

Threads

OPERATING SYSTEMS

Sercan Külcü | Operating Systems | 16.04.2023

PAGE 1

Contents

Contents .. 1

1 Introduction ... 4

1.1 Definition of a thread ... 5

1.2 Importance of threads ... 6

1.3 Thread Usage ..7

1.4 Overview of the functions of threads in achieving concurrency

and parallelism .. 8

2 Types of Threads .. 9

2.1 User-level threads .. 9

2.2 Kernel-level threads .. 11

2.3 Hybrid threads .. 12

2.4 Comparison of thread types ... 13

2.5 Pop-up threads ... 15

2.6 Making Single-Threaded Code Multithreaded 15

3 Thread API ... 16

3.1 Thread creation .. 18

3.2 Thread completion ... 19

3.3 Locks .. 22

3.4 Condition variables ... 26

4 Thread States and Transitions... 29

4.1 Thread states: ..30

4.1.1 Transitions between thread states: .. 31

4.1.2 Importance of thread states in concurrency and parallelism:

 31

PAGE 2

4.2 Transitions between thread states .. 32

4.2.1 Transitions from New to Ready State 32

4.2.2 Transitions from Ready to Running State.............................. 32

4.2.3 Transitions from Running to Blocked State 33

4.2.4 Transitions from Blocked to Ready State 33

4.2.5 Transitions from Running to Terminated State 33

4.2.6 Transitions from Ready to Terminated State 33

4.2.7 Transitions from Blocked to Terminated State 33

4.3 Importance of thread states in concurrency and parallelism 34

5 Thread Synchronization ... 34

5.1 Definition of thread synchronization ... 35

5.2 Methods of thread synchronization: ... 37

5.2.1 Locks .. 37

5.2.2 Mutexes ... 37

5.2.3 Condition Variables .. 37

5.2.4 Read-Write Locks ..38

5.2.5 Barriers ..38

5.3 Importance of thread synchronization in achieving concurrency

and parallelism ...38

6 Thread Pools ... 40

6.1 Definition of a thread pool ... 40

6.2 Advantages of Using Thread Pools .. 41

6.3 Implementation and Management of Thread Pools 41

7 Case Study: Thread Management in Windows Operating System . 42

7.1 Overview of Windows Thread Management: 43

PAGE 3

7.2 Comparison with Thread Management in Other Operating

Systems: .. 43

7.3 Impact on Windows Operating System's Performance,

Reliability, and Functionality: .. 44

8 Conclusion .. 44

PAGE 4

Chapter 4:
Threads

1 Introduction

In this section, we will be discussing threads in modern operating

systems. We will start with the definition of a thread, followed by its

importance in modern operating systems. We will also look at the

functions of threads in achieving concurrency and parallelism.

A thread is a basic unit of execution within a process. In other words, a

thread is a lightweight process that can be independently scheduled and

executed by the operating system. Threads share the same memory

space as the process they belong to, allowing them to communicate and

share data efficiently.

Threads have become increasingly important in modern operating

systems due to their ability to improve the performance and

responsiveness of applications. By allowing multiple threads to execute

concurrently, an application can perform multiple tasks simultaneously,

resulting in faster and more efficient execution. Threads also improve

the scalability of applications, allowing them to take advantage of

multiple processors and cores.

Threads play a crucial role in achieving concurrency and parallelism in

modern operating systems. Concurrency refers to the ability of an

operating system to run multiple tasks at the same time, while

parallelism refers to the ability of an operating system to use multiple

processors or cores to execute multiple tasks simultaneously. Threads

enable applications to take advantage of both concurrency and

parallelism by allowing multiple tasks to be executed simultaneously on

PAGE 5

different threads, while also allowing multiple threads to execute on

different processors or cores.

In the following chapters, we will explore the different types of threads,

thread synchronization mechanisms, and how threads are implemented

in modern operating systems.

1.1 Definition of a thread

A thread is a unit of execution within a process that can be scheduled

for execution by the operating system. A thread is sometimes called a

lightweight process, as it shares the same memory space and other

resources with other threads within the same process. Threads are a

fundamental concept in modern operating systems, as they enable

multiple tasks to be executed simultaneously and efficiently.

Each thread has its own program counter, stack, and set of registers,

which enable it to run independently of other threads within the same

process. Threads are used to achieve concurrency and parallelism in

modern operating systems, as they enable multiple tasks to be executed

simultaneously on a multi-core processor.

Threads are managed by the operating system's scheduler, which

assigns processor time to each thread based on its priority and other

factors. The scheduler ensures that threads are executed in a fair and

efficient manner, so that each thread can complete its task in a timely

and effective manner.

Threads can be created and managed using a variety of programming

languages and operating system APIs, such as POSIX threads (pthreads)

in Unix-based systems, and Windows threads in Microsoft Windows.

In summary, a thread is a unit of execution within a process that enables

multiple tasks to be executed simultaneously and efficiently in modern

operating systems. Threads are managed by the operating system's

PAGE 6

scheduler and are a fundamental concept in achieving concurrency and

parallelism.

1.2 Importance of threads

In modern operating systems, threads play a vital role in achieving

concurrency and parallelism. A thread can be defined as the smallest

unit of execution within a process. In simple terms, it can be thought of

as a separate flow of execution within a program. A process can have

multiple threads, each of which can execute code independently of the

other threads.

The importance of threads in modern operating systems can be

attributed to several factors. One of the most significant factors is the

increasing prevalence of multi-core processors. Multi-core processors

allow multiple threads to be executed simultaneously, thereby enabling

programs to take advantage of the available hardware resources and

improve their performance.

Another factor is the increasing demand for responsive and interactive

applications. In a single-threaded program, a time-consuming operation

can cause the entire application to become unresponsive. However, by

using threads, long-running operations can be moved to a separate

thread, allowing the main thread to remain responsive and interact with

the user.

Moreover, threads enable developers to implement parallelism, which

involves breaking down a task into smaller subtasks that can be

executed concurrently. This approach can lead to significant

performance gains, especially when dealing with computationally

intensive tasks.

In summary, threads have become an essential feature of modern

operating systems due to their ability to enable concurrency, parallelism,

and responsiveness. As hardware continues to evolve, and the need for

PAGE 7

faster and more responsive applications increases, the importance of

threads is likely to grow even further.

1.3 Thread Usage

In modern computing, the concept of threads has become increasingly

important. A thread can be described as a lightweight, independent

process that exists within a parent process. Unlike a traditional process,

a thread can be thought of as a single sequence of instructions that can

execute concurrently with other threads within the same process.

There are several reasons why threads have become popular in modern

operating systems. One of the most important reasons is that they allow

for the efficient use of resources within a process. By using threads,

multiple activities can take place within a single process, with each

thread performing a specific task. This can be particularly useful in

applications where several activities are going on at once, and where

some activities may block for extended periods.

Another reason for using threads is that they simplify the programming

model. Threads can be used to simplify complex applications, by

breaking them down into smaller, more manageable pieces. This can

make it easier to understand the structure of the application, and to

maintain it over time.

Threads can also improve the responsiveness of applications. By using

threads, an application can be designed to respond to user input more

quickly, since other threads can continue to execute in the background.

This can be particularly useful in applications that require a high level

of interactivity, such as games, multimedia applications, and web

browsers.

In addition to these benefits, threads can also improve the efficiency of

applications. By allowing multiple threads to execute concurrently

within a single process, threads can make better use of available CPU

PAGE 8

resources. This can result in faster execution times, and can help to

ensure that an application runs smoothly and efficiently.

1.4 Overview of the functions of threads in achieving

concurrency and parallelism

In modern computing, the need for concurrency and parallelism has

become more important than ever. Applications need to be able to

perform multiple tasks simultaneously, and to take advantage of

multiple processing cores on a system in order to achieve better

performance. Threads are a fundamental building block for achieving

concurrency and parallelism in operating systems.

A thread is a lightweight process that shares the same memory space as

other threads within the same process. Threads can be thought of as

independent units of execution that operate concurrently within a

single process. By utilizing multiple threads, an application can perform

multiple tasks simultaneously and make better use of available system

resources.

Threads have several key functions in achieving concurrency and

parallelism:

 Multitasking: Threads allow multiple tasks to be performed

simultaneously within a single process, enabling true multitasking

capabilities. Each thread can execute independently, and the

operating system scheduler decides which thread to run at any

given time.

 Responsiveness: Threads can improve the responsiveness of an

application by allowing it to handle multiple tasks at once. This is

particularly important for interactive applications, where the user

expects a fast response time.

PAGE 9

 Resource sharing: Threads within a process share the same

memory space, allowing them to share data and resources easily.

This can reduce the overhead associated with inter-process

communication and synchronization.

 Scalability: By dividing workloads into multiple threads, an

application can take advantage of multi-core processors and scale

its performance to take advantage of available hardware resources.

In summary, threads are an essential tool for achieving concurrency and

parallelism in modern operating systems. By utilizing multiple threads

within a process, an application can perform multiple tasks

simultaneously, improve responsiveness, share resources efficiently,

and scale its performance to take advantage of available hardware

resources.

2 Types of Threads

Threads are a fundamental concept in computer science that allow for

concurrent and parallel execution of multiple tasks within a single

process. In this chapter, we will explore the different types of threads

that exist in modern operating systems, including user-level threads,

kernel-level threads, and hybrid threads. We will also examine the

advantages and disadvantages of each type and provide a comparison to

help you choose the right type of thread for your specific needs. So, let's

get started!

2.1 User-level threads

In modern operating systems, threads are essential for achieving

concurrency and parallelism. Threads can be implemented at different

levels of the operating system, including user-level threads. In this

PAGE 10

chapter, we will discuss user-level threads, their characteristics, and

their advantages and disadvantages.

User-level threads, also known as user threads or lightweight threads,

are threads that are managed entirely by user-level libraries and do not

require kernel support. These threads are created, scheduled, and

synchronized by a thread library implemented in user space. User-level

threads are independent of the operating system's scheduling

mechanism and are not visible to the kernel.

User-level threads have the following characteristics:

 Lightweight: User-level threads are lightweight because they do

not require kernel support. The thread library implemented in

user space manages the threads, which reduces the overhead

associated with thread creation, context switching, and

synchronization.

 Fast: User-level threads are fast because the thread library can

schedule threads directly without invoking the kernel. This

reduces the context switch time and improves application

performance.

 Portable: User-level threads are portable because they are

independent of the underlying operating system's thread

implementation. A program that uses user-level threads can run

on different operating systems without modification.

User-level threads offer several advantages over kernel-level threads,

including:

 Flexibility: User-level threads provide more flexibility than kernel-

level threads because the thread library can implement different

scheduling algorithms and synchronization mechanisms.

PAGE 11

 Efficiency: User-level threads are more efficient than kernel-level

threads because they reduce the overhead associated with kernel

calls.

 Compatibility: User-level threads are compatible with legacy

systems that do not support kernel-level threads.

User-level threads also have some disadvantages, including:

 Limited parallelism: User-level threads cannot take advantage of

multiprocessor systems because the thread library is implemented

in user space and cannot schedule threads across multiple

processors.

 Blocking: User-level threads can block the entire process if a

thread blocks because the thread library manages all the threads

in the process.

 Synchronization: Synchronization between user-level threads

requires special mechanisms because the thread library cannot

use the operating system's synchronization primitives.

User-level threads are a lightweight and fast alternative to kernel-level

threads. They provide more flexibility and efficiency than kernel-level

threads but have some limitations, including limited parallelism and

synchronization issues. User-level threads are a useful tool for

developing parallel applications on legacy systems or applications that

do not require high levels of parallelism.

2.2 Kernel-level threads

Kernel-level threads, also known as kernel threads or lightweight

processes, are threads that are managed directly by the operating system

kernel. In this type of threading, the kernel is responsible for creating,

PAGE 12

scheduling, and managing threads. Unlike user-level threads, which are

implemented entirely in user space, kernel-level threads require direct

support from the operating system kernel.

One of the primary advantages of kernel-level threads is their ability to

run in parallel on multiple processors or cores, which can improve

performance in multi-core systems. Additionally, kernel-level threads

can make more efficient use of system resources such as memory and

CPU time, as they can be scheduled more precisely and can access

system resources directly.

However, the use of kernel-level threads can also have drawbacks. For

example, because kernel-level threads are managed directly by the

kernel, they can be more difficult to create and manage than user-level

threads. Additionally, the kernel-level threads may have higher

overhead due to the cost of context switching and other kernel-level

operations.

Despite these potential drawbacks, kernel-level threads are widely used

in modern operating systems, including Linux, Windows, and macOS.

These systems typically provide a combination of user-level and kernel-

level threading to balance the advantages and disadvantages of each

approach. Overall, kernel-level threads play a crucial role in enabling

the efficient and effective use of modern multi-core processors, and

their use is likely to continue to increase in importance as computing

systems continue to become more complex and parallel.

2.3 Hybrid threads

Hybrid threads, also known as combined or hybrid kernel/user threads,

are a combination of user-level threads and kernel-level threads. In

hybrid threading, the operating system provides kernel-level threads,

which are scheduled by the kernel, while the application manages user-

level threads. Each user-level thread is bound to a kernel-level thread,

PAGE 13

and the kernel schedules the kernel-level threads, which in turn

schedule the user-level threads.

Hybrid threading combines the advantages of both user-level and

kernel-level threading models. User-level threads are more lightweight

and can be created and managed more quickly than kernel-level threads.

They can also be customized for the specific needs of the application,

providing more flexibility. Kernel-level threads, on the other hand, are

managed by the operating system, which provides more efficient

scheduling and better utilization of system resources.

In a hybrid threading model, the application can create and manage its

own user-level threads, while the operating system provides kernel-level

threads for the application to use. This allows the application to take

advantage of the benefits of both models. For example, an application

may use user-level threads for handling I/O operations, which are

typically more latency-sensitive, and kernel-level threads for CPU-

intensive tasks that require more system resources.

Hybrid threading is used in many modern operating systems, including

Windows, Linux, and macOS. It provides a flexible and efficient

threading model that can be adapted to meet the specific needs of the

application while utilizing system resources effectively.

In summary, hybrid threading is a combination of user-level and kernel-

level threading models that provides the benefits of both. It allows for

lightweight and flexible thread management while taking advantage of

efficient kernel-level scheduling and resource utilization.

2.4 Comparison of thread types

In the previous chapters, we have discussed the three types of threads:

user-level threads, kernel-level threads, and hybrid threads. Each type

of thread has its advantages and disadvantages. In this chapter, we will

PAGE 14

compare these thread types and see how they differ in terms of

performance, flexibility, and ease of use.

User-level threads are the fastest and most lightweight type of threads

because they are managed entirely in user space. Kernel-level threads,

on the other hand, require more resources and context switching

because they are managed by the kernel. Hybrid threads are a

combination of both user-level and kernel-level threads and have the

best of both worlds. They are lightweight because they are managed in

user space, but they can also take advantage of kernel-level services

when needed.

User-level threads offer the most flexibility because the programmer has

full control over the thread management. Kernel-level threads offer less

flexibility because they are managed by the kernel, and the programmer

has limited control over their behavior. Hybrid threads offer a good

balance between flexibility and control because they allow the

programmer to manage threads in user space while taking advantage of

kernel-level services when necessary.

User-level threads are the easiest to use because the programmer has

complete control over the thread management. Kernel-level threads are

more difficult to use because they require more knowledge of the kernel

and its services. Hybrid threads are also relatively easy to use because

they offer a good balance between flexibility and control.

Each type of thread has its advantages and disadvantages, and the

choice of thread type depends on the specific requirements of the

application. User-level threads are the fastest and most flexible but

require more programming effort. Kernel-level threads are slower and

less flexible but are easier to use. Hybrid threads offer a good balance

between speed, flexibility, and ease of use.

PAGE 15

2.5 Pop-up threads

In many distributed systems, incoming messages need to be handled

efficiently. The traditional approach is to have a process or thread that

is blocked on a receive system call waiting for an incoming message.

However, a completely different approach is also possible, in which the

arrival of a message causes the system to create a new thread to handle

the message. This kind of thread is called a pop-up thread.

A key advantage of pop-up threads is that since they are brand new, they

do not have any history—registers, stack, whatever—that must be

restored. Each one starts out fresh and identical to all the others, making

it possible to create such a thread quickly. The new thread is given the

incoming message to process. The result of using pop-up threads is that

the latency between message arrival and the start of processing can be

made very short.

Pop-up threads are frequently useful in distributed systems, where

incoming messages, such as requests for service, need to be handled

quickly and efficiently. By using pop-up threads, the system can create

a new thread to handle each incoming message, which allows the

processing of messages to start almost immediately.

2.6 Making Single-Threaded Code Multithreaded

Multithreading has become increasingly important as systems are

moving towards utilizing multiple processors or cores. However,

converting existing single-threaded code into multithreaded code is not

always a straightforward process. There are several challenges that need

to be addressed.

One issue is dealing with variables that are global to a thread but not

global to the entire program. These variables are problematic because

multiple procedures within the thread may use them, but other threads

PAGE 16

should not access them. A solution to this problem is to use thread-local

storage (TLS) to create a separate instance of the variable for each thread.

This allows each thread to access its own copy of the variable without

affecting other threads.

Another challenge is ensuring that shared resources, such as data

structures, are accessed in a thread-safe manner. Without proper

synchronization mechanisms, multiple threads could access the same

resource simultaneously, leading to data corruption or inconsistent

results. Locks, semaphores, and other synchronization primitives can be

used to ensure that only one thread at a time is accessing a shared

resource.

In addition, multithreaded code must be designed with careful

consideration for race conditions. A race condition occurs when the

timing or ordering of thread execution affects the correctness of the

program. For example, if two threads are accessing the same shared

variable, the result may depend on the order in which the threads

execute. Proper synchronization and careful design can help prevent

race conditions.

Another challenge is load balancing. In a multithreaded system, it is

important to ensure that work is evenly distributed among threads to

avoid wasting resources. Load balancing techniques such as work

stealing can help ensure that each thread has enough work to do.

3 Thread API

When building a multi-threaded program using the POSIX thread

library, it's important to keep a few things in mind. These small but

crucial details can make the difference between a smoothly-running

program and one that is plagued with bugs and errors.

First and foremost, it's important to keep things simple. Any code that

involves locking or signaling between threads should be as

PAGE 17

straightforward as possible. Complex thread interactions can lead to

difficult-to-debug bugs that can be a nightmare to fix.

In addition, it's best to minimize the ways in which threads interact with

each other. Each interaction should be carefully considered and

constructed using proven approaches. This will help reduce the

likelihood of bugs and ensure that the program is as efficient as possible.

When working with locks and condition variables, it's important to

always initialize them properly. Failure to do so can lead to code that

works erratically or fails in strange ways. Similarly, it's important to

check return codes carefully, as overlooking errors can lead to

unexpected behavior.

When passing arguments to and returning values from threads, it's

important to be careful about how this is done. Variables allocated on

the stack should be avoided, as they are essentially private to the thread

and cannot be easily accessed by other threads. To share data between

threads, values should be stored in a globally-accessible locale such as

the heap.

It's also important to remember that each thread has its own stack, and

that locally-allocated variables inside a function executed by a thread

are private to that thread. To share data between threads, the values

must be in the heap or otherwise globally accessible.

Finally, it's crucial to always use condition variables to signal between

threads, even though it may be tempting to use a simple flag. Condition

variables are specifically designed for this purpose and can help avoid

potential issues such as missed signals or race conditions.

By keeping these tips in mind, developers can build multi-threaded

programs that are more efficient, reliable, and easy to maintain.

PAGE 18

3.1 Thread creation

Creating a thread in the POSIX thread library is a straightforward

process. The first step is to define a function that will be executed by the

new thread. This function should have a void pointer argument and

return a void pointer. The void pointer argument is used to pass data to

the function, and the void pointer return value is used to pass data back

to the main thread.

Once the function has been defined, the pthread_create function can be

used to create the new thread. The pthread_create function takes four

arguments:

 A pointer to a pthread_t variable that will hold the thread ID of

the newly created thread.

 A pointer to a pthread_attr_t variable that specifies the attributes

of the new thread. If this argument is NULL, the default thread

attributes will be used.

 A pointer to the function that will be executed by the new thread.

 A pointer to the data that will be passed to the function.

Example: Here is an example of creating a new thread in the POSIX

thread library:

#include <pthread.h>

#include <stdio.h>

void *my_function(void *arg) {

 int my_arg = *(int*)arg;

 printf("Hello from thread %d\n", my_arg);

 pthread_exit(NULL);

}

PAGE 19

int main() {

 pthread_t thread_id;

 int arg = 42;

 pthread_create(&thread_id, NULL, my_function, &arg);

 pthread_join(thread_id, NULL);

 return 0;

}

In this example, we define a function called my_function that takes an

integer argument and prints a message to the console. We then create a

new thread using pthread_create, passing in a pointer to the function,

as well as a pointer to the integer argument. Finally, we use pthread_join

to wait for the thread to complete before exiting the program.

It is important to note that threads in the POSIX thread library share

the same address space, which means that they can access the same

variables and memory locations. This can lead to race conditions and

other synchronization issues, which can be mitigated by using

synchronization primitives like mutexes and condition variables.

In summary, creating a thread in the POSIX thread library is a simple

process that involves defining a function to be executed by the thread,

and then using the pthread_create function to create the thread and

pass in any necessary data. However, it is important to be aware of

potential synchronization issues when using threads, and to use

appropriate synchronization mechanisms to avoid race conditions and

other issues.

3.2 Thread completion

Thread completion is an important aspect of multithreaded

programming that involves managing threads when they finish their

PAGE 20

work. In the POSIX thread library, this can be done using a few different

mechanisms.

One common way to wait for a thread to complete is to use the

pthread_join() function. This function blocks the calling thread until

the specified thread has completed. It also provides a mechanism for

returning a value from the completed thread to the calling thread.

Example: Here is an example:

void *myThreadFunction(void *arg) {

 int myNumber = *(int*)arg;

 int *returnValue = malloc(sizeof(int));

 *returnValue = myNumber * 2;

 return returnValue;

}

int main() {

 pthread_t myThread;

 int myNumber = 42;

 void *threadReturnValue;

 pthread_create(&myThread, NULL, myThreadFunction, &myNumber);

 pthread_join(myThread, &threadReturnValue);

 printf("The thread returned: %d\n", *(int*)threadReturnValue);

 free(threadReturnValue);

 return 0;

}

In this example, we create a thread that simply doubles a number, and

returns the result. We use pthread_create() to create the thread, passing

PAGE 21

in a pointer to the number we want to double. Then, we use

pthread_join() to wait for the thread to complete, and retrieve the

return value. Finally, we free the memory that was allocated to hold the

return value.

Another way to manage thread completion is to use pthread_detach().

This function allows a thread to run independently of the thread that

created it, and ensures that the resources used by the thread are

automatically freed when it completes.

Example: Here is an example:

void *myThreadFunction(void *arg) {

 int myNumber = *(int*)arg;

 int *returnValue = malloc(sizeof(int));

 *returnValue = myNumber * 2;

 pthread_detach(pthread_self());

 return returnValue;

}

int main() {

 pthread_t myThread;

 int myNumber = 42;

 void *threadReturnValue;

 pthread_create(&myThread, NULL, myThreadFunction, &myNumber);

 // Do some other work here...

 return 0;

}

In this example, we create a thread that doubles a number, and returns

the result, just like before. However, we also use pthread_detach() to tell

PAGE 22

the thread to run independently, and not wait for it to complete. This

can be useful if we don't need the return value, or if we want to perform

other work while the thread is running.

In conclusion, managing thread completion is an important aspect of

multithreaded programming, and the POSIX thread library provides

several mechanisms for doing so. The pthread_join() function can be

used to wait for a thread to complete and retrieve its return value, while

pthread_detach() can be used to allow a thread to run independently

and automatically free its resources when it completes.

3.3 Locks

In multi-threaded programming, locks are essential to prevent

concurrent threads from accessing the same resource simultaneously,

which can result in data inconsistency and other issues. The POSIX

thread library provides several mechanisms to implement locks,

including mutexes, spinlocks, and read-write locks.

A mutex, short for mutual exclusion, is a type of lock that allows only

one thread to access a shared resource at a time. A thread that needs

access to the resource acquires the lock, performs its operation, and

then releases the lock so that other threads can access the resource. The

pthread_mutex_lock() and pthread_mutex_unlock() functions are used

to acquire and release a mutex, respectively.

Spinlocks are another type of lock that can be used when the lock is

expected to be held for only a short period of time. Instead of

suspending the thread waiting for the lock to be released, a spinlock

continually polls the lock until it becomes available. This can be more

efficient than a mutex in some cases, as there is no overhead associated

with suspending and resuming threads. The pthread_spin_lock() and

pthread_spin_unlock() functions are used to acquire and release a

spinlock, respectively.

PAGE 23

Read-write locks are used when multiple threads need to read a shared

resource simultaneously, but only one thread can modify the resource

at a time. A read-write lock allows multiple threads to acquire a shared

lock for reading, but only one thread can acquire an exclusive lock for

writing. The pthread_rwlock_rdlock(), pthread_rwlock_wrlock(), and

pthread_rwlock_unlock() functions are used to acquire and release

read-write locks.

When using locks, it's important to follow best practices to avoid issues

like deadlocks and priority inversion. Deadlocks occur when multiple

threads are waiting for each other to release locks, resulting in a

deadlock. Priority inversion occurs when a low-priority thread holds a

lock that a high-priority thread needs, causing the high-priority thread

to wait even though it should have priority.

To prevent deadlocks, locks should always be acquired in a specific

order to avoid circular dependencies. Additionally, locks should be held

for the minimum amount of time necessary to avoid blocking other

threads unnecessarily. Priority inversion can be prevented by using

priority inheritance protocols, which temporarily elevate the priority of

a low-priority thread that holds a lock needed by a higher-priority

thread.

Overall, the POSIX thread library provides robust mechanisms for

implementing locks in multi-threaded programs. By following best

practices and understanding the various types of locks available,

developers can ensure their programs are efficient and free from

concurrency issues.

Example: Here's an example of using locks in C with the POSIX thread

library:

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

PAGE 24

#define NUM_THREADS 5

int counter = 0;

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

void *thread_function(void *arg) {

 int thread_num = *(int*)arg;

 printf("Thread %d starting\n", thread_num);

 pthread_mutex_lock(&mutex);

 printf("Thread %d acquired lock\n", thread_num);

 for (int i = 0; i < 1000000; i++) {

 counter++;

 }

 printf("Thread %d counter value: %d\n", thread_num, counter);

 pthread_mutex_unlock(&mutex);

 printf("Thread %d released lock\n", thread_num);

 pthread_exit(NULL);

PAGE 25

}

int main() {

 pthread_t threads[NUM_THREADS];

 int thread_args[NUM_THREADS];

 for (int i = 0; i < NUM_THREADS; i++) {

 thread_args[i] = i;

 pthread_create(&threads[i], NULL, thread_function,

&thread_args[i]);

 }

 for (int i = 0; i < NUM_THREADS; i++) {

 pthread_join(threads[i], NULL);

 }

 printf("Final counter value: %d\n", counter);

 return 0;

}

In this example, we have 5 threads that each increment a shared counter

variable 1 million times. To ensure that multiple threads don't try to

access the counter variable at the same time and cause race conditions,

we use a mutex lock. Each thread acquires the lock before incrementing

the counter, and then releases the lock when it's done.

Note that the pthread_mutex_t variable is initialized using the

PTHREAD_MUTEX_INITIALIZER macro. This creates a mutex with

PAGE 26

default attributes that can be used immediately without any additional

setup.

In the thread_function function, we use pthread_mutex_lock to acquire

the lock, and pthread_mutex_unlock to release it. The main function

creates the threads using pthread_create, and then waits for them to

finish using pthread_join.

When you run this code, you should see output that shows each thread

acquiring and releasing the lock, and the final value of the counter

variable.

3.4 Condition variables

Thread condition variables are an essential part of multi-threaded

programming. They are used to signal between threads that a certain

condition has been met or that a certain event has occurred. In the

POSIX thread library, condition variables are used in conjunction with

locks to create a synchronized environment between threads.

The basic idea behind a condition variable is to provide a way for one

thread to signal another thread that something has happened. For

example, suppose we have a producer-consumer scenario, where one

thread produces data and another thread consumes the data. The

producer thread needs to signal the consumer thread when new data is

available.

To use a condition variable in a multi-threaded program, we first need

to create a lock. We use the lock to protect the shared resource that is

accessed by multiple threads. Once the lock is created, we create a

condition variable using the pthread_cond_init() function. This

function takes a pointer to a pthread_cond_t variable, which is used to

identify the condition variable.

PAGE 27

Once the condition variable is initialized, we can use the

pthread_cond_wait() function to block a thread until a condition is

signaled. This function takes two arguments: a pointer to the condition

variable and a pointer to the lock. When the function is called, the

thread releases the lock and waits for a signal on the condition variable.

When the signal is received, the thread reacquires the lock and

continues execution.

To signal a condition, we use the pthread_cond_signal() function. This

function takes a pointer to the condition variable and signals one

waiting thread that the condition has occurred. If there are multiple

waiting threads, only one will be awakened.

Example: Here's an example of how to use condition variables in a

multi-threaded program:

#include <pthread.h>

#include <stdio.h>

pthread_mutex_t lock;

pthread_cond_t cond;

int data_available = 0;

void *producer(void *arg) {

 while (1) {

 // produce data

 pthread_mutex_lock(&lock);

 data_available = 1;

 pthread_cond_signal(&cond);

 pthread_mutex_unlock(&lock);

 }

PAGE 28

 return NULL;

}

void *consumer(void *arg) {

 while (1) {

 pthread_mutex_lock(&lock);

 while (!data_available) {

 pthread_cond_wait(&cond, &lock);

 }

 // consume data

 data_available = 0;

 pthread_mutex_unlock(&lock);

 }

 return NULL;

}

int main() {

 pthread_t prod_thread, cons_thread;

 pthread_mutex_init(&lock, NULL);

 pthread_cond_init(&cond, NULL);

 pthread_create(&prod_thread, NULL, producer, NULL);

 pthread_create(&cons_thread, NULL, consumer, NULL);

 pthread_join(prod_thread, NULL);

 pthread_join(cons_thread, NULL);

 pthread_mutex_destroy(&lock);

PAGE 29

 pthread_cond_destroy(&cond);

 return 0;

}

In this example, the producer thread produces data and signals the

condition variable using pthread_cond_signal(). The consumer thread

waits for the condition variable to be signaled using

pthread_cond_wait(). When the condition is signaled, the consumer

thread consumes the data and sets the data_available variable to 0.

As you can see, using condition variables in a multi-threaded program

requires careful synchronization with locks to avoid race conditions and

deadlocks. But when used correctly, condition variables can provide an

efficient and effective way to signal between threads.

4 Thread States and Transitions

Threads are an essential component of modern operating systems,

playing a critical role in achieving concurrency and parallelism. A thread

is a lightweight process that exists within the context of a process, and

it shares the same resources as other threads of the same process.

Threads allow multiple tasks to be executed concurrently within a single

process, improving the overall efficiency and responsiveness of the

system.

This chapter aims to provide a comprehensive understanding of threads

and their role in achieving concurrency and parallelism in modern

operating systems. By the end of this chapter, readers will have a clear

understanding of thread states, transitions, and the different types of

threads available in operating systems.

PAGE 30

4.1 Thread states:

Thread states are fundamental to understanding how threads operate

within an operating system. Threads can exist in different states, and

the state of a thread can change depending on various factors such as

the thread's priority, the resources it needs, or the actions performed by

the thread itself. In this chapter, we will explore the different states that

a thread can be in and their significance.

There are five possible states that a thread can be in:

New: A thread is in the "new" state when it has been created but has not

yet been started. The operating system has allocated resources for the

thread, but the thread has not yet executed any instructions.

Ready: A thread is in the "ready" state when it is waiting to be executed.

The thread is waiting for the CPU to become available so that it can start

executing.

Running: A thread is in the "running" state when it is currently

executing instructions on the CPU. Only one thread can be in this state

at a time, and it is the most active state for a thread.

Blocked: A thread is in the "blocked" state when it is unable to continue

executing because it is waiting for a resource to become available. This

could be because the thread is waiting for I/O to complete or waiting

for a lock to be released.

Terminated: A thread is in the "terminated" state when it has completed

its execution or has been explicitly terminated by the operating system.

PAGE 31

4.1.1 Transitions between thread states:

Threads can transition between different states based on various factors

such as the thread's priority or the resources it needs. The following are

some possible transitions:

New to Ready: When a thread is created, it moves to the "new" state. It

remains in this state until it is ready to start executing.

Ready to Running: When a thread is selected to execute, it moves from

the "ready" state to the "running" state.

Running to Blocked: When a thread is waiting for a resource to become

available, it moves to the "blocked" state.

Running to Ready: When a thread is preempted, it moves from the

"running" state to the "ready" state.

Blocked to Ready: When the resource that a thread is waiting for

becomes available, it moves from the "blocked" state to the "ready" state.

Running to Terminated: When a thread completes its execution or is

explicitly terminated, it moves from the "running" state to the

"terminated" state.

4.1.2 Importance of thread states in concurrency and parallelism:

Understanding thread states is critical for achieving concurrency and

parallelism within an operating system. By having multiple threads in

different states, an operating system can maximize the use of the CPU

and other resources. For example, while one thread is waiting for I/O to

complete, another thread can execute on the CPU. By understanding the

different thread states and transitions, an operating system can

efficiently manage threads and achieve higher levels of concurrency and

parallelism.

PAGE 32

In this chapter, we explored the different states that a thread can be in

and their significance. We also discussed how threads can transition

between states based on various factors such as priority and resource

availability. By understanding the different thread states and transitions,

an operating system can achieve higher levels of concurrency and

parallelism, which is essential in modern computing.

4.2 Transitions between thread states

Threads in an operating system can exist in several states, including new,

ready, running, blocked, and terminated. These states describe the

current condition of a thread and what it is currently doing. Transitions

between these states occur based on various events that can take place

in the system. In this chapter, we will discuss the transitions between

thread states and how they are managed in modern operating systems.

4.2.1 Transitions from New to Ready State

When a thread is first created, it enters the new state. From there, it

moves to the ready state when the operating system schedules it to run.

The scheduler places the thread into a queue of ready threads, waiting

for a processor to become available.

4.2.2 Transitions from Ready to Running State

When the operating system selects a thread from the queue of ready

threads, it transitions to the running state. The processor executes the

thread's code, and it runs until it completes, is blocked, or is preempted

by the scheduler.

PAGE 33

4.2.3 Transitions from Running to Blocked State

A running thread can be blocked if it needs to wait for some event to

occur before it can continue executing. For example, a thread might

block when waiting for data to be read from a file or waiting for a lock

to be released by another thread. When a thread is blocked, it moves

from the running state to the blocked state.

4.2.4 Transitions from Blocked to Ready State

When the event that a blocked thread is waiting for occurs, it moves

from the blocked state to the ready state. The operating system

schedules the thread for execution, and it moves to the queue of ready

threads.

4.2.5 Transitions from Running to Terminated State

A running thread can terminate when it completes its task or when it

encounters an error. When a thread terminates, it moves from the

running state to the terminated state.

4.2.6 Transitions from Ready to Terminated State

If a thread is in the ready state when it terminates, it moves directly to

the terminated state.

4.2.7 Transitions from Blocked to Terminated State

If a blocked thread terminates, it moves from the blocked state to the

terminated state.

In summary, transitions between thread states are an essential part of

thread management in modern operating systems. These transitions

PAGE 34

occur based on various events and are managed by the operating

system's scheduler. Understanding these transitions is critical in

ensuring efficient use of system resources and achieving concurrency

and parallelism in a system.

4.3 Importance of thread states in concurrency and

parallelism

The importance of thread states in concurrency and parallelism cannot

be overstated. Proper management of thread states is necessary to

ensure that resources are efficiently utilized, and there are no conflicts

among threads. For example, if two threads simultaneously try to access

a shared resource, it can lead to a race condition that can cause

unexpected behavior or crashes. By properly managing thread states,

the operating system can ensure that threads are not accessing shared

resources at the same time, thereby avoiding conflicts and ensuring

smooth execution of programs.

In conclusion, thread states play a critical role in achieving concurrency

and parallelism in modern operating systems. By managing thread

states effectively, the operating system can ensure that resources are

utilized efficiently and that there are no conflicts among threads.

Therefore, it is essential for operating system developers and

programmers to have a thorough understanding of thread states and

their management to develop efficient and reliable software.

5 Thread Synchronization

A thread is a lightweight process that exists within a process and shares

the same resources as other threads within the process. In a multi-

threaded application, threads can execute concurrently and

independently, which can lead to data race conditions and other

PAGE 35

synchronization issues. Therefore, it is crucial to ensure that threads are

synchronized to avoid such issues.

Thread synchronization refers to the coordination of threads to ensure

that they access shared resources in a mutually exclusive and orderly

manner. In this chapter, we will discuss various methods of thread

synchronization, including locks, mutexes, condition variables, read-

write locks, and barriers.

Thread synchronization plays a vital role in achieving concurrency and

parallelism in modern operating systems. By coordinating the execution

of multiple threads, it is possible to achieve higher levels of performance

and responsiveness. Additionally, thread synchronization enables the

development of complex and efficient concurrent algorithms, which are

essential in various fields such as scientific computing, real-time

systems, and artificial intelligence.

In the following sections of this chapter, we will dive into the different

methods of thread synchronization and discuss their advantages and

disadvantages. We will also explore the importance of thread

synchronization in achieving efficient and scalable concurrent systems.

5.1 Definition of thread synchronization

In a multi-threaded environment, multiple threads are executing

concurrently, and they often share resources such as memory, I/O

devices, and CPU time. As a result, conflicts can arise when multiple

threads attempt to access the same resource simultaneously, leading to

issues such as race conditions, deadlocks, and data inconsistency.

Thread synchronization is the process of coordinating the execution of

threads to ensure that they access shared resources in a safe and orderly

manner. Synchronization involves enforcing mutual exclusion,

preventing deadlock, ensuring data consistency, and providing

communication between threads.

PAGE 36

Mutual exclusion is the mechanism that ensures that only one thread

can access a shared resource at a time. When a thread enters a critical

section of code that modifies shared data, it acquires a lock or

semaphore to ensure that no other thread can access the same resource.

Once the thread has finished executing the critical section, it releases

the lock, allowing another thread to acquire it and access the shared

resource.

Deadlock occurs when two or more threads are blocked indefinitely,

waiting for each other to release resources that they hold. To prevent

deadlock, thread synchronization mechanisms should be designed in

such a way that they avoid circular waits and ensure that all threads can

make progress.

Data consistency is an important aspect of thread synchronization. If

multiple threads access and modify the same data concurrently, there is

a risk of inconsistent data. Thread synchronization mechanisms ensure

that only one thread can access the shared data at a time, preventing

data inconsistency.

Communication between threads is another key aspect of thread

synchronization. Threads often need to communicate with each other

to coordinate their activities or share data. Synchronization

mechanisms such as condition variables and semaphores are used to

provide communication between threads.

In summary, thread synchronization is an essential part of multi-

threaded programming. It ensures that threads access shared resources

in a safe and orderly manner, preventing conflicts and ensuring data

consistency. Synchronization mechanisms such as locks, mutexes,

condition variables, read-write locks, and barriers are used to enforce

mutual exclusion, prevent deadlock, ensure data consistency, and

provide communication between threads.

PAGE 37

5.2 Methods of thread synchronization:

Thread synchronization is a critical aspect of achieving concurrency and

parallelism in operating systems. Synchronization refers to the

coordination of activities between threads to avoid conflicts and ensure

that resources are used correctly. In this chapter, we will discuss the

various methods of thread synchronization.

5.2.1 Locks

A lock is a basic mechanism used for thread synchronization. It is a

simple way of controlling access to a shared resource by allowing only

one thread to access it at a time. Locks are implemented by creating a

data structure that is used to keep track of whether the resource is in

use or not. If a thread wants to access the resource, it must first acquire

the lock. Once the lock is acquired, the thread can access the resource.

When the thread is done using the resource, it releases the lock,

allowing other threads to access it.

5.2.2 Mutexes

A mutex, short for mutual exclusion, is a more advanced form of lock

that allows for more sophisticated thread synchronization. A mutex is

similar to a lock, but it can be used to protect more than one resource.

When a thread acquires a mutex, it gains exclusive access to all the

resources that the mutex is protecting. This allows multiple threads to

share the same mutex, while ensuring that only one thread can access

the protected resources at any given time.

5.2.3 Condition Variables

Condition variables are used to allow threads to wait for a specific

condition to become true before proceeding. A condition variable is

associated with a lock, and threads that are waiting on the condition

PAGE 38

variable must first acquire the lock before waiting. When the condition

variable becomes true, one or more waiting threads are awakened and

allowed to proceed.

5.2.4 Read-Write Locks

Read-write locks are used to protect resources that are frequently read

but infrequently modified. Unlike locks and mutexes, read-write locks

allow multiple threads to read the resource simultaneously, but only one

thread can modify the resource at any given time.

5.2.5 Barriers

Barriers are synchronization primitives that allow threads to wait for

each other before proceeding. A barrier is created with a specified

number of threads, and each thread that reaches the barrier waits until

all the other threads have also reached the barrier.

In conclusion, thread synchronization is an essential aspect of modern

operating systems. The methods discussed in this chapter provide a

means of coordinating activities between threads and avoiding conflicts

when accessing shared resources. The choice of method used depends

on the specific requirements of the system being developed.

5.3 Importance of thread synchronization in achieving

concurrency and parallelism

In modern operating systems, achieving concurrency and parallelism is

essential for optimizing system performance and throughput. However,

when multiple threads execute concurrently, there can be various

synchronization issues such as data races, deadlocks, and livelocks that

can lead to unpredictable and incorrect behavior. Thread

synchronization is the process of coordinating the execution of threads

PAGE 39

to avoid these issues and ensure the correct execution of concurrent

programs.

The importance of thread synchronization cannot be overstated as it

enables multiple threads to communicate and coordinate their actions

in a shared memory environment. Thread synchronization enables the

use of critical sections, which are sections of code that should not be

executed concurrently by multiple threads. Critical sections are

protected by synchronization mechanisms such as locks, mutexes, and

semaphores to ensure that only one thread executes the section at a time.

Thread synchronization also enables the use of synchronization

constructs such as barriers and condition variables, which allow threads

to wait for certain events before proceeding with their execution.

Thread synchronization is critical for achieving parallelism in systems

that support multi-core processors. By dividing the workload into

smaller tasks that can be executed by separate threads, the application

can leverage the multiple cores and achieve parallelism. However, these

threads must be synchronized to ensure that they do not interfere with

each other, leading to incorrect results.

In addition to parallelism, thread synchronization is essential for

achieving concurrency in systems that support multitasking. In a

multitasking system, multiple threads share the processor, and thread

synchronization ensures that the threads execute correctly in the

context of the other threads. Without synchronization, race conditions

and other synchronization issues can occur, leading to incorrect results.

In summary, thread synchronization is critical for achieving

concurrency and parallelism in modern operating systems. By enabling

threads to communicate and coordinate their actions, synchronization

mechanisms ensure that the execution of concurrent programs is

correct and predictable. The use of synchronization constructs such as

locks, mutexes, and semaphores ensures that critical sections are

executed by only one thread at a time. Synchronization is essential for

PAGE 40

the efficient utilization of multi-core processors and the correct

execution of concurrent programs in multitasking systems.

6 Thread Pools

Threads are an essential component of modern operating systems that

enable concurrent execution of multiple tasks. However, creating a new

thread for every task can be inefficient and time-consuming. This is

where thread pools come into play.

A thread pool is a collection of pre-allocated threads that can be reused

to execute multiple tasks. The idea behind thread pools is to reduce the

overhead of thread creation and destruction, which can be expensive,

and reuse existing threads to execute new tasks.

In this chapter, we will explore the concept of thread pools in detail,

including their definition, advantages, and implementation. We will

also discuss the management of thread pools and how they are used to

improve performance in multi-tasking and concurrent environments.

6.1 Definition of a thread pool

A thread pool is a collection of threads that can be reused to perform a

set of tasks. Instead of creating a new thread for each task, a thread pool

assigns an existing thread to a task, which can significantly reduce the

overhead associated with thread creation and destruction.

A thread pool is a group of threads that are created in advance and are

ready to perform a set of tasks. Instead of creating a new thread for each

task, the thread pool assigns an existing thread from the pool to perform

the task. Once the task is complete, the thread returns to the pool and

waits for the next task.

PAGE 41

The size of the thread pool can be configured based on the system's

requirements. For example, if a system needs to perform a large number

of I/O operations, the thread pool can be configured with more I/O

threads to handle the load.

6.2 Advantages of Using Thread Pools

Thread pools offer several advantages over creating threads on an as-

needed basis:

Reduced overhead: Creating and destroying threads can be an expensive

operation. By reusing threads from a pool, the overhead of creating and

destroying threads is reduced.

Improved performance: With a thread pool, threads can be created in

advance, which can reduce the delay between submitting a task and the

task being executed.

Better resource utilization: Since the number of threads in a pool can be

configured, resources can be better utilized, and the system can operate

more efficiently.

6.3 Implementation and Management of Thread Pools

The implementation of thread pools can vary depending on the

operating system. However, the basic structure of a thread pool is the

same. A thread pool consists of a pool of threads, a task queue, and a

mechanism for managing the threads.

When a task is submitted to the thread pool, it is added to the task

queue. A thread from the pool is then assigned to the task. Once the

task is complete, the thread returns to the pool to await the next task.

PAGE 42

The management of the threads in a pool can be done in several ways.

For example, threads can be created and destroyed dynamically as

needed, or a fixed number of threads can be created and managed

statically.

In conclusion, thread pools are an essential tool for achieving

concurrency and parallelism in modern operating systems. They offer

several advantages over creating threads on an as-needed basis,

including reduced overhead, improved performance, and better

resource utilization.

The implementation of thread pools can vary depending on the

operating system, but the basic structure of a thread pool remains the

same. A thread pool consists of a pool of threads, a task queue, and a

mechanism for managing the threads. By efficiently managing threads,

thread pools can help maximize the performance, reliability, and

functionality of operating systems.

7 Case Study: Thread Management in Windows

Operating System

In modern operating systems, threads play a crucial role in achieving

concurrency and parallelism. Threads enable the execution of multiple

tasks simultaneously, which helps in optimizing system performance

and responsiveness. Windows operating system is one of the widely

used operating systems that have robust thread management

capabilities. In this chapter, we will discuss Windows thread

management in detail, compare it with thread management in other

operating systems, and analyze its impact on the performance,

reliability, and functionality of the Windows operating system.

PAGE 43

7.1 Overview of Windows Thread Management:

Windows operating system provides extensive support for threads at the

kernel level. Threads in Windows are lightweight, which means they

consume fewer system resources and can be created and destroyed

rapidly. Windows uses a priority-based scheduling algorithm to

schedule threads, which helps in achieving fair resource allocation

among processes and threads.

Windows supports several synchronization mechanisms, including

mutexes, semaphores, events, and critical sections, to enable thread

synchronization. The Windows thread pool API provides a convenient

way to manage threads and optimize resource utilization. In addition,

Windows provides support for user-level threads and kernel-level

threads.

7.2 Comparison with Thread Management in Other

Operating Systems:

Windows thread management differs from thread management in other

operating systems in several ways. For instance, in Linux operating

system, threads are implemented as lightweight processes, and the

kernel provides support for both user-level threads and kernel-level

threads. On the other hand, in macOS, threads are implemented using

the POSIX threading library, which provides support for thread creation,

synchronization, and communication.

PAGE 44

7.3 Impact on Windows Operating System's

Performance, Reliability, and Functionality:

Windows thread management plays a critical role in the overall

performance, reliability, and functionality of the Windows operating

system. Efficient thread management helps in optimizing system

resource utilization, which improves system performance and

responsiveness. Additionally, robust thread synchronization

mechanisms help in preventing data races and deadlocks, which

enhances the reliability of the system.

In conclusion, Windows thread management is a critical aspect of the

Windows operating system. The efficient management of threads and

the use of synchronization mechanisms are crucial for achieving optimal

system performance, reliability, and functionality. The next sections of

this chapter will explore Windows thread management in more detail.

8 Conclusion

In conclusion, threads are an essential component of modern operating

systems that enable the achievement of concurrency and parallelism. In

this section, we discussed the definition of threads and their importance

in achieving concurrency and parallelism. We also covered the different

types of threads, thread states and transitions, thread synchronization

methods, and thread pools. Furthermore, we explored the case study of

thread management in the Windows operating system and compared it

with thread management in other operating systems.

The proper management of threads is critical in achieving efficient and

reliable performance in modern operating systems. Understanding the

functions, types, states, synchronization methods, and management of

threads can help to optimize the use of system resources and improve

overall system performance.

