be non-preemptive or preemptive. Non-

preemptive SJF scheduling means that once a process starts running, it 

will continue to run until it completes its CPU burst. Preemptive SJF 

scheduling means that if a new process arrives with a shorter estimated 

burst length, the currently running process is preempted and the new 

process is scheduled to run. 

Preemptive SJF scheduling can lead to starvation if a long process keeps 

being preempted by shorter processes, and therefore never completes. 

One way to mitigate this is to use a priority queue, where processes with 

shorter estimated burst lengths have higher priorities. 

Overall, SJF scheduling is a good choice for systems where the length of 

CPU bursts is known or can be estimated accurately. It can lead to 

shorter average waiting times and turnaround times compared to FCFS 

scheduling, and is fairer in terms of allocating CPU time to processes 

with shorter burst lengths. 

2.3 Shortest Remaining Time Next (SRTN) 

Shortest Remaining Time Next (SRTN) is a preemptive version of the 

shortest job first scheduling algorithm. It is a CPU scheduling algorithm 

that is used in operating systems to minimize the average waiting time 

for processes. The idea behind this algorithm is to always select the 

process that has the shortest remaining burst time. Burst time is the 

amount of time a process needs to complete its execution. 

In SRTN, the scheduler keeps track of the remaining time for each 

process in the ready queue. Whenever a new process arrives or the 

running process becomes blocked, the scheduler selects the process 

with the shortest remaining time to execute. If a process with a shorter 
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burst time arrives while another process is running, the running process 

is preempted, and the new process is executed. 

SRTN is an optimal algorithm because it reduces the average waiting 

time for processes. However, it requires knowledge of the total 

execution time for each process in advance, which is not always 

available. In addition, it suffers from the same problem as SJF where 

long-running processes may suffer from starvation. 

SRTN can be implemented using priority queues, where processes with 

shorter remaining times have higher priority. This ensures that shorter 

processes are always executed first, regardless of the order in which they 

arrive. 

Overall, SRTN is a powerful scheduling algorithm that can improve the 

performance of the system, especially for processes with short burst 

times. However, it requires accurate estimation of the remaining 

execution time of each process, which can be difficult to obtain in 

practice. 

2.4 Priority Scheduling 

Priority scheduling is a non-preemptive CPU scheduling algorithm in 

which each process is assigned a priority, and the process with the 

highest priority is executed first. In priority scheduling, each process is 

assigned a priority based on its characteristics, such as the amount of 

CPU time it needs, its importance to the system, and the amount of I/O 

it requires. A process with a higher priority value will be executed before 

a process with a lower priority value. 

Priority scheduling can be implemented in different ways. One common 

approach is to use static priorities, where the priority of a process is set 

at the time of its creation and remains constant throughout its 

execution. Another approach is to use dynamic priorities, where the 
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priority of a process changes during its execution based on certain 

criteria. 

There are various factors that can be used to assign priorities to 

processes. Some of the commonly used factors are: 

 CPU Burst Time: The time that a process requires to complete its 

execution is an important factor in determining its priority. A 

process that requires a shorter CPU burst time is given a higher 

priority than a process that requires a longer CPU burst time. 

 Deadline: If a process has a strict deadline by which it must 

complete its execution, it is given a higher priority than other 

processes. 

 I/O Requirement: Processes that require more I/O operations are 

given a lower priority than processes that require less I/O 

operations. 

 Memory Requirement: Processes that require more memory 

resources are given a lower priority than processes that require 

less memory resources. 

In priority scheduling, the scheduler selects the process with the highest 

priority from the ready queue and assigns the CPU to it. If two processes 

have the same priority, they are executed in a First-Come-First-Serve 

(FCFS) manner. 

One of the advantages of priority scheduling is that it allows the system 

to be more responsive to high-priority processes. For example, if a 

critical system process requires immediate attention, it can be assigned 

a higher priority, and the scheduler will ensure that it is executed before 

other processes. Another advantage is that it allows the system to be 

more efficient by maximizing the use of available resources. By 

executing high-priority processes first, priority scheduling can ensure 

that the system makes the most efficient use of CPU time. 

However, priority scheduling also has some disadvantages. One 

potential problem is that lower-priority processes may suffer from 
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starvation, which means that they may never get a chance to execute if 

there are always high-priority processes waiting in the ready queue. 

Another problem is that priority inversion may occur, where a low-

priority process holds a resource that a high-priority process needs, 

causing the high-priority process to be blocked. 

Overall, priority scheduling is a useful CPU scheduling algorithm that 

can be used to ensure that the system is responsive to high-priority 

processes and efficient in its use of resources. However, it is important 

to carefully assign priorities to processes and to take steps to avoid 

problems such as starvation and priority inversion. 

Example: Here's a pseudocode for Priority Scheduling: 

1. Initialize an empty ready queue for each priority level 

2. for each process do the following: 

3.    set priority of the process 

4.    enqueue the process in the corresponding ready queue 

5. while there are processes in the ready queues do the following: 

6.    select the highest priority process from the non-empty ready 

queue 

7.    execute the selected process for a time slice 

8.    if the process is still runnable, re-enqueue it in the 

corresponding ready queue 

In this pseudocode, we first initialize a separate ready queue for each 

priority level. Each process is then assigned a priority and enqueued in 

the corresponding ready queue. The scheduling algorithm then selects 

the highest priority process from the non-empty ready queues and 

executes it for a time slice. If the process is still runnable after the time 

slice, it is re-enqueued in the corresponding ready queue. The process 

repeats until there are no more processes in the ready queues. 
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2.5 Round-Robin (RR) 

Round-Robin (RR) is a CPU scheduling algorithm in which each process 

is assigned a fixed time slice or time quantum. When a process arrives 

in the ready queue, it is assigned the CPU for a fixed time quantum, 

usually in the range of 10 to 100 milliseconds. If the process completes 

its execution before the time quantum expires, it voluntarily 

relinquishes the CPU. However, if the time quantum expires before the 

process completes its execution, the process is preempted, and the CPU 

is assigned to the next process in the ready queue. The preempted 

process is then placed at the end of the ready queue, where it waits for 

its turn to come again. 

The RR algorithm is widely used in real-time systems, where it is 

essential to ensure that all processes get a fair share of CPU time, 

regardless of their priorities. It is also used in interactive systems, where 

it is important to provide a responsive user interface. 

One of the advantages of the RR algorithm is that it provides fairness in 

the sense that all processes get an equal share of CPU time. This is 

achieved by giving each process a fixed time quantum, after which it is 

preempted and replaced by the next process in the ready queue. 

Another advantage of the RR algorithm is that it provides good response 

time, as processes are executed in a round-robin fashion, with each 

process getting a chance to run for a fixed time quantum. 

However, one of the disadvantages of the RR algorithm is that it may 

result in unnecessary context switches, as processes are preempted even 

if they do not require the entire time quantum to complete their 

execution. This can lead to a decrease in the overall system performance. 

To mitigate this issue, the time quantum must be chosen carefully, to 

balance between fairness and responsiveness. 

Example: Pseudocode for Round-Robin (RR) Scheduling Algorithm: 

1. Initialize the ready queue and set the time quantum (q). 
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2. While the ready queue is not empty: 

    a. Dequeue the first process from the ready queue. 

    b. If the process can complete its execution within the time 

quantum (q): 

        i. Execute the process for the required CPU time. 

        ii. Update the process's state to completed. 

    c. Else: 

        i. Execute the process for the time quantum (q). 

        ii. Update the process's state to ready. 

        iii. Enqueue the process at the end of the ready queue. 

In summary, the Round-Robin (RR) CPU scheduling algorithm provides 

fairness and good response time by giving each process a fixed time 

quantum to execute, after which it is preempted and replaced by the 

next process in the ready queue. It is widely used in real-time and 

interactive systems, but it may result in unnecessary context switches if 

the time quantum is not chosen carefully. 

Example: Here's an example input and output for the Round Robin 

scheduling algorithm: 

Input: 

Process Arrival Time Burst Time 

P1 0 10 

P2 1 4 

P3 2 3 

P4 3 5 

Time Quantum: 2 

Output: 
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Time Process Remaining Time 

0 P1 8 

2 P2 2 

4 P3 1 

6 P4 3 

8 P1 6 

10 P2 0 

12 P3 0 

13 P4 1 

15 P1 4 

17 P4 0 

18 P1 2 

19 P1 0 

In this example, there are four processes arriving at different times with 

different burst times. The time quantum is set to 2 units. 

At time 0, the first process P1 is scheduled and given the full burst time 

of 10 units, since it is the only process present. 

At time 2, P2 arrives and is scheduled, but is only given 2 units of CPU 

time, as that is the time quantum. At the end of its time quantum, P2's 

remaining time is 2 units. 

At time 4, P3 arrives and is scheduled for 2 units, P3's remaining time is 

1 unit. 

At time 6, P4 arrives and is scheduled for 2 units, P4's remaining time is 

3 units. 
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At time 8, P1 is scheduled again P1’s remaining time, which is now 6 

units. 

At time 10, P2 is scheduled again and completes its execution with 0 

remaining time. 

At time 12, P3 is scheduled again and completes its execution with 0 

remaining time. 

At time 13, P4 is scheduled again, P4’s remaining time is now 1 units. 

At time 15, P1 is scheduled again P1’s remaining time, which is now 4 

units. 

At time 17, P4 is scheduled again and completes its execution with 0 

remaining time. 

At time 18, P1 is scheduled again P1’s remaining time, which is now 2 

units. 

At time 19, P1 completes its execution with 0 remaining time, resulting 

in all processes being completed. 

2.6 Multiple queues  

Multiple queues are a common approach for scheduling processes in 

many modern operating systems. The basic idea is to have several 

separate queues of processes waiting to be executed. The processes are 

grouped into the different queues based on their priority level, and the 

scheduler selects processes from each queue in turn. This approach 

allows the scheduler to give higher priority to certain processes while 

still ensuring that all processes get some CPU time. 

One of the earliest examples of a priority scheduler using multiple 

queues was in the CTSS operating system, which ran on the IBM 7094 

computer. CTSS had a unique problem in that process switching was 

slow due to the limited memory capacity of the 7094. Thus, the 
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designers of CTSS came up with a clever solution to optimize process 

scheduling. They assigned different priority classes to the processes, 

where higher-priority processes were given a larger quantum to run 

than lower-priority processes. The highest-priority processes were run 

for one quantum, while lower-priority processes were given longer 

quanta. When a process used up all the quanta allocated to it, it was 

moved down one class. 

Modern operating systems use a similar approach with multiple priority 

queues. Processes are assigned to a specific queue based on their priority 

level, and the scheduler selects processes from each queue in turn. Some 

operating systems, such as Linux, use a round-robin approach, where 

each process in a queue is given a fixed amount of CPU time before the 

scheduler moves on to the next process. Other operating systems, such 

as Windows, use a priority-based approach, where processes in higher-

priority queues are given more CPU time than those in lower-priority 

queues. 

The advantage of using multiple queues is that it allows the scheduler 

to give higher priority to certain processes while still ensuring that all 

processes get some CPU time. For example, in a real-time system, 

processes with hard deadlines may be assigned to a higher-priority 

queue than processes with soft deadlines. Similarly, in a desktop 

environment, interactive processes, such as the user's mouse and 

keyboard input, may be assigned to a higher-priority queue than 

background processes, such as file backups. 

In conclusion, multiple queues are an effective and efficient approach 

for scheduling processes in modern operating systems. They allow the 

scheduler to give higher priority to certain processes while still ensuring 

that all processes get some CPU time. The use of multiple queues has 

been a standard approach in operating systems since the early days of 

computing, and it remains a key component of modern operating 

system design. 



PAGE 29 

Example: Here's an example Java code that demonstrates multiple 

queues scheduling algorithm: 

import java.util.ArrayList; 

import java.util.LinkedList; 

import java.util.Queue; 

 

public class MultipleQueuesScheduler { 

     

    // Define constants for the number of priority queues and 

quantum values 

    private static final int NUM_QUEUES = 3; 

    private static final int[] QUANTUM_VALUES = {10, 20, 40}; 

     

    // Create an array of queues to represent the multiple priority 

queues 

    private Queue<Process>[] queues = new Queue[NUM_QUEUES]; 

     

    // Constructor to initialize the queues 

    public MultipleQueuesScheduler() { 

        for (int i = 0; i < NUM_QUEUES; i++) { 

            queues[i] = new LinkedList<>(); 

        } 

    } 

     

    // Method to add a process to the appropriate queue based on 

its priority 

    public void addProcess(Process process) { 
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        int priority = process.getPriority(); 

        if (priority < NUM_QUEUES) { 

            queues[priority].add(process); 

        } else { 

            queues[NUM_QUEUES - 1].add(process); 

        } 

    } 

     

    // Method to run the scheduler and execute the processes 

    public void run() { 

        for (int i = 0; i < NUM_QUEUES; i++) { 

            int quantum = QUANTUM_VALUES[i]; 

            Queue<Process> currentQueue = queues[i]; 

            while (!currentQueue.isEmpty()) { 

                Process currentProcess = currentQueue.remove(); 

                int remainingTime = 

currentProcess.getRemainingTime(); 

                if (remainingTime <= quantum) { 

                    currentProcess.execute(remainingTime); 

                } else { 

                    currentProcess.execute(quantum); 

                    currentProcess.setRemainingTime(remainingTime 

- quantum); 

                    currentQueue.add(currentProcess); 

                } 

            } 
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        } 

    } 

     

    // Inner class to represent a process 

    private static class Process { 

        private int priority; 

        private int remainingTime; 

         

        public Process(int priority, int remainingTime) { 

            this.priority = priority; 

            this.remainingTime = remainingTime; 

        } 

         

        public int getPriority() { 

            return priority; 

        } 

         

        public int getRemainingTime() { 

            return remainingTime; 

        } 

         

        public void setRemainingTime(int remainingTime) { 

            this.remainingTime = remainingTime; 

        } 
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        public void execute(int time) { 

            System.out.println("Executing process with priority " 

+ priority + " for " + time + " time units."); 

        } 

    } 

     

    // Main method to test the scheduler 

    public static void main(String[] args) { 

        MultipleQueuesScheduler scheduler = new 

MultipleQueuesScheduler(); 

        scheduler.addProcess(new Process(0, 30)); 

        scheduler.addProcess(new Process(2, 60)); 

        scheduler.addProcess(new Process(1, 20)); 

        scheduler.addProcess(new Process(3, 50)); 

        scheduler.run(); 

    } 

} 

In this example, the MultipleQueuesScheduler class represents the 

scheduler that uses multiple priority queues with different quantum 

values. The Process inner class represents a process with a priority level 

and a remaining execution time. The addProcess method adds a process 

to the appropriate priority queue based on its priority level, and the run 

method executes the processes in each priority queue using the 

corresponding quantum value. 

In the main method, we create a MultipleQueuesScheduler instance and 

add four processes with different priority levels and remaining 

execution times. Finally, we call the run method to execute the 

processes according to their priority levels and the quantum values of 

the priority queues. 
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2.7 Shortest process next (SPN)  

Shortest process next (SPN) is a scheduling algorithm that is similar to 

shortest job first (SJF). The difference is that in SPN, the scheduler 

selects the process with the shortest expected processing time instead 

of the shortest actual processing time. 

The expected processing time is calculated based on the process's 

previous execution history. The algorithm works well for interactive 

systems, where processes typically execute a series of short tasks. 

When a new process arrives, the scheduler calculates the expected 

processing time of the process based on its previous execution history. 

The process with the shortest expected processing time is selected to 

run next. If a new process arrives with a shorter expected processing 

time than the currently running process, the scheduler preempts the 

running process and starts the new process. 

One of the main advantages of SPN is that it provides a good balance 

between short response times and high throughput. It ensures that 

short processes are executed first, thereby reducing response time. At 

the same time, it does not ignore longer processes entirely, ensuring that 

they get executed too. 

One disadvantage of SPN is that it requires an accurate estimate of the 

expected processing time. If the estimate is inaccurate, the algorithm 

may select the wrong process, leading to poor performance. 

Example: Here's an example Java code that demonstrates the shortest 

process next (SPN) scheduling algorithm: 

import java.util.*; 

 

public class SPNScheduler { 
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    public static void main(String[] args) { 

         

        // Create a list of processes with their arrival times and 

burst times 

        int[][] processes = {{1, 0, 6}, {2, 1, 8}, {3, 2, 7}, {4, 

3, 3}, {5, 4, 4}}; 

         

        // Sort the processes by their arrival times 

        Arrays.sort(processes, Comparator.comparingInt(a -> 

a[1])); 

         

        // Initialize variables for the current time and total 

waiting time 

        int currentTime = 0; 

        int totalWaitingTime = 0; 

         

        // Create a priority queue to store the processes by their 

burst times 

        PriorityQueue<int[]> queue = new 

PriorityQueue<>(Comparator.comparingInt(a -> a[2])); 

         

        // Loop through each process 

        for (int i = 0; i < processes.length; i++) { 

            int[] process = processes[i]; 

             

            // If the process has not arrived yet, skip it 

            if (process[1] > currentTime) { 

                i--; 
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                currentTime++; 

                continue; 

            } 

             

            // Add the process to the queue 

            queue.add(process); 

             

            // Get the shortest process from the queue 

            int[] shortestProcess = queue.poll(); 

             

            // Calculate the waiting time for the process 

            int waitingTime = currentTime - shortestProcess[1]; 

             

            // Add the waiting time to the total waiting time 

            totalWaitingTime += waitingTime; 

             

            // Increment the current time by the process's burst 

time 

            currentTime += shortestProcess[2]; 

        } 

         

        // Calculate the average waiting time 

        double averageWaitingTime = (double) totalWaitingTime / 

processes.length; 

         

        // Print the average waiting time 
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        System.out.println("Average waiting time: " + 

averageWaitingTime); 

    } 

     

} 

This code uses a two-dimensional array to represent the processes, with 

each row containing the process ID, arrival time, and burst time. It sorts 

the processes by their arrival times, and then loops through each process, 

adding it to a priority queue sorted by its burst time. It then gets the 

shortest process from the queue and calculates the waiting time for that 

process. Finally, it increments the current time by the process's burst 

time and repeats the process until all processes have been executed. At 

the end, it calculates the average waiting time and prints it to the 

console. 

2.8 Guaranteed scheduling 

Guaranteed scheduling is a unique approach to scheduling that makes 

actual promises to users about their computer system's performance. 

This approach aims to provide a guarantee of a specific level of system 

performance for each user or process. 

One of the most realistic and straightforward guarantees that can be 

made is that each user or process will receive a specific portion of the 

CPU power. This is based on the idea that if n users are logged in, then 

each user will receive approximately 1/n of the CPU power. Similarly, if 

n processes are running, then all things being equal, each process should 

get 1/n of the CPU cycles. 

The goal of guaranteed scheduling is to ensure that users or processes 

have predictable and consistent performance, which is particularly 

important in time-critical environments. For example, in real-time 

systems, where the system must respond to external events within a 
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specified time frame, guaranteed scheduling can provide the assurance 

that processes will be executed in a timely and predictable manner. 

One of the challenges of guaranteed scheduling is ensuring that the 

guarantees can be met. In a system with multiple users or processes, it 

can be challenging to allocate CPU resources fairly and ensure that each 

user or process receives their guaranteed share. In addition, the actual 

amount of CPU power required by each user or process can vary over 

time, which can make it difficult to maintain the promised level of 

performance. 

To implement guaranteed scheduling, an operating system may use a 

variety of techniques, such as priority-based scheduling and time-slicing. 

For example, in a priority-based scheduling approach, each user or 

process is assigned a priority level, which determines how much CPU 

power they will receive. In a time-slicing approach, the CPU is divided 

into time slices, and each user or process is allocated a specific amount 

of CPU time within each time slice. 

In summary, guaranteed scheduling is an approach to scheduling that 

aims to provide users or processes with a specific level of performance. 

By making real promises to users about their system's performance, 

guaranteed scheduling can provide predictable and consistent 

performance, which is particularly important in time-critical 

environments. However, implementing guaranteed scheduling can be 

challenging, and requires careful management of CPU resources to 

ensure that promises are kept. 

Example: The guaranteed scheduling algorithm is not something that 

can be implemented directly in Java, as it requires low-level operating 

system support to guarantee resource allocation. However, we can 

simulate the behavior of this algorithm in Java by using a simple 

algorithm that allocates CPU time equally to all running processes. 

Here is an example Java code that demonstrates the basic idea of 

guaranteed scheduling: 
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import java.util.ArrayList; 

 

public class GuaranteedScheduling { 

    // Define a simple Process class that represents a running 

process 

    static class Process { 

        private String name; 

        private int cpuTime; 

 

        public Process(String name, int cpuTime) { 

            this.name = name; 

            this.cpuTime = cpuTime; 

        } 

 

        public String getName() { 

            return name; 

        } 

 

        public int getCpuTime() { 

            return cpuTime; 

        } 

 

        public void setCpuTime(int cpuTime) { 

            this.cpuTime = cpuTime; 

        } 

    } 
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    public static void main(String[] args) { 

        // Create a list of processes to run 

        ArrayList<Process> processes = new ArrayList<>(); 

        processes.add(new Process("Process 1", 5)); 

        processes.add(new Process("Process 2", 2)); 

        processes.add(new Process("Process 3", 4)); 

 

        // Allocate CPU time equally to all processes 

        int timeQuantum = 1; 

        int totalTime = processes.size(); 

        int time = 0; 

        while (!processes.isEmpty()) { 

            Process p = processes.remove(0); 

            System.out.println("Running " + p.getName() + " (CPU 

time left: " + p.getCpuTime() + ")"); 

            p.setCpuTime(p.getCpuTime() - timeQuantum); 

            time += timeQuantum; 

            if (p.getCpuTime() > 0) { 

                processes.add(p); 

            } else { 

                System.out.println(p.getName() + " completed at 

time " + time); 

            } 

        } 

    } 
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} 

In this example, we create a list of three processes, each with a different 

amount of CPU time required. We then simulate guaranteed scheduling 

by allocating CPU time equally to each process, with a time quantum of 

1. We run each process in turn until it has completed, and then move on 

to the next process in the list. 

Note that this code is just a simple example, and does not actually 

guarantee equal allocation of CPU time in a real-world operating system. 

However, it should give you an idea of how the guaranteed scheduling 

algorithm might work in practice. 

2.9 Lottery scheduling 

One of the most elegant and innovative scheduling algorithms that 

exists is lottery scheduling. Its use of randomness is one of its key 

features, and it offers at least three significant advantages over more 

traditional approaches. 

Firstly, randomness avoids strange corner-case behaviors that a more 

traditional algorithm may struggle to handle. For instance, consider the 

LRU (least recently used) replacement policy, which is examined in 

greater depth in a later chapter on virtual memory. Although LRU is 

often a good replacement algorithm, it can achieve worst-case 

performance for certain cyclic-sequential workloads. Random, on the 

other hand, has no such worst-case scenario. 

Secondly, random is lightweight, requiring little state to track 

alternatives. In a traditional fair-share scheduling algorithm, 

monitoring how much CPU each process has received necessitates per-

process accounting, which must be updated after each process runs. 

Random, on the other hand, only needs minimal per-process state (e.g., 

the number of tickets each process has). 
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Finally, random can be very quick. As long as generating a random 

number is rapid, making the decision is equally fast, and thus random 

can be utilized in several scenarios where speed is required. Of course, 

the quicker the need, the more random tends towards pseudo-random. 

The use of lottery scheduling is a powerful technique that can be 

employed in various scenarios. This method assigns each process a 

certain number of tickets, and the scheduler then selects a winning 

ticket at random. The process with the matching ticket is then allocated 

the CPU. The higher the number of tickets a process has, the more likely 

it is to win the lottery and get access to the CPU. The process that wins 

the lottery can then execute for a set amount of time or until it blocks 

on I/O or some other event. 

Lottery scheduling is a versatile technique that can be adapted to fit a 

wide range of situations. It has been used in operating systems for 

purposes such as load balancing, where it helps to ensure that the 

resources of a system are distributed fairly among processes. 

Additionally, it can be utilized for scheduling jobs on large-scale 

computer systems, which require the distribution of workloads across 

multiple nodes. 

Example: Here's a pseudocode implementation of lottery scheduling: 

// Each process is assigned a number of "lottery tickets" based on 

its priority 

// The total number of tickets is fixed and can be adjusted as 

needed 

// A process with more tickets is more likely to be selected for 

execution 

 

struct Process { 

  int pid; 

  int tickets; 
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} 

 

// Initialize the list of processes and their tickets 

List<Process> processes; 

processes.add(new Process(1, 10)); 

processes.add(new Process(2, 5)); 

processes.add(new Process(3, 3)); 

 

// Set the total number of tickets 

int total_tickets = 18; 

 

// Main loop for scheduling 

while (true) { 

  // Randomly select a winning ticket number 

  int winner = random(1, total_tickets); 

   

  // Iterate over the list of processes and check if the winner's 

ticket matches 

  for (Process process : processes) { 

    if (winner <= process.tickets) { 

      // Found the winning process, execute it 

      execute(process.pid); 

      break; 

    } 

    else { 
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      // Subtract the number of tickets for the current process 

and continue 

      winner -= process.tickets; 

    } 

  } 

} 

Note that this is a simplified pseudocode implementation for 

demonstration purposes and may not include all necessary features such 

as handling I/O requests, priority adjustments, and synchronization. 

Example: 

Input: 

P1 with 10 tickets 

P2 with 20 tickets 

P3 with 30 tickets 

P4 with 40 tickets 

Output: 

Total tickets: 100 

Winning ticket: 36 

Process P3 wins the lottery and is executed. 

Winning ticket: 71 

Process P4 wins the lottery and is executed. 

Winning ticket: 16 

Process P2 wins the lottery and is executed. 

Winning ticket: 92 
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Process P4 wins the lottery and is executed. 

Winning ticket: 6 

Process P1 wins the lottery and is executed. 

2.10 Fair-share scheduling 

Fair-share scheduling is a type of scheduling algorithm that takes into 

account the ownership of processes while scheduling them. In other 

words, it ensures that each user gets a fair share of the CPU time, 

irrespective of the number of processes they have running on the system. 

The main idea behind fair-share scheduling is to allocate a portion of 

the CPU time to each user or group of users, based on the resources they 

are entitled to. For example, if two users are promised equal CPU time, 

say 50% each, then the system will ensure that they each get that 

amount of CPU time, regardless of the number of processes they have 

running. 

One way to implement fair-share scheduling is to use a feedback control 

algorithm. This algorithm uses feedback from the system to adjust the 

amount of CPU time allocated to each user. The feedback can be in the 

form of CPU usage statistics, which are used to compute the relative 

shares of CPU time for each user. These shares are then used to 

determine how much CPU time each user should be allocated. 

Another way to implement fair-share scheduling is to use a time-sharing 

algorithm, such as round-robin scheduling, in combination with a 

resource allocation mechanism. The resource allocation mechanism is 

used to allocate resources to each user, based on their entitlements. 

Once the resources are allocated, the time-sharing algorithm is used to 

schedule processes among the users. 

Example: Here is an example Java code that demonstrates the fair share 

scheduling algorithm: 
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import java.util.ArrayList; 

import java.util.Collections; 

import java.util.Comparator; 

import java.util.List; 

 

public class FairShareScheduling { 

    // Process class to store process details 

    static class Process { 

        String name; 

        int time; 

        String owner; 

 

        Process(String name, int time, String owner) { 

            this.name = name; 

            this.time = time; 

            this.owner = owner; 

        } 

    } 

 

    // User class to store user details 

    static class User { 

        String name; 

        double share; 

 

        User(String name, double share) { 
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            this.name = name; 

            this.share = share; 

        } 

    } 

 

    // Scheduler method to assign CPU time to processes based on 

user shares 

    public static void scheduler(List<Process> processes, 

List<User> users) { 

        // Calculate total share of CPU time allocated to all users 

        double totalShare = 0; 

        for (User user : users) { 

            totalShare += user.share; 

        } 

 

        // Calculate share of CPU time allocated to each user 

        for (User user : users) { 

            user.share = user.share / totalShare; 

        } 

 

        // Sort processes by owner to group processes by user 

        Collections.sort(processes, Comparator.comparing(p -> 

p.owner)); 

 

        // Assign CPU time to processes based on user shares 

        double[] shares = new double[users.size()]; 

        int[] counts = new int[users.size()]; 
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        int idx = 0; 

        for (Process process : processes) { 

            while (!process.owner.equals(users.get(idx).name)) { 

                idx++; 

            } 

            shares[idx] += users.get(idx).share; 

            counts[idx]++; 

            process.time -= (int) Math.ceil(users.get(idx).share * 

process.time); 

        } 

 

        // Print CPU time assigned to each process 

        for (int i = 0; i < processes.size(); i++) { 

            Process process = processes.get(i); 

            System.out.println("Process " + process.name + " 

assigned " + counts[i] * shares[i] * 100 + "% of CPU time."); 

        } 

    } 

 

    public static void main(String[] args) { 

        // Create processes 

        List<Process> processes = new ArrayList<>(); 

        processes.add(new Process("P1", 20, "User1")); 

        processes.add(new Process("P2", 30, "User2")); 

        processes.add(new Process("P3", 40, "User1")); 

        processes.add(new Process("P4", 10, "User3")); 
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        // Create users and assign share of CPU time 

        List<User> users = new ArrayList<>(); 

        users.add(new User("User1", 2)); 

        users.add(new User("User2", 1)); 

        users.add(new User("User3", 1)); 

 

        // Call scheduler method to assign CPU time to processes 

based on user shares 

        scheduler(processes, users); 

    } 

} 

In this code, we first define a Process class to store the name, execution 

time, and owner of each process. We also define a User class to store the 

name and share of CPU time allocated to each user. We then define a 

scheduler method to assign CPU time to processes based on user shares. 

In the scheduler method, we first calculate the total share of CPU time 

allocated to all users and then calculate the share of CPU time allocated 

to each user. We then sort the processes by owner to group processes 

by user. We assign CPU time to each process based on its owner's share 

of CPU time and subtract the assigned time from the process's execution 

time. 

2.11 Multilevel Feedback Queue (MLFQ) 

Multilevel Feedback Queue (MLFQ) scheduling is a dynamic scheduling 

algorithm that employs multiple priority queues to schedule processes. 

It is an extension of the priority scheduling algorithm, but with the 
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added advantage of dynamically adjusting priorities based on process 

behavior. 

The MLFQ scheduling algorithm works by maintaining a set of queues, 

each with a different priority level. Each queue has a different time 

quantum assigned to it, with higher priority queues having smaller time 

quanta. When a process enters the system, it is assigned to the highest 

priority queue. The process runs until its quantum expires, or it blocks 

for I/O. If the process uses up its entire quantum, it is demoted to the 

next lower priority queue. If a process blocks before its quantum expires, 

it is placed at the back of the same priority queue. This allows I/O-

bound processes to move up in priority faster than CPU-bound 

processes. 

The MLFQ scheduling algorithm attempts to provide the benefits of 

both short-term and long-term scheduling. Short-term scheduling is 

achieved by using smaller time quanta for higher priority processes, 

while long-term scheduling is achieved by periodically demoting 

processes to lower priority queues. This allows CPU-bound processes to 

complete without starving I/O-bound processes. 

MLFQ scheduling also incorporates a feature known as aging, which 

increases the priority of a process that has been waiting in a lower 

priority queue for a long time. This ensures that processes that have 

been waiting for a long time are eventually given a chance to execute, 

preventing indefinite starvation. 

MLFQ scheduling has been shown to perform well in most scenarios, 

but there are some cases where it can perform poorly. For example, if a 

process has a burst of CPU activity that is longer than the time quantum 

of the highest priority queue, it will be demoted to a lower priority 

queue before it completes its burst. This can result in unnecessary 

context switching and decreased performance. 

Example: Here is an example pseudocode implementation of the MLFQ 

scheduling algorithm: 
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initialize all queues 

set time quantum for each queue 

set priority of initial queue 

 

while (true) { 

  if (any queue is not empty) { 

    select the highest priority non-empty queue 

    remove the first process from the queue 

    run the process for its time quantum 

    if (process is complete) { 

      remove the process from the system 

    } else if (process blocked for I/O) { 

      place the process at the back of the same queue 

    } else if (process used up its quantum) { 

      demote the process to the next lower priority queue 

    } 

  } else { 

    wait for a process to arrive 

  } 

 

  check for aging of processes in lower priority queues 

  adjust priorities of processes as necessary 

} 

In this pseudocode, the algorithm first initializes all the priority queues, 

sets the time quantum for each queue, and sets the initial queue priority. 



PAGE 51 

The algorithm then enters a loop that continues indefinitely, waiting for 

processes to arrive and scheduling them as necessary. 

If any of the queues are non-empty, the algorithm selects the highest 

priority non-empty queue and removes the first process from the queue. 

The process is then run for its time quantum. If the process completes 

during its quantum, it is removed from the system. If the process blocks 

for I/O, it is placed at the back of the same queue. If the process uses up 

its quantum, it is demoted to the next lower priority queue. 

If all the queues are empty, the algorithm waits for a process to arrive. 

Additionally, the algorithm checks for aging of processes in lower 

priority queues and adjusts their priorities as necessary. This ensures 

that processes that have been waiting for a long time are eventually 

given a chance 

The above-mentioned factors make MLFQ scheduling a popular choice 

for operating systems. However, it is not perfect and has some potential 

drawbacks. One of the main issues with MLFQ scheduling is that it can 

lead to process starvation, where a low-priority process never gets a 

chance to execute if there are always high-priority processes in the 

system. Another issue is that the complexity of the algorithm can lead 

to higher overhead and longer response times. 

Despite these potential drawbacks, MLFQ scheduling remains a popular 

choice for modern operating systems, particularly for systems that 

require high levels of concurrency and responsiveness. The ability to 

prioritize processes based on their behavior and requirements, 

combined with the flexibility of the algorithm, makes MLFQ scheduling 

an attractive option for many different types of systems. 

Overall, MLFQ scheduling represents a significant advancement in the 

field of CPU scheduling, offering a flexible and effective way to manage 

system resources in complex and dynamic environments. As operating 

systems continue to evolve and become more complex, it is likely that 
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MLFQ scheduling will remain a key part of their design and 

implementation. 

2.12 Comparison of scheduling algorithms 

In this chapter, we will compare and contrast the different CPU 

scheduling algorithms discussed in the previous chapters. We will 

evaluate them based on various criteria such as turnaround time, 

waiting time, response time, fairness, and throughput. 

2.12.1 Turnaround Time 

Turnaround time is the time taken to complete a process, from the 

moment it is submitted to the moment it is completed. A scheduling 

algorithm that minimizes the turnaround time is preferred. Among the 

algorithms discussed, SJF has the lowest average turnaround time since 

it schedules the shortest jobs first. FCFS has a high turnaround time, 

especially for long processes, as it schedules processes in the order they 

arrive. 

2.12.2 Waiting Time 

Waiting time is the time spent by a process waiting in the ready queue 

before it is scheduled to run. A scheduling algorithm that minimizes the 

waiting time is preferred. SJF also has the lowest average waiting time 

as it schedules shorter processes first. On the other hand, FCFS has a 

higher average waiting time, especially for long processes. 

2.12.3 Response Time 

Response time is the time taken for a process to start responding after 

it is submitted. A scheduling algorithm that minimizes the response 

time is preferred, especially for interactive systems. Round-robin has the 
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lowest average response time as it schedules processes for short time 

slices, ensuring that each process gets a chance to run quickly. SJF has a 

high response time since it prioritizes short processes over long ones. 

2.12.4 Fairness 

Fairness refers to how evenly the CPU time is allocated among processes. 

A fair scheduling algorithm ensures that each process gets an equal 

share of the CPU time. Round-robin is the most fair algorithm as it 

schedules processes in a circular fashion, giving each process a fixed 

time slice. FCFS and SJF are not fair since they prioritize some processes 

over others. 

2.12.5 Throughput 

Throughput refers to the number of processes completed per unit time. 

A scheduling algorithm that maximizes the throughput is preferred. 

Round-robin has the highest throughput since it schedules processes for 

short time slices, ensuring that each process gets a chance to run quickly. 

SJF also has a high throughput since it schedules shorter processes first. 

FCFS has a lower throughput, especially for long processes. 

 

Overall, the best scheduling algorithm depends on the specific 

requirements of the system. SJF is best suited for systems with short 

processes, while round-robin is best suited for interactive systems. 

Priority scheduling is useful in real-time systems where certain 

processes require priority over others. MLFQ is useful in systems with a 

mix of long and short processes. 

In conclusion, the choice of scheduling algorithm depends on the 

specific requirements of the system. The scheduler should be designed 

to balance the competing goals of minimizing turnaround time, waiting 

time, and response time while also ensuring fairness and maximizing 

throughput. 



PAGE 54 

2.13 Incorporating I/O 

A scheduler plays a crucial role in determining which processes to run 

on a CPU at any given time. However, its job becomes even more 

challenging when a process initiates an I/O request. During this time, 

the process is blocked and waiting for I/O completion, which means the 

CPU remains idle. Therefore, the scheduler needs to make a decision to 

schedule another job on the CPU. 

In addition, the scheduler must also decide what to do when the I/O 

completes. When the I/O operation completes, an interrupt is raised, 

and the OS moves the process that initiated the I/O from the blocked 

state back to the ready state. The scheduler then has to decide whether 

to continue running the currently-executing process or switch to the 

newly-ready process. 

The OS should consider various factors while making scheduling 

decisions. For example, it could choose to prioritize processes with short 

I/O operations to minimize the wait time. The scheduler could also 

prioritize CPU-bound processes to maximize CPU utilization during I/O 

operations. Additionally, the OS could use priority-based scheduling, 

where higher priority processes are given preference over lower priority 

ones. 

One approach that operating systems often use is the concept of 

priority-based scheduling with round-robin. In this approach, each 

process is assigned a priority level, and the scheduler runs the highest 

priority process first. If a process with a higher priority enters the ready 

state while a lower priority process is running, the scheduler preempts 

the lower priority process and switches to the higher priority process. 

Furthermore, in the round-robin scheduling, the scheduler allocates a 

fixed time slice to each process, and if the process completes its time 

slice before its execution finishes, the process is moved to the back of 
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the ready queue. The process is then run again when it becomes the 

head of the ready queue. 

Overall, the scheduler must make decisions based on a variety of factors, 

such as process priority, CPU utilization, and I/O wait times. By using 

efficient algorithms and techniques, the scheduler can maximize system 

throughput and minimize the waiting time for processes. 

3 Process and Thread Prioritization 

In this chapter, we will be discussing the important topic of process and 

thread prioritization in CPU scheduling. We will begin by defining what 

process and thread priorities are and why they are important in the 

context of CPU scheduling. We will then explore the different methods 

of prioritization, including static priorities, dynamic priorities, and 

aging. By the end of this chapter, you will have a clear understanding of 

how prioritization plays a crucial role in ensuring optimal performance 

and resource utilization in modern operating systems. So let's dive in! 

In operating systems, process and thread priorities are an essential 

aspect of CPU scheduling. They are used to determine which processes 

or threads should be given access to the CPU and in what order. The 

priority of a process or thread is a numerical value that indicates its 

relative importance compared to other processes or threads. 

3.1 Process Priorities 

Process priorities are set by the operating system and can be fixed or 

dynamic. Fixed priorities are assigned to processes when they are 

created and do not change during the lifetime of the process. Dynamic 

priorities can change based on the behavior of the process, the system 

load, or other factors. 
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3.2 Thread Priorities 

Thread priorities are a more fine-grained form of prioritization, allowing 

the operating system to make scheduling decisions on a per-thread basis. 

Each thread within a process can be assigned its own priority level, 

which is used by the scheduler to determine when and for how long the 

thread will run. 

3.3 Importance of Prioritization in CPU Scheduling 

Prioritization is crucial in CPU scheduling because it allows the 

operating system to make intelligent decisions about which processes 

or threads should be given access to the CPU at any given time. Without 

prioritization, the system would be unable to distinguish between 

critical processes and less important ones, leading to inefficient use of 

system resources and potential performance issues. 

3.4 Methods of Prioritization 

There are several methods for setting process and thread priorities, 

including static priorities, dynamic priorities, and aging. 

3.4.1 Static Priorities 

Static priorities are fixed values that are assigned to processes or threads 

when they are created. They do not change during the lifetime of the 

process or thread and are typically set by the system administrator or 

the program developer. Static priorities are useful for ensuring that 

critical processes or threads always have access to the CPU, but they can 

also lead to inefficient use of system resources if not set correctly. 
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3.4.2 Dynamic Priorities 

Dynamic priorities change over time based on the behavior of the 

process or thread, the system load, or other factors. Dynamic priorities 

allow the system to adapt to changing conditions and ensure that 

critical processes or threads receive the resources they need to complete 

their tasks efficiently. 

3.4.3 Aging 

Aging is a technique used in some scheduling algorithms to prevent 

processes or threads from being starved of resources. As a process or 

thread waits in a queue, its priority may increase over time, ensuring 

that it eventually receives the resources it needs to complete its task. 

 

In conclusion, process and thread priorities are a critical component of 

CPU scheduling in operating systems. They allow the system to make 

intelligent decisions about which processes or threads should be given 

access to the CPU and when, ensuring that critical processes receive the 

resources they need to complete their tasks efficiently. By using 

methods such as static and dynamic priorities, and aging, the operating 

system can provide a fair and efficient scheduling environment for all 

processes and threads. 

4 Scheduling in Multiprocessor and Multicore Systems 

As computer hardware has continued to advance, we have seen a shift 

towards using multiple processors or cores within a single machine, 

which can greatly increase the amount of work that can be performed 

simultaneously. However, this also creates new challenges in terms of 

how to efficiently allocate and manage resources between different 

processes or threads. 
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In this chapter, we will discuss the various methods of scheduling in 

multiprocessor and multicore systems. This includes approaches such 

as load balancing, processor affinity, and gang scheduling. We will also 

examine the trade-offs involved in these approaches, including 

considerations such as communication overhead, cache locality, and 

fairness. 

Overall, this chapter aims to provide a comprehensive overview of the 

key issues involved in scheduling in modern multiprocessor and 

multicore systems. By understanding these concepts, you will be better 

equipped to develop efficient and effective scheduling strategies for 

your own applications and systems. 

4.1 Definition of multiprocessor and multicore systems 

Multiprocessor and multicore systems are computing systems that 

contain more than one processor or core. A processor or core is a central 

processing unit (CPU) that can execute instructions and carry out 

computations. Traditional computers typically have a single processor 

or core, which means that they can only execute one task at a time. 

Multiprocessor and multicore systems, on the other hand, have the 

ability to execute multiple tasks simultaneously, leading to an increase 

in overall system performance. 

Multiprocessor systems can be classified into two main categories: 

tightly coupled and loosely coupled systems. In tightly coupled systems, 

the processors share the same memory and communicate with each 

other through a bus or a switch. This allows them to work together on a 

single task, making them ideal for applications that require a lot of 

computing power, such as scientific simulations, financial modeling, 

and database management. 

Loosely coupled systems, on the other hand, consist of multiple 

independent processors that communicate with each other through a 
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network. Each processor has its own memory and can execute its own 

set of instructions, making them ideal for applications that require high 

availability and fault tolerance, such as web servers and data centers. 

Multicore systems, on the other hand, consist of a single processor that 

contains multiple cores. Each core is capable of executing instructions 

and carrying out computations independently, which allows for 

parallelism within a single processor. This parallelism results in an 

increase in performance without the need for additional hardware, 

making multicore systems ideal for desktop computers, laptops, and 

mobile devices. 

Multiprocessor and multicore systems require specialized hardware and 

software to effectively utilize their capabilities. Operating systems need 

to be designed to take advantage of the multiple processors or cores, 

and software applications need to be written with parallelism in mind. 

Additionally, there may be issues with scalability, load balancing, and 

synchronization that need to be addressed to ensure optimal 

performance. 

In conclusion, multiprocessor and multicore systems are computing 

systems that contain multiple processors or cores, allowing for 

increased performance and parallelism. Tightly coupled systems share 

memory and communicate through a bus or switch, while loosely 

coupled systems communicate through a network. Multicore systems 

contain multiple cores within a single processor. To effectively utilize 

these systems, specialized hardware and software are required, and 

issues with scalability, load balancing, and synchronization need to be 

addressed. 
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4.2 Importance of Scheduling in Multiprocessor and 

Multicore Systems 

In a multiprocessor or multicore system, tasks can be executed in 

parallel on different processors or cores. However, the system must be 

able to manage the tasks efficiently, ensuring that each processor or core 

is kept busy and that tasks are completed in a timely manner. The 

scheduling algorithm must be designed to take into account the number 

of processors or cores available, the nature of the tasks to be executed, 

and the resources required by each task. Without efficient scheduling, 

the system will not be able to make full use of all available resources, 

leading to lower performance and reduced efficiency. 

4.3 Methods of Scheduling in Multiprocessor and 

Multicore Systems 

There are several methods of scheduling in multiprocessor and 

multicore systems. One approach is to use a centralized scheduler, 

where all scheduling decisions are made by a single entity. Another 

approach is to use a distributed scheduler, where scheduling decisions 

are made by each processor or core independently. The distributed 

scheduler can be further divided into two categories: homogeneous and 

heterogeneous. In a homogeneous system, all processors or cores have 

identical characteristics, while in a heterogeneous system, processors or 

cores have different characteristics such as processing speed, cache size, 

and memory access. 
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4.4 Challenges in Scheduling in Multiprocessor and 

Multicore Systems 

Scheduling in multiprocessor and multicore systems presents several 

challenges. One of the main challenges is load balancing, which involves 

distributing tasks evenly across all processors or cores. If tasks are not 

distributed evenly, some processors or cores may be idle while others 

are overloaded, leading to reduced performance. Another challenge is 

synchronization, which involves coordinating the activities of multiple 

processors or cores to ensure that they do not interfere with each other. 

Scheduling in multiprocessor and multicore systems is a critical 

component of operating system design. Efficient scheduling algorithms 

are necessary to ensure that all processors or cores are utilized optimally 

and that tasks are completed in a timely manner. With the continued 

growth in computing power, scheduling in multiprocessor and 

multicore systems will remain a vital area of research and development 

in the field of operating systems. 

5 Case Study: CPU Scheduling in Linux Operating 

System 

In modern operating systems, CPU scheduling is a critical component 

responsible for assigning processes and threads to available CPU 

resources. The efficient utilization of CPU resources is essential to 

achieve optimal system performance, responsiveness, and fairness. 

Therefore, operating system designers have implemented various 

scheduling algorithms and methods to achieve these goals. 

In this chapter, we will discuss a case study of CPU scheduling in the 

Linux operating system. We will examine the features of the Linux 

scheduler, compare it with other operating systems, and evaluate its 

impact on system performance, responsiveness, and fairness. 
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First, we will provide an overview of CPU scheduling in general and its 

importance in operating systems. Then, we will discuss the methods and 

algorithms used for CPU scheduling, including First-Come-First-Serve 

(FCFS), Shortest-Job-First (SJF), Priority Scheduling, Round-Robin (RR), 

and Multilevel Feedback Queue (MLFQ). We will also examine process 

and thread prioritization, including static and dynamic priorities and 

aging. 

Next, we will examine CPU scheduling in multiprocessor and multicore 

systems, which are becoming increasingly common in modern 

computing environments. We will discuss the methods used to schedule 

processes and threads across multiple processors and cores. 

Finally, we will focus on the Linux operating system and examine its 

CPU scheduling features, including its Completely Fair Scheduler (CFS). 

We will compare the Linux scheduler with other operating systems and 

evaluate its impact on system performance, responsiveness, and fairness. 

Overall, this chapter will provide an in-depth understanding of CPU 

scheduling, its methods and algorithms, and its critical role in achieving 

optimal system performance, responsiveness, and fairness. We will also 

gain insights into the Linux scheduler and its impact on system 

performance, making this chapter an essential read for anyone 

interested in operating system design and performance. 

5.1 Overview of Linux CPU scheduling 

Linux is one of the most popular operating systems that is widely used 

in various applications ranging from personal computers to data centers. 

The Linux kernel has evolved significantly over the years, and so has its 

CPU scheduling algorithm. The scheduling algorithm in Linux is 

responsible for determining which processes should run and for how 

long. The algorithm used in Linux is a combination of several scheduling 

policies that operate in a hierarchical fashion. In this chapter, we will 
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discuss the overview of the Linux CPU scheduling algorithm, its design 

principles, and the policies used in the algorithm. 

The Linux kernel implements a preemptive, priority-based scheduling 

algorithm. This means that the scheduler is responsible for preempting 

a running process and allowing another process to run if it has a higher 

priority. The priority of a process is determined by several factors, 

including the process's nice value, which is a user-defined parameter 

that ranges from -20 to +19. A higher nice value indicates that the 

process is less important, whereas a lower nice value indicates that the 

process is more important. 

The Linux scheduler uses a runqueue data structure to keep track of the 

processes that are ready to run. Each runqueue contains a set of 

processes that have the same priority. The scheduler selects the highest 

priority runqueue that is not empty and selects the process at the head 

of the queue to run. If there are multiple processes in the runqueue with 

the same priority, the scheduler uses a round-robin scheduling policy to 

ensure that each process gets a fair share of CPU time. 

The Linux scheduler has several design principles that govern its 

operation. These include fairness, responsiveness, and scalability. 

Fairness means that each process should get a fair share of CPU time, 

regardless of its priority or the resources it is using. Responsiveness 

means that the scheduler should be able to quickly respond to changes 

in the system load or to user requests. Scalability means that the 

scheduler should be able to handle a large number of processes and 

threads efficiently. 

5.2 Policies Used in the Linux CPU Scheduling 

Algorithm: 

The Linux scheduler uses several policies to determine the priority of a 

process. These policies include the Completely Fair Scheduler (CFS), the 
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Round Robin Scheduler, the Real-time Scheduler, and the Idle Process 

Scheduler. 

The CFS is the default scheduler in Linux and is designed to provide 

fairness and responsiveness. The CFS uses a red-black tree data 

structure to keep track of the processes in the system. Each node in the 

tree represents a process, and the nodes are sorted based on the 

process's virtual runtime, which is a measure of the CPU time the 

process has received. The process with the smallest virtual runtime is 

selected to run next. 

The Round Robin Scheduler is used to provide fair sharing of the CPU 

among processes of the same priority. Each process is given a time slice, 

and the scheduler ensures that each process gets a fair share of CPU time 

by using a round-robin policy to switch between processes when their 

time slice is up. 

The Real-time Scheduler is used to provide guaranteed response times 

for time-critical applications. Real-time processes are given a higher 

priority than other processes and are scheduled first. The Real-time 

Scheduler is divided into two classes: the SCHED_FIFO and SCHED_RR. 

SCHED_FIFO is a First-In-First-Out (FIFO) scheduling policy that is 

used for processes that need to run for a long time without being 

preempted. SCHED_RR is a Round-Robin scheduling policy that is used 

for processes that need to be preempted after a certain amount of time. 

The Idle Process Scheduler is used to keep the CPU busy when there are 

no processes to run. The Idle Process Scheduler runs a special idle 

process that executes when there are no other processes to run. The idle 

process consumes very little CPU time and is used to keep the 

The Completely Fair Scheduler (CFS) is another popular scheduling 

algorithm used in Linux. It aims to give each process a fair share of the 

CPU based on the amount of work it has to do. The CFS maintains a red-

black tree of processes, sorted by their virtual runtime. The virtual 

runtime of a process is the amount of time it has spent running on the 
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CPU divided by its priority. This way, the CFS ensures that every process 

gets an equal share of the CPU, regardless of its priority. 

Another interesting feature of the CFS is that it is not limited to a fixed 

time slice like Round-Robin scheduling. Instead, it dynamically adjusts 

the time slice of each process based on the number of runnable 

processes in the system. This ensures that the CPU time is used 

efficiently, and no process is left waiting for too long. 

In addition to the CFS, Linux also supports other scheduling algorithms 

such as the Real-Time (RT) scheduler and the Completely Fair Queuing 

(CFQ) scheduler. The RT scheduler is designed for real-time 

applications that require a guaranteed amount of CPU time, while the 

CFQ scheduler is optimized for disk I/O performance. 

Overall, Linux CPU scheduling is a complex and evolving field, with a 

wide range of algorithms and techniques to choose from. The Linux 

kernel developers continue to refine and improve the scheduling 

subsystem, in order to provide the best possible performance, 

responsiveness, and fairness for all users and processes. 

5.3 Comparison with CPU scheduling in other 

operating systems 

As we have seen, Linux CPU scheduling is a complex and sophisticated 

system that balances multiple factors to provide efficient and fair CPU 

allocation. But how does it compare with CPU scheduling in other 

operating systems? 

Let's start with the most well-known operating system, Microsoft 

Windows. The CPU scheduling algorithm in Windows is also based on 

priority levels, but it uses a feedback mechanism to adjust the priority 

of a process based on its recent behavior. This means that if a process 

has been using the CPU heavily, its priority will be reduced to prevent it 
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from monopolizing the CPU for too long. The Windows scheduler also 

allows for real-time priority levels, which can be used for critical tasks 

that require immediate attention. 

In macOS, the CPU scheduling algorithm is similar to that of Linux in 

that it uses a multi-level feedback queue, but it places a greater 

emphasis on interactivity. This means that macOS prioritizes processes 

that are likely to generate user-visible output, such as a keystroke or a 

mouse click. macOS also uses a technique called thread throttling to 

limit the CPU usage of background processes and prevent them from 

slowing down foreground processes. 

In the realm of real-time operating systems, such as those used in 

embedded systems and robotics, CPU scheduling takes on an even 

greater level of importance. Real-time operating systems require precise 

timing and predictable response times, and as such, they often use a 

fixed-priority scheduling algorithm. This means that each task is 

assigned a priority level, and the scheduler always selects the task with 

the highest priority to execute next. 

Overall, while the specific details of CPU scheduling algorithms may 

differ between operating systems, the goal is always the same: to provide 

efficient and fair allocation of the CPU's processing power. Each 

operating system has its own unique approach to achieving this goal, 

based on its particular requirements and design philosophy. 

6 Conclusion 

In conclusion, CPU scheduling is a crucial aspect of modern operating 

systems, allowing for efficient utilization of system resources and 

enabling concurrency and parallelism. The different scheduling 

algorithms, process and thread prioritization methods, and scheduling 

techniques for multiprocessor and multicore systems offer a range of 

options for achieving the goals of CPU scheduling. 
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While each approach has its advantages and disadvantages, the 

selection of the most appropriate scheduling technique depends on the 

specific system requirements and workload characteristics. Additionally, 

case studies like Linux CPU scheduling provide valuable insights into 

the design decisions and performance trade-offs involved in real-world 

implementations of CPU scheduling. 

Overall, a thorough understanding of CPU scheduling is essential for 

developing efficient and responsive operating systems that can handle 

the diverse computing needs of today's applications. 


