

Processes

OPERATING SYSTEMS

Sercan Külcü | Operating Systems | 16.04.2023

PAGE 1

Contents

Contents .. 1

1 Introduction .. 5

1.1 Definition of a process ... 5

1.2 The illusion of many cpus ... 6

1.3 Time sharing and space sharing ..7

1.4 Importance of processes in an operating system 8

1.4.1 Resource Allocation and Management 9

1.4.2 Multitasking and Concurrency .. 9

1.4.3 Security and Protection ... 9

1.4.4 Fault Isolation and Recovery .. 10

1.5 Overview of the functions of processes in multi-tasking and

concurrency .. 10

1.6 Process API ... 12

1.6.1 Process creation .. 13

1.6.2 Process destroy ... 14

1.6.3 The fork() system call ... 15

1.6.4 The wait() system call ... 17

1.6.5 The exec() system call ... 19

1.6.6 The kill() system call ... 22

1.6.7 The pipe() system call ... 25

1.7 Process hierarchies ... 27

1.8 Zombie and orphan process ... 28

2 Process States and Transitions .. 29

2.1 Process states: .. 29

PAGE 2

2.1.1 New State: ...30

2.1.2 Ready State: ...30

2.1.3 Running State: ...30

2.1.4 Blocked State: ..30

2.1.5 Terminated State: .. 31

2.2 Transitions between process states ... 31

2.3 Importance of process states in multi-tasking and concurrency

 32

3 CPU virtualization ... 34

3.1 Limited Direct Execution ... 35

3.2 Restricted Operations ..36

3.2.1 User mode and kernel mode ... 37

3.2.2 System calls ...38

3.2.3 System calls look like procedure calls39

3.2.4 The use of trap and return-from-trap instructions 40

4 Process Control Block (PCB) .. 41

4.1 Definition of a PCB ... 41

4.2 Contents of a PCB .. 42

4.3 Importance of PCB in process management 42

5 Process Scheduling .. 43

5.1 Definition of process scheduling .. 44

5.2 How to develop scheduling policy ... 45

5.3 Scheduling algorithms: ... 46

5.3.1 First-Come-First-Serve (FCFS) .. 47

5.3.2 Shortest Job First (SJF) ... 48

5.3.3 Priority Scheduling ... 50

PAGE 3

5.3.4 Round Robin (RR) ... 51

5.3.5 Multilevel Queue Scheduling (MLQS) 53

5.3.6 Multilevel Feedback Queue Scheduling (MLFQS) 54

5.3.7 Lottery Scheduling .. 55

5.3.8 Fair-Share Scheduling ... 57

5.3.9 Guaranteed Scheduling .. 59

5.4 Importance of process scheduling in multi-tasking and

concurrency ... 60

6 Interprocess Communication (IPC) and Synchronization 61

6.1 Definition of IPC and synchronization 62

6.2 Race conditions ..63

6.3 Critical Regions .. 64

6.4 Mutual Exclusion with Busy Waiting ... 65

6.4.1 Disabling interrupts ... 66

6.4.2 Lock variables ... 66

6.4.3 Strict alternation .. 67

6.4.4 Peterson's solution ... 69

6.4.5 The TSL instruction ... 70

6.5 Sleep and Wakeup .. 71

6.6 Methods of IPC and synchronization: .. 72

6.6.1 Semaphores ... 73

6.6.2 Mutexes ... 73

6.6.3 Shared Memory .. 74

6.6.4 Message Passing .. 74

6.6.5 Monitors .. 75

6.6.6 Barriers ... 76

PAGE 4

6.7 Importance of IPC and synchronization 77

7 Case Study: Process Management in Linux 78

7.1 Overview of Linux process management 78

7.2 Comparison with process management in other operating

systems ... 79

7.2.1 Windows Process Management: ... 80

7.2.2 macOS Process Management: ... 80

7.2.3 Linux Process Management: ... 80

7.3 Impact on Linux Operating System's performance, reliability,

and functionality .. 81

8 Conclusion .. 82

PAGE 5

Chapter 3:
Processes

1 Introduction

In this section, we will discuss the fundamental concepts of processes

and their significance in an operating system. We will also provide an

overview of the functions of processes in multi-tasking and concurrency.

A process is defined as a program in execution. It is a fundamental

concept in an operating system that enables the system to execute

multiple tasks concurrently. Processes are essential for the efficient use

of system resources and play a crucial role in managing the system's

overall performance.

In this section, we will explore the importance of processes in an

operating system and provide a brief overview of the functions of

processes in multi-tasking and concurrency. So, let's dive in and

understand the critical role that processes play in an operating system!

1.1 Definition of a process

In an operating system, a process is defined as an instance of a program

in execution. A process is a fundamental concept in operating systems,

and it is responsible for executing instructions, allocating and releasing

resources, and communicating with other processes. A process has its

own memory space, execution context, and system resources that it uses

to accomplish its tasks.

PAGE 6

A process is created when a program is loaded into memory, and it is

terminated when the program completes its execution or when it is

terminated by the operating system. While a process is running, it may

spawn child processes, communicate with other processes, and perform

various operations on system resources.

Processes are essential components of an operating system, and they

provide the foundation for the system's functionality. Without

processes, an operating system would not be able to execute

applications, manage system resources, or provide a platform for multi-

tasking and concurrency.

In the following sections, we will explore the importance of processes in

an operating system and provide an overview of their functions in multi-

tasking and concurrency. We will also discuss the various attributes that

define a process and the mechanisms that an operating system uses to

manage processes.

1.2 The illusion of many cpus

In a world where there are many programs that need to run

simultaneously, it would be ideal if there were enough physical CPUs to

go around. Unfortunately, this is often not the case, as there may be only

a few physical CPUs available. The good news is that there are ways to

provide the illusion of many CPUs to programs, even when there are

only a few physical ones available.

One of the primary techniques that the OS uses to provide the illusion

of many CPUs is called time-sharing. This technique involves dividing

the available CPU time into small chunks, typically on the order of a few

milliseconds. The OS then assigns each program a slice of time, allowing

it to execute for that slice before interrupting it and giving the CPU to

another program. Because each program is given a slice of time, it

PAGE 7

appears to the program as though it has its own CPU, even though it is

actually sharing the physical CPU with other programs.

Another technique that the OS uses to provide the illusion of many

CPUs is called multiprocessing. In this technique, multiple physical

CPUs are used to execute programs simultaneously. The OS assigns each

program to a specific CPU, allowing it to execute independently of the

other programs. Because each program has its own CPU, it appears to

the program as though it has its own CPU, even though it is actually

sharing the physical CPU with other programs.

A third technique that the OS uses to provide the illusion of many CPUs

is called multithreading. In this technique, each program is divided into

multiple threads, each of which can be executed independently of the

others. The OS then assigns each thread to a specific CPU or time slice,

allowing it to execute independently of the other threads. Because each

thread is executing independently, it appears to the program as though

it has its own CPU, even though it is actually sharing the physical CPU

with other threads.

Overall, there are many ways that the OS can provide the illusion of

many CPUs to programs, even when there are only a few physical ones

available. By using techniques like time-sharing, multiprocessing, and

multithreading, the OS is able to make it appear as though each

program has its own CPU, even when it is actually sharing the physical

CPU with other programs or threads.

1.3 Time sharing and space sharing

Time sharing and space sharing are two fundamental techniques used

by operating systems to manage resources and provide the illusion of

multiple entities sharing those resources.

Time sharing refers to the allocation of a resource, such as the CPU or a

network link, for a short period of time to one entity, and then to

PAGE 8

another and so on. By doing this, many entities can share the resource

and utilize it efficiently. In the context of the CPU, time sharing is

commonly used to provide the illusion of multiple CPUs. In other words,

while there may be only one physical CPU, the operating system can

create the illusion of multiple virtual CPUs by time sharing the physical

CPU between multiple processes.

On the other hand, space sharing involves the division of a resource

among multiple entities. For example, disk space is a natural space-

shared resource. Once a block of disk space is assigned to a file, it is

typically not available for use by another file until the original file is

deleted. In contrast to time sharing, space sharing does not involve time

slicing or allocation of time slices. Instead, it involves dividing the

resource into distinct pieces and allocating those pieces to different

entities.

Both time sharing and space sharing are important techniques used by

operating systems to manage resources and ensure efficient utilization

of those resources. By using these techniques, the operating system can

provide the illusion of multiple entities sharing a resource, even if there

is only a single physical resource available. These techniques are crucial

for ensuring that modern operating systems can effectively manage the

large number of resources available on modern computer systems.

1.4 Importance of processes in an operating system

Processes are fundamental components of any operating system. They

are essential for the efficient and effective execution of tasks, which

makes them critical to the performance and functionality of an

operating system. In this chapter, we will discuss the importance of

processes in an operating system.

PAGE 9

1.4.1 Resource Allocation and Management

Processes play a vital role in resource allocation and management. A

process can request resources such as memory, CPU time, and I/O

devices. The operating system is responsible for allocating these

resources to the requesting process. Each process is allocated a specific

amount of resources, which helps to ensure that all processes receive a

fair share of resources. Proper resource allocation and management are

essential to maintain the stability and reliability of the operating system.

1.4.2 Multitasking and Concurrency

The ability to run multiple processes simultaneously is known as

multitasking. In a multitasking environment, processes share the CPU

time, and the operating system manages the allocation of CPU time to

each process. The operating system uses scheduling algorithms to

ensure that all processes get a fair share of CPU time. This feature allows

users to run multiple applications and perform multiple tasks

simultaneously, enhancing the efficiency and productivity of the system.

Concurrency refers to the ability of a system to execute multiple tasks

simultaneously. Processes enable concurrency by allowing multiple

applications to run concurrently. This feature enables users to perform

multiple tasks simultaneously, making the system more efficient and

productive.

1.4.3 Security and Protection

Processes play a crucial role in maintaining the security and protection

of the operating system. Each process runs in its address space, which

prevents it from accessing the memory of other processes. This feature

ensures that one process cannot interfere with the execution of another

process. Additionally, the operating system assigns specific privileges

and permissions to each process, which helps to ensure that processes

only access the resources they are authorized to access.

PAGE 10

1.4.4 Fault Isolation and Recovery

Processes provide fault isolation and recovery capabilities. Each process

runs independently, which means that if one process fails, it does not

affect the execution of other processes. The operating system can

terminate a faulty process without affecting the other running processes.

This feature helps to maintain the stability and reliability of the system.

In conclusion, processes are critical components of any operating

system. They play a crucial role in resource allocation and management,

multitasking and concurrency, security and protection, and fault

isolation and recovery. The efficient execution of tasks is only possible

because of the underlying processes that run in the background.

Therefore, it is important to understand the importance of processes in

an operating system to maintain the stability, reliability, and efficiency

of the system.

1.5 Overview of the functions of processes in multi-

tasking and concurrency

In a modern operating system, it is common to have multiple

applications running concurrently. This means that the operating

system needs to manage the execution of multiple processes and ensure

that they can coexist and operate without interfering with each other.

This is where multi-tasking and concurrency come into play.

A process is an executing program with its own memory space, set of

resources, and state. Each process has a unique identifier and can

interact with other processes through inter-process communication

mechanisms. In a multi-tasking environment, the operating system can

manage the execution of multiple processes simultaneously.

The primary function of processes in multi-tasking environments is to

allow multiple applications to execute concurrently. This is achieved by

PAGE 11

the operating system allocating time slices to each process, allowing

them to execute for a specified period before suspending execution and

allowing other processes to execute. This is known as time-sharing, and

it enables the operating system to make the most efficient use of system

resources.

Another function of processes in multi-tasking environments is to

provide isolation and protection between applications. Each process has

its own memory space, which means that it cannot access the memory

of another process without explicit permission. This provides a level of

security and protection between applications.

Concurrency is the ability of an operating system to manage multiple

processes that execute simultaneously. This is achieved by the operating

system dividing the system resources among the processes, allowing

them to execute concurrently. The operating system provides

mechanisms to ensure that the processes do not interfere with each

other, and this is achieved through synchronization mechanisms such

as semaphores and mutexes.

Processes can communicate with each other using inter-process

communication mechanisms. These mechanisms allow processes to

exchange data and synchronize their actions. This is an essential

function of processes in multi-tasking and concurrent environments, as

it enables different applications to work together and share resources.

In summary, processes are essential components of modern operating

systems. They enable multi-tasking and concurrency, which allows

multiple applications to execute concurrently, and they provide

isolation and protection between applications. Inter-process

communication mechanisms allow processes to communicate and

synchronize their actions, enabling different applications to work

together and share resources.

PAGE 12

1.6 Process API

The Process API is a crucial component of any modern operating system.

This interface provides the necessary functionality to create, manage,

and terminate processes. Let's take a closer look at some of the essential

functions that must be included in this API.

The first function is the creation of new processes. When a user initiates

an action, such as typing a command into a shell or double-clicking on

an application icon, the OS must create a new process to run the

program. Therefore, the operating system must provide a way to create

these new processes.

On the other hand, when a process is no longer needed, the operating

system must provide a mechanism to destroy it forcefully. Some

processes may end on their own, but when they don't, the user may need

to terminate them. Therefore, a "Destroy" interface is necessary to stop

these runaway processes.

Another important function provided by the Process API is the ability

to wait for a process to complete its execution. For example, if a process

is running in the background, the user may need to wait for it to finish

before executing another command. Therefore, the OS must provide

some kind of waiting interface.

The Process API also includes miscellaneous controls that allow the user

to suspend a process (stop it from running temporarily) and then

resume it (continue it running). This function can be useful when the

user wants to free up resources that are being used by a process

temporarily.

Finally, the Process API provides interfaces to get status information

about a process, such as how long it has been running or what state it is

currently in. This information can be useful in troubleshooting issues or

monitoring the performance of the system.

PAGE 13

In conclusion, the Process API is a vital part of any operating system. It

provides a way to create and manage processes efficiently, allowing

users to execute multiple programs simultaneously while sharing

system resources fairly.

1.6.1 Process creation

When a user requests to run a program or an application, the operating

system is responsible for creating a process to execute the program. The

process creation process involves several steps, including memory

allocation, file loading, and initialization.

The first step in the process creation process is memory allocation. The

operating system must allocate memory for the new process to run. The

amount of memory allocated depends on the requirements of the

program being executed. The operating system must ensure that there

is enough memory available to run the new process and that the

memory is contiguous.

Once the memory has been allocated, the operating system loads the

necessary files into the memory space. This includes the program code,

any libraries that the program uses, and any other necessary resources.

The operating system must ensure that the files are loaded in the correct

order and that any dependencies are resolved.

Next, the operating system initializes the new process. This involves

setting up the environment for the new process to run in. This includes

setting the process priority, assigning any necessary resources (such as

CPU time or I/O resources), and setting up the initial values of the

process's registers and variables.

Finally, the operating system creates a process control block (PCB) for

the new process. The PCB is a data structure that contains information

about the process, such as its process ID, memory usage, CPU usage,

and other important data. The operating system uses the PCB to manage

the process and ensure that it is running correctly.

PAGE 14

Overall, the process creation process is a complex task that requires the

operating system to allocate memory, load files, initialize the process,

and create a process control block. However, the process creation

process is essential for the execution of programs and applications and

is a fundamental part of any modern operating system.

1.6.2 Process destroy

Process destruction is the counterpart to process creation and involves

terminating an existing process. The destruction of a process is typically

initiated by a user, although it can also occur automatically when a

program has completed execution.

When a user wishes to terminate a process, they may send a signal to

the process asking it to shut down. The process will then handle the

signal, typically by performing any cleanup tasks it needs to do before

exiting. These cleanup tasks may include freeing up memory or

releasing any resources that the process has been using.

If the process does not respond to the signal, or if it is in an

unrecoverable state, the operating system may force the process to

terminate. This is done by sending a signal that cannot be ignored or

caught by the process, causing it to exit immediately.

The process of destroying a process may also involve the release of any

resources that were being used by the process. This includes releasing

memory and any other resources that were allocated to the process. In

addition, the operating system may update any data structures that were

being used to keep track of the process, such as process tables or queues.

One challenge in process destruction is ensuring that the process is

terminated safely without causing any harm to the system or other

processes. For example, if a process is holding a lock on a shared

resource, terminating it abruptly could cause other processes to fail or

become deadlocked. To avoid these kinds of issues, the operating

system may use techniques such as graceful shutdown procedures or

PAGE 15

synchronization mechanisms to ensure that all processes are aware of

the impending termination and can take appropriate action.

In summary, process destruction is a critical aspect of the operating

system's management of processes. It involves terminating an existing

process and releasing any resources that were being used by the process,

while ensuring that the system remains stable and other processes are

not adversely affected.

1.6.3 The fork() system call

The fork() system call is one of the most important and fundamental

functions provided by any operating system. It is the starting point for

creating new processes, and is often used in combination with other

system calls to build more complex programs.

In essence, the fork() system call creates a new process by duplicating

the existing process. The new process, which is known as the child

process, is an exact copy of the original process, which is known as the

parent process. This means that the child process has the same memory,

environment variables, and file descriptors as the parent process.

However, the two processes have different process IDs (PIDs), and thus

can be distinguished from each other.

The fork() system call takes no arguments and returns an integer value.

In the parent process, the value returned by fork() is the PID of the

newly created child process. In the child process, the value returned is

zero. If fork() fails for any reason, a negative value is returned.

One of the most important things to keep in mind when using fork() is

that the child process continues executing from the point where the

fork() call was made. This means that both the parent and child

processes are running simultaneously, and that the child process can

begin executing its own code immediately after being created.

PAGE 16

It's also important to understand that the child process is a separate

entity from the parent process, and that changes made in one process

do not affect the other. For example, if the parent process modifies a

variable, the child process will not see that modification unless it

explicitly reads the value of the variable.

One of the most common uses of the fork() system call is to create a

child process to run a new program using the exec() system call. This

allows a program to run another program in a separate process, without

affecting the parent process.

Example: Here's a simple example code that demonstrates the fork()

system call in C:

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

int main() {

 pid_t pid;

 int x = 0;

 pid = fork();

 if (pid == -1) {

 printf("Fork failed!\n");

 } else if (pid == 0) {

 // Child process

 printf("Child process, x = %d\n", ++x);

 } else {

PAGE 17

 // Parent process

 printf("Parent process, x = %d\n", x);

 }

 return 0;

}

In this example, we declare a variable x and initialize it to 0. We then

call fork(), which creates a new process (the child process) that is an

exact copy of the parent process, except for its PID (process ID).

In the child process, we increment x and print out its value, while in the

parent process, we simply print out the original value of x.

When we run this program, we will see that both the parent and child

processes print out a different value of x:

Parent process, x = 0

Child process, x = 1

This is because the fork() system call creates a separate copy of the

program's memory for the child process, so any modifications to x made

by the child process do not affect the parent process.

1.6.4 The wait() system call

When a parent process creates a child process using the fork() system

call, it often needs to wait for the child to complete its execution before

it can continue with its own execution. The wait() system call provides

a way for the parent process to suspend its execution and wait for the

child process to terminate.

The wait() system call takes no arguments and returns the process ID of

the terminated child process. If there are no child processes, the wait()

system call returns immediately with a value of -1.

PAGE 18

When a child process terminates, it remains in the system as a zombie

process until its parent process performs a wait() system call to retrieve

its exit status. Once the parent process calls wait() and retrieves the exit

status, the child process is removed from the system.

Example: Here is an example of how the wait() system call can be used

in a C program:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/wait.h>

int main() {

 pid_t pid;

 int status;

 pid = fork();

 if (pid < 0) {

 printf("Fork failed.\n");

 exit(1);

 }

 else if (pid == 0) {

 printf("Child process.\n");

 exit(0);

 }

 else {

PAGE 19

 printf("Parent process.\n");

 wait(&status);

 printf("Child process completed.\n");

 }

 return 0;

}

In this example, the parent process creates a child process using the

fork() system call. The child process prints a message and exits, while

the parent process waits for the child process to complete using the

wait() system call. Once the child process completes, the parent process

prints a message indicating that the child process has completed.

It is important to note that the wait() system call suspends the execution

of the parent process until the child process completes. If the child

process does not terminate, the parent process will be blocked

indefinitely. To avoid this situation, it is common to use the waitpid()

system call, which allows the parent process to specify which child

process it is waiting for.

1.6.5 The exec() system call

The exec() system call is used to replace the current process image with

a new process image. This new image can be a different program or

script, with its own set of instructions, data, and memory space. This

system call is often used in conjunction with the fork() system call to

create a new process, and then replace its image with a new program or

script.

The exec() system call comes in various forms, with different suffixes

indicating different behaviors. For example, execl() takes a variable

number of arguments, with the first argument being the name of the

new program or script to execute. The remaining arguments are the

PAGE 20

command-line arguments passed to the new program or script. Other

forms of exec() allow for passing environment variables or an array of

arguments.

One important thing to note is that when the exec() system call is used,

the new process image completely replaces the current process image.

This means that any code or data in the current process image is lost,

along with any open file descriptors or other system resources.

Therefore, it is important to make sure that any necessary setup or

cleanup code is run before and after the exec() system call.

Example: Here's an example code snippet demonstrating the use of the

execl() system call:

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

int main() {

 printf("Before exec() call\n");

 // Fork a new process

 pid_t pid = fork();

 if (pid == 0) {

 // Child process

 printf("Child process executing...\n");

 // Replace process image with new program

 execl("/bin/ls", "ls", "-l", NULL);

PAGE 21

 // If we get here, the exec() call failed

 perror("execl");

 exit(EXIT_FAILURE);

 }

 else if (pid > 0) {

 // Parent process

 printf("Parent process waiting for child...\n");

 // Wait for child process to complete

 wait(NULL);

 printf("Child process completed\n");

 }

 else {

 // Fork failed

 perror("fork");

 exit(EXIT_FAILURE);

 }

 printf("After exec() call\n");

 return 0;

}

In this example, the execl() system call is used to replace the child

process image with the ls program, which will list the files in the current

directory. The parent process waits for the child process to complete

PAGE 22

before continuing. If the execl() call fails, the child process will exit with

a failure status.

1.6.6 The kill() system call

The kill() system call is used to send a signal to a process or a group of

processes on the system. The signal is a software interrupt that can be

used to convey various types of information to the target process or

group of processes.

The signal can be used to request that the process terminate, to suspend

or resume the process, or to notify the process of some event or

condition. When a process receives a signal, it can either handle the

signal itself or allow the operating system to handle it.

The kill() system call is a relatively simple system call that takes two

arguments: the process ID of the target process and the signal to be sent.

When the kill() system call is executed, it sends the specified signal to

the specified process.

If the signal sent is SIGKILL, the target process is immediately

terminated without any chance to handle the signal. If the signal sent is

SIGTERM, the target process is given a chance to handle the signal

before termination. Other signals may have different effects, depending

on the signal and the process being targeted.

The kill() system call takes two arguments: the process ID of the target

process and the signal to be sent. The process ID is a unique identifier

that is assigned to each process on the system. The signal is an integer

that represents the type of signal to be sent.

The kill() system call is used in a variety of situations, including:

 Termination of a process: When a process is no longer needed, the

kill() system call can be used to terminate it.

PAGE 23

 Error handling: If a process encounters an error condition, it may

use the kill() system call to terminate itself or to request

termination from another process.

 Process management: The kill() system call can be used to manage

groups of processes. For example, a parent process may use the

kill() system call to terminate all of its child processes.

 Debugging: The kill() system call can be used to send signals to a

process for debugging purposes.

Example: Here's an example code in C that demonstrates the use of the

kill() system call to send a signal to a process:

#include <stdio.h>

#include <signal.h>

#include <unistd.h>

int main() {

 pid_t pid;

 // Fork a child process

 pid = fork();

 if (pid == 0) {

 // Child process

 printf("Child process running...\n");

 // Wait for 10 seconds

 sleep(10);

PAGE 24

 // Print a message and terminate

 printf("Child process terminating...\n");

 return 0;

 }

 else {

 // Parent process

 printf("Parent process running...\n");

 // Wait for 2 seconds

 sleep(2);

 // Send a signal to the child process

 printf("Sending signal to child process...\n");

 kill(pid, SIGTERM);

 // Print a message and terminate

 printf("Parent process terminating...\n");

 return 0;

 }

}

In this example, the parent process forks a child process and then waits

for 2 seconds before sending a SIGTERM signal to the child process

using the kill() system call. The child process is programmed to

terminate itself after 10 seconds. When the SIGTERM signal is sent, the

child process receives it and terminates immediately.

PAGE 25

Note that this is just a simple example, and in real-world scenarios, the

kill() system call can be used to send a variety of signals to processes for

different purposes.

1.6.7 The pipe() system call

The pipe() system call is a useful feature of operating systems that allows

for inter-process communication. It creates a communication channel,

or pipe, between two related processes, allowing them to exchange data.

In this chapter, we will discuss the pipe() system call in detail, including

its purpose, functionality, and how it is used in programming.

The pipe() system call is used to create a unidirectional data channel

between two related processes, typically a parent and child process. This

communication channel allows the processes to share data in a secure

and efficient manner. The parent process can write data to the pipe, and

the child process can read the data from the pipe. This is a useful feature

for many applications, such as sending data from one process to another

or for implementing interprocess synchronization.

The pipe() system call creates a pipe and returns two file descriptors

representing the two ends of the pipe. One file descriptor represents the

read end of the pipe, and the other file descriptor represents the write

end of the pipe. The read end is used to read data from the pipe, while

the write end is used to write data to the pipe. The data written to the

write end of the pipe can be read from the read end of the pipe.

Example: Here is a sample code that demonstrates how to use the

pipe() system call in programming. This code creates a pipe between a

parent and child process, and the child process reads a message from

the pipe that was written by the parent process:

#include <stdio.h>

#include <unistd.h>

PAGE 26

int main() {

 int fd[2];

 pid_t pid;

 char buffer[20];

 // create pipe

 if (pipe(fd) == -1) {

 printf("Error creating pipe.\n");

 return 1;

 }

 // create child process

 pid = fork();

 if (pid < 0) {

 printf("Error creating child process.\n");

 return 1;

 }

 if (pid > 0) {

 // parent process

 close(fd[0]); // close read end of pipe

 write(fd[1], "Hello, child!", 13); // write message to pipe

 close(fd[1]); // close write end of pipe

 } else {

PAGE 27

 // child process

 close(fd[1]); // close write end of pipe

 read(fd[0], buffer, 13); // read message from pipe

 printf("Received message: %s\n", buffer);

 close(fd[0]); // close read end of pipe

 }

 return 0;

}

In this code, the pipe() system call creates a pipe, which is represented

by the fd array. The parent process writes the message "Hello, child!" to

the write end of the pipe using the write() system call. The child process

then reads the message from the read end of the pipe using the read()

system call and prints it to the console.

1.7 Process hierarchies

Process hierarchies are an important aspect of modern operating

systems. When a process creates another process, the parent-child

relationship is established. The parent process creates the child process,

and the child process inherits many of its parent's attributes, such as its

environment variables and file descriptors.

In some systems, this parent-child relationship is maintained even after

the child process has been created. This means that a child process can

itself create more processes, forming a process hierarchy. In other words,

the child process becomes a parent process and can create its own

children.

This process hierarchy can be visualized as a tree-like structure, with the

original parent process at the root of the tree and all subsequent

PAGE 28

processes branching off from it. Each process in the hierarchy has a

unique process ID (PID) assigned to it, which allows the operating

system to track it and manage its resources.

One of the advantages of process hierarchies is that they allow for the

efficient management of resources. For example, if a parent process

creates a child process to perform a particular task, the child process can

be terminated when the task is completed. This frees up resources that

would have otherwise been tied up by the child process, allowing them

to be used by other processes.

Another advantage of process hierarchies is that they make it easy to

manage the relationship between different processes. For example, a

parent process may need to communicate with its child process or

monitor its activity. By maintaining the parent-child relationship, the

operating system can provide a mechanism for this communication and

monitoring to take place.

1.8 Zombie and orphan process

A zombie process is a process that has terminated but whose exit status

has not yet been collected by its parent process. This means that the

process entry still exists in the process table, but the process is no longer

executing. In other words, a zombie process is a process that has

completed execution but still has an entry in the process table.

An orphan process, on the other hand, is a child process that has

terminated, but whose parent process has not yet collected its exit status.

When the parent process terminates before collecting the exit status of

its child process, the orphan process becomes a child of the init process

(with process ID 1), which is responsible for collecting the exit status of

all orphan processes.

When a process terminates, the operating system sets a flag indicating

that the process is ready to be removed from the system. However, if the

PAGE 29

parent process is still running and has not yet collected the exit status

of its child process, the process table entry for the child process cannot

be removed. Therefore, the operating system leaves the entry in the

process table and marks the process as a zombie.

The parent process can collect the exit status of its child process by

calling the wait() or waitpid() system call. When the parent process calls

one of these system calls, it is suspended until one of its child processes

terminates. At that point, the parent process is awakened and can

collect the exit status of its child process.

In the case of an orphan process, the init process will automatically

collect the exit status of the child process. This ensures that no process

becomes a zombie and the system resources are effectively managed.

2 Process States and Transitions

A process is a fundamental concept in an operating system, and it is

essential to understand the different states a process can be in and how

it transitions between these states. The concept of process states is

crucial in multi-tasking and concurrency because it allows the operating

system to manage and prioritize the execution of processes.

In this chapter, we will cover the different process states, including new,

ready, running, blocked, and terminated. We will also discuss how a

process transitions between these states and the importance of

understanding process states in a multi-tasking and concurrent

environment.

2.1 Process states:

Processes are the core of an operating system, and they have various

states throughout their execution. In this chapter, we will discuss the

PAGE 30

different process states, which are new, ready, running, blocked, and

terminated.

2.1.1 New State:

When a process is created, it is in the new state. At this point, the

process is just an idea or a request, and the operating system has not yet

allocated resources to it. Once the operating system assigns resources

to the process, it moves to the next state.

2.1.2 Ready State:

When a process has been assigned resources, it moves to the ready state.

In this state, the process is waiting to be allocated a processor by the

operating system. The process is ready to execute, but the operating

system has not yet assigned a processor to it.

2.1.3 Running State:

When the operating system assigns a processor to a process, it moves to

the running state. In this state, the process is executing its instructions

on the assigned processor.

2.1.4 Blocked State:

When a process is waiting for an event, such as I/O or a system resource,

it moves to the blocked state. In this state, the process cannot execute

until the event it is waiting for occurs. Once the event occurs, the

process moves back to the ready state.

PAGE 31

2.1.5 Terminated State:

When a process completes its execution, it moves to the terminated

state. In this state, the process is no longer executing, and its resources

have been deallocated by the operating system.

Understanding the different process states is crucial to the efficient

operation of an operating system. The ability to manage and manipulate

process states is a critical component of any operating system, allowing

the operating system to allocate resources effectively and provide a

seamless user experience.

2.2 Transitions between process states

Transitions between process states are crucial to the functioning of a

modern operating system. A process can move between different states

during its lifetime, depending on the type of operation it is currently

performing. Understanding these transitions is key to understanding

how a multi-tasking and concurrent system works.

When a process is first created, it enters the "new" state. In this state,

the operating system has allocated resources such as memory and

process control blocks to the process, but it is not yet ready to execute.

From here, the process may transition to the "ready" state, where it is

waiting for the CPU to be assigned to it.

Once the CPU is assigned to the process, it enters the "running" state.

In this state, the process is actively executing its instructions. However,

at any point, the process may be interrupted and transition back to the

"ready" state. This can happen, for example, if the operating system

needs to switch to another process that has become ready to execute.

PAGE 32

A process can also transition to the "blocked" state, which occurs when

the process is waiting for some external event, such as user input or data

from a file. In this state, the process is not executing any instructions

and is temporarily suspended.

Finally, a process may transition to the "terminated" state when it has

completed its execution. In this state, the operating system releases any

resources that were allocated to the process.

Understanding the transitions between process states is important for

building a robust and efficient operating system. It enables the

operating system to prioritize processes based on their state, ensuring

that processes that are ready to execute are given access to the CPU. It

also allows the operating system to manage resources effectively, by

releasing resources when they are no longer needed.

2.3 Importance of process states in multi-tasking and

concurrency

In a modern operating system, the ability to manage multiple processes

simultaneously is a critical feature. This feature enables the system to

be more efficient and responsive, as well as providing the ability to

execute multiple programs simultaneously.

The management of multiple processes is a complex task, requiring

careful attention to detail and the use of sophisticated algorithms. One

of the key components of process management is the concept of process

states. The state of a process is a reflection of its current activity level

and can be used to control its behavior.

There are five process states: new, ready, running, blocked, and

terminated. Each of these states plays an important role in the

management of processes and is used to control how processes are

scheduled for execution.

PAGE 33

When a process is first created, it is in the new state. In this state, the

process has been created but has not yet been assigned any resources or

executed by the system. Once the process has been assigned the

necessary resources and is ready to be executed, it enters the ready state.

In the ready state, the process is waiting for its turn to be executed by

the system. The operating system uses a scheduling algorithm to

determine which process to execute next from the pool of ready

processes.

Once a process has been selected for execution, it enters the running

state. In this state, the process is actively executing its code and using

system resources.

The blocked state is used to indicate that a process is waiting for some

external event to occur before it can continue executing. For example, a

process may be blocked while waiting for user input or while waiting for

a file to be loaded from disk.

Finally, when a process has completed its execution or has been

terminated by the system, it enters the terminated state. In this state,

the process is no longer executing and its resources have been freed by

the system.

The importance of process states in multi-tasking and concurrency

cannot be overstated. These states provide a mechanism for the

operating system to control how processes are executed and to ensure

that system resources are used efficiently.

By carefully managing the state of each process, the system can ensure

that all processes are executed fairly and that no single process

monopolizes the system's resources. Additionally, the use of process

states makes it possible to manage complex multi-tasking and

concurrency scenarios, allowing the system to execute multiple

processes simultaneously without conflicts or other issues.

PAGE 34

In conclusion, the management of process states is a critical aspect of

modern operating systems. By providing a mechanism for controlling

the behavior of processes and managing system resources, process states

make it possible to execute multiple processes simultaneously and

ensure that the system is both efficient and responsive.

3 CPU virtualization

In order to allow multiple processes to run seemingly at the same time

on a single CPU, the operating system needs to virtualize the CPU. The

basic idea behind CPU virtualization is simple: run one process for a

short period of time, then switch to another process, and repeat. By

time-sharing the CPU in this way, virtualization is achieved.

However, building the machinery required for CPU virtualization is not

without its challenges. The first and foremost challenge is that of

performance. The overhead introduced by the virtualization process

should be minimal so that the system can operate as efficiently as

possible. Every time a context switch occurs, there is a cost in terms of

time and resources. Thus, the virtualization machinery must be

designed to minimize this overhead while still allowing multiple

processes to run on the same CPU.

The second challenge in building CPU virtualization machinery is

control. The operating system must retain control over the CPU and the

resources it manages. Without control, a rogue process could take over

the machine, run forever, or access information it shouldn't have access

to. Thus, the OS must be designed in such a way that it can maintain

control over the CPU and the resources it manages, while still allowing

processes to run efficiently.

Obtaining high performance while maintaining control is one of the

central challenges in building an operating system. Many modern

operating systems use a variety of techniques to achieve this, such as

PAGE 35

preemptive multitasking, priority-based scheduling, and hardware

support for virtualization. By carefully designing the virtualization

machinery, the operating system can achieve high performance while

maintaining control over the CPU and resources.

3.1 Limited Direct Execution

When it comes to running programs on an operating system, the

simplest approach is to just run the program directly on the CPU.

However, this approach poses a few challenges when it comes to

virtualizing the CPU and implementing time sharing.

To begin with, if we just run a program, there is no way for the operating

system to ensure that the program doesn't perform any actions that we

don't want it to do. In other words, there is no control over the

program's behavior, which can be dangerous in a multi-user system. The

OS needs to ensure that it maintains control over the resources and

activities of each program.

Secondly, when a process is running, the OS needs to be able to stop it

and switch to another process, thus enabling time sharing and

virtualization of the CPU. This is done through a mechanism called

process scheduling, where the OS decides which process should be run

next and for how long.

To overcome these challenges, the operating system needs to

implement mechanisms for process management, memory

management, and resource allocation. When the OS starts a program, it

creates a process entry for it in a process list, allocates memory for it,

loads the program code into memory from the disk, locates the

program's entry point (usually the main() routine), and starts running

the user's code.

To maintain control over the program's behavior, the OS employs

various mechanisms such as system calls, which allow the program to

PAGE 36

interact with the OS in a controlled manner. The OS also employs

techniques such as memory protection, where each process is allocated

a separate address space to prevent it from accessing the memory of

other processes.

To implement time sharing and process scheduling, the OS uses a

scheduler that decides which process should be run next and for how

long. There are different types of schedulers such as round-robin,

priority-based, and multi-level feedback queues.

In summary, although the "direct execution" approach of running

programs on the CPU is simple, it poses several challenges when it

comes to virtualizing the CPU and implementing time sharing. The

operating system needs to employ various mechanisms and techniques

to ensure control over the program's behavior and efficient process

scheduling.

3.2 Restricted Operations

Direct execution, as we discussed earlier, has the benefit of being fast

and efficient, but it also poses some significant challenges. One of the

main issues is how to handle restricted operations that a process may

try to perform. When a process runs directly on the CPU, it has access

to all the hardware resources, including the disk, CPU, and memory.

However, this unrestricted access can be dangerous, especially when it

comes to system security and stability. For example, if a process is

allowed to access system memory without permission, it can cause a

crash or even compromise the entire system's security.

To address this problem, operating systems implement a mechanism

known as system calls. System calls provide a safe and controlled way

for processes to interact with system resources, including I/O devices,

memory, and other hardware.

PAGE 37

When a process wants to perform a restricted operation, it must first

make a system call to the operating system, requesting permission to

access the resource. The operating system then performs the requested

operation on behalf of the process and returns the result to the process.

For instance, when a process needs to access a file on the disk, it must

first make a system call to the operating system to open the file. The

operating system will then check whether the process has permission to

access the file and perform the operation on the process's behalf.

3.2.1 User mode and kernel mode

When it comes to running processes on a computer, it is essential to

have some way of controlling what a process can and cannot do.

Allowing processes to perform unrestricted operations, such as issuing

I/O requests, could result in the system being compromised or even

taken over entirely. This is where the concept of user mode and kernel

mode comes in.

User mode is a restricted mode that allows processes to run on the CPU

while limiting what they can do. This mode is designed to prevent

processes from accessing resources they shouldn't or performing

operations they're not authorized to perform. For example, in user mode,

a process cannot issue I/O requests. If it does, the CPU will raise an

exception, and the operating system will kill the process to prevent any

damage.

Kernel mode, on the other hand, is a privileged mode that only the

operating system or kernel can run in. Code running in kernel mode can

perform any operation, including restricted instructions and issuing I/O

requests. This mode is designed to give the operating system full access

to all system resources and to perform privileged operations.

The idea of user mode and kernel mode allows the operating system to

have control over what processes can do on the system. By limiting the

actions a process can perform in user mode, the operating system can

PAGE 38

ensure the integrity and security of the system. At the same time, by

allowing the operating system to run in kernel mode, the system can

perform critical tasks that would otherwise be impossible.

3.2.2 System calls

One of the fundamental challenges in building an operating system is

allowing user processes to perform privileged operations, such as

accessing the file system or communicating with other processes. To

enable this, modern hardware provides a mechanism known as system

calls. System calls allow user programs to request services from the

kernel, which is running in kernel mode and has the authority to

perform these privileged operations.

The idea of system calls dates back to early machines such as the Atlas,

where they were used to expose certain key pieces of functionality to

user programs. Today, most operating systems provide a few hundred

calls, each with a specific purpose. These include accessing the file

system, creating and destroying processes, communicating with other

processes, and allocating more memory. The POSIX standard provides

a comprehensive list of system calls that are available on most modern

operating systems.

When a user process wishes to perform a system call, it must first switch

from user mode to kernel mode. This is typically accomplished through

a software interrupt, which causes the processor to transition to kernel

mode and begin executing the corresponding kernel code. Once the

system call has completed, the kernel returns control to the user process

and switches back to user mode.

System calls provide an essential interface between user programs and

the kernel, allowing programs to perform privileged operations without

compromising the security or stability of the system. However, the

implementation of system calls can be complex, and care must be taken

to ensure that they are designed and implemented correctly.

Furthermore, the performance of system calls can have a significant

PAGE 39

impact on the overall performance of the system, so optimization is

often a critical concern for operating system developers.

3.2.3 System calls look like procedure calls

Have you ever wondered how a system call, such as open() or read(),

looks like a regular procedure call in C? How does the system know it's

a system call and perform all the necessary actions? In this chapter, we

will explore why system calls look like procedure calls.

The answer is simple: a call to a system call is, in fact, a procedure call

that hides a trap instruction. When a user program calls open(), for

example, it executes a procedure call to the C library, which has an

agreed-upon calling convention with the kernel. The library places the

arguments for open() in predetermined locations (such as the stack or

specific registers), sets the system call number in a well-known location

(such as the stack or a register), and then executes the trap instruction.

The code in the library then unpacks the return values and returns

control to the program that made the system call.

As a result, the parts of the C library that make system calls are hand-

coded in assembly language. They must carefully follow conventions to

handle arguments and return values correctly and execute the

hardware-specific trap instruction. Thus, you do not need to write

assembly code to trap into an operating system because someone else

has already written that assembly code for you.

In conclusion, system calls look like procedure calls because they are

procedure calls that contain a trap instruction that triggers the kernel

to perform the necessary operations. Understanding how system calls

work is critical for anyone interested in operating systems and computer

architecture.

PAGE 40

3.2.4 The use of trap and return-from-trap instructions

When a program needs to perform a privileged operation, such as

accessing the file system or communicating with other processes, it

needs to execute a system call. As we discussed earlier, a system call is

just like a regular procedure call, but it includes a special trap

instruction that raises the privilege level to kernel mode and transfers

control to the operating system. Once in kernel mode, the operating

system can perform the requested operation on behalf of the calling

program.

But what happens when the operating system is finished executing the

system call? How does control return to the calling program? The

answer lies in a special return-from-trap instruction, which is called by

the operating system when it has finished executing the system call. This

instruction returns control to the calling program while simultaneously

reducing the privilege level back to user mode.

The use of trap and return-from-trap instructions is a fundamental

technique used by modern operating systems to provide a safe and

controlled environment for executing user programs. It allows programs

to perform privileged operations without compromising the integrity

and security of the system as a whole. By using these instructions, the

operating system can ensure that user programs can only perform

authorized operations, and that they do not interfere with other

programs or the system as a whole.

In summary, the use of trap and return-from-trap instructions is an

essential aspect of modern operating systems. They allow programs to

execute system calls and perform privileged operations while

maintaining the security and integrity of the system as a whole.

PAGE 41

4 Process Control Block (PCB)

Welcome to the chapter on Process Control Block (PCB). In an

operating system, managing processes is a critical task, and one of the

key components used for this purpose is the Process Control Block. The

Process Control Block is a data structure that contains essential

information about a process, and it serves as a central point for the

operating system to manage and control the process. In this chapter, we

will cover the definition of a PCB, its contents, and its importance in

process management. Understanding PCB is essential for anyone

studying operating systems and its processes. So, let's dive into the

world of PCBs and learn how they help in managing processes in an

operating system.

In modern operating systems, process management is an essential

component to ensure the efficient and effective execution of processes.

One of the key structures used in process management is the Process

Control Block (PCB). In this chapter, we will discuss what a PCB is, its

functions, and how it is used in process management.

4.1 Definition of a PCB

A Process Control Block (PCB) is a data structure used by the operating

system to manage information about a process. It is also known as a task

control block or a process descriptor. A PCB is created by the operating

system when a process is created and is responsible for keeping track of

important information about the process, such as its current state,

register values, memory allocation, and other attributes that are

necessary for process execution.

PAGE 42

4.2 Contents of a PCB

The contents of a PCB may vary depending on the operating system, but

it generally contains the following information:

Process state: The current state of the process, which can be running,

ready, blocked, or terminated.

Process ID: A unique identifier assigned by the operating system to each

process.

Program counter: A register that holds the address of the next

instruction to be executed.

CPU registers: The values of the CPU registers that are associated with

the process, such as the accumulator, stack pointer, and index register.

Memory management information: Information about the memory

allocated to the process, including its base address, limit, and page table

information.

Priority: A value that determines the relative importance of the process

compared to other processes.

I/O status information: Information about any I/O devices that are

associated with the process, including the device status and any pending

I/O operations.

4.3 Importance of PCB in process management

The PCB is a critical data structure used by the operating system to

manage processes effectively. The operating system uses the

information stored in the PCB to make decisions about how to allocate

resources to the process, such as CPU time, memory, and I/O devices.

Without the PCB, it would be difficult for the operating system to

manage multiple processes concurrently and efficiently. The PCB is also

PAGE 43

used by the operating system to switch between processes quickly, as it

contains all the necessary information required to save the state of a

process and restore it later.

In conclusion, the Process Control Block (PCB) is a vital component of

process management in modern operating systems. It is responsible for

storing and managing critical information about a process, including its

current state, register values, memory allocation, and other attributes.

The PCB allows the operating system to manage multiple processes

efficiently and switch between them quickly, making it an essential part

of any modern operating system.

5 Process Scheduling

In a multi-tasking and concurrent operating system, several processes

compete for the same resources, such as CPU time and memory. The

scheduler is responsible for assigning these resources to the processes

efficiently and fairly. This is where process scheduling comes into play.

In this chapter, we will discuss the definition of process scheduling,

popular scheduling algorithms such as First-Come-First-Serve (FCFS),

Shortest Job First (SJF), Round Robin (RR), Priority Scheduling, and

Multilevel Feedback Queue (MLFQ), and the importance of process

scheduling in multi-tasking and concurrency.

Process scheduling is a fundamental task in the operating system, and

its primary purpose is to allocate CPU time to multiple processes in an

efficient and effective manner. The CPU is a valuable resource that must

be allocated carefully, as it can significantly impact the performance of

the entire system. The scheduler is responsible for selecting the next

process to run based on a set of predefined criteria. These criteria can

vary depending on the scheduling algorithm used.

PAGE 44

We will explore the most popular scheduling algorithms in detail in this

chapter, including their strengths and weaknesses. We will also discuss

the contents of a process control block (PCB), which is an essential data

structure used by the scheduler to store information about each process.

Finally, we will discuss the importance of process scheduling in multi-

tasking and concurrency.

5.1 Definition of process scheduling

Process scheduling is a critical aspect of operating systems that allows

for efficient and effective utilization of system resources. It involves

determining which process will be executed by the CPU and when. The

objective of process scheduling is to optimize system performance by

reducing the turnaround time, waiting time, and response time of

processes. In this chapter, we will explore the concept of process

scheduling and its importance in modern operating systems.

Process scheduling is the mechanism used by operating systems to

determine which process will be executed by the CPU next. The process

scheduler is responsible for managing the queue of processes waiting to

be executed and allocating system resources to them. The scheduler

must balance competing demands for resources while ensuring that

each process receives a fair share of CPU time. Process scheduling can

be preemptive or non-preemptive. In preemptive scheduling, the CPU

can be taken away from a process at any time, while in non-preemptive

scheduling, a process holds the CPU until it voluntarily relinquishes it.

Process scheduling is a key component of any operating system, and

different scheduling algorithms have been developed to manage system

resources efficiently. These algorithms are designed to prioritize certain

processes over others based on various criteria, such as the length of

time a process has been waiting, its priority level, or the amount of CPU

time it has already consumed.

PAGE 45

5.2 How to develop scheduling policy

Scheduling policies are a fundamental aspect of operating systems. The

scheduler is responsible for determining which processes to run, when

to run them, and for how long. The goal of scheduling policies is to

efficiently utilize system resources, while also providing good

performance and fairness to all running processes. In this chapter, we

will discuss the key considerations when developing scheduling policies.

The first step in developing a scheduling policy is to make some key

assumptions about the system. The most important assumption is that

the system has limited resources, including CPU time, memory, and I/O

devices. Additionally, we assume that there are multiple processes that

require access to these resources. These processes can have different

priorities, requirements, and characteristics, such as I/O-bound or CPU-

bound.

The next step is to determine the metrics that are important for

evaluating the performance of the scheduling policy. The two most

common metrics are throughput and turnaround time. Throughput

measures the number of processes that are completed per unit of time,

while turnaround time measures the time it takes for a process to

complete from start to finish. Other important metrics include response

time, which measures the time it takes for a process to start executing,

and fairness, which measures how equitably resources are distributed

among processes.

There are many different approaches to scheduling policies. One of the

earliest approaches was the first-come, first-served (FCFS) policy, which

simply scheduled processes in the order that they arrived in the system.

However, this policy can result in long turnaround times for processes

that arrive later and have to wait for earlier processes to complete.

Another approach is the shortest job first (SJF) policy, which schedules

the process with the shortest expected running time. This policy can

PAGE 46

improve turnaround times, but requires knowledge of the expected

running time of each process, which may not be available.

Other popular scheduling policies include round-robin, priority-based,

and multilevel feedback queue (MLFQ) policies. The round-robin policy

allocates a fixed amount of CPU time to each process in turn, while the

priority-based policy assigns a priority level to each process and

schedules them in order of priority. The MLFQ policy divides processes

into different queues based on their characteristics, and applies

different scheduling policies to each queue.

Developing an effective scheduling policy is a complex task that requires

careful consideration of the system's resources, metrics, and available

approaches. By understanding these key considerations, operating

system developers can design scheduling policies that efficiently

allocate resources, provide good performance and fairness, and meet the

needs of the system and its users.

5.3 Scheduling algorithms:

As we have seen earlier, the operating system (OS) uses various

mechanisms to manage and share resources efficiently. However, these

mechanisms alone are not enough to ensure optimal performance and

utilization of resources. This is where the policies come into play.

Policies are algorithms that help the OS make decisions about resource

allocation and scheduling.

One of the most common policies in the OS is the scheduling policy.

The scheduling policy determines which program or process should be

executed next on the CPU. The scheduling algorithm takes into account

various factors such as the priority of the process, the amount of time it

has already spent executing, and the type of workload the system is

experiencing. The ultimate goal of the scheduling policy is to maximize

PAGE 47

the overall throughput of the system, while also ensuring that

interactive processes are given a fair share of the CPU time.

Another example of a policy is the memory allocation policy. The OS

needs to decide which process gets to use which part of the memory.

The memory allocation policy takes into account the size of the process,

the amount of memory currently available, and the amount of memory

requested by other processes. The goal of the memory allocation policy

is to ensure that all processes get their required amount of memory,

while also minimizing the fragmentation of memory.

In addition to the scheduling and memory allocation policies, there are

many other policies implemented in the OS. For example, there are

policies for disk scheduling, network bandwidth allocation, and power

management. Each of these policies has its own unique algorithm that

takes into account the specific characteristics of the resource being

managed.

Policies are an essential part of the OS because they allow the system to

adapt to changing workloads and usage patterns. Without policies, the

OS would be unable to make intelligent decisions about how to allocate

resources and manage competing demands. By combining policies with

the mechanisms we discussed earlier, the OS is able to provide a high

level of performance, reliability, and ease of use to its users.

5.3.1 First-Come-First-Serve (FCFS)

First-Come-First-Serve (FCFS) is one of the simplest CPU scheduling

algorithms used in operating systems. In this algorithm, the process that

arrives first is allocated the CPU first. The FCFS algorithm is also known

as the First-In-First-Out (FIFO) scheduling algorithm because the

process that comes first into the ready queue will be the first one to be

executed.

PAGE 48

When a process enters the ready queue, it is assigned the CPU based on

the order in which it entered the queue. The process continues to use

the CPU until it finishes its execution, blocks for I/O, or terminates.

The FCFS algorithm is simple to implement and understand, but it can

cause long waiting times for the processes that arrive later. This is

because a process with a longer burst time can hold the CPU for a long

time, causing other processes to wait in the ready queue.

Moreover, the FCFS algorithm can lead to a phenomenon known as

convoy effect. The convoy effect occurs when a long process holds the

CPU, causing other short processes to wait behind it. This can lead to

poor resource utilization and long average waiting times.

Despite its drawbacks, the FCFS algorithm is still widely used in batch

processing systems, where it is essential to execute processes in the

order they were submitted. However, it is not suitable for interactive

systems, where users expect a quick response time.

In summary, the FCFS algorithm is a simple and straightforward

scheduling algorithm that can be used in batch processing systems.

However, it can cause long waiting times and poor resource utilization

in interactive systems.

5.3.2 Shortest Job First (SJF)

In process scheduling, the goal is to maximize the throughput, minimize

response time, and minimize turnaround time. The Shortest Job First

(SJF) scheduling algorithm is a non-preemptive algorithm that

prioritizes the process with the shortest CPU burst time.

The SJF scheduling algorithm is a non-preemptive algorithm that selects

the process with the smallest CPU burst time. The CPU burst time is the

amount of time required by a process to complete its execution on the

CPU. In this algorithm, the ready queue is maintained in order of the

burst time of the processes.

PAGE 49

The SJF scheduling algorithm can be either preemptive or non-

preemptive. In preemptive SJF scheduling, if a new process with a

shorter burst time enters the ready queue, the currently executing

process is interrupted, and the new process is scheduled to execute. In

non-preemptive SJF scheduling, once a process starts executing, it

continues until completion or until it enters the blocked state.

The SJF scheduling algorithm has the following advantages:

 It results in the shortest average waiting time for the processes in

the ready queue.

 It is optimal in the sense that it minimizes the average waiting

time for the processes, assuming that the CPU burst times are

known in advance.

 It prioritizes short processes, which leads to a faster turnaround

time.

The SJF scheduling algorithm has the following disadvantages:

 It requires knowledge of the CPU burst time of each process,

which is not always available.

 It can lead to starvation for long processes if there are a large

number of short processes in the system.

The SJF scheduling algorithm is a non-preemptive algorithm that selects

the process with the shortest CPU burst time. It prioritizes short

processes, resulting in a faster turnaround time and shorter average

waiting time for processes in the ready queue. However, it requires

knowledge of the CPU burst time of each process, which may not always

be available, and it can lead to starvation for long processes if there are

a large number of short processes in the system.

PAGE 50

5.3.3 Priority Scheduling

Priority Scheduling is one of the most widely used scheduling

algorithms in modern operating systems. As the name suggests, this

algorithm assigns priorities to each process based on their importance

and then schedules them according to their priority. This approach

ensures that the high-priority tasks get executed first, thus improving

the overall performance and responsiveness of the system.

The basic idea behind Priority Scheduling is to assign a priority level to

each process based on its importance. This priority level can be

determined based on various factors, such as the amount of CPU time

required by the process, the amount of memory it needs, or the urgency

of the task. Once the priority levels are assigned, the scheduler can then

schedule the processes based on their priority, giving the highest-

priority process the CPU time first.

Priority levels can be assigned either statically or dynamically. In static

priority scheduling, the priority level of a process is fixed at the time of

creation and remains unchanged throughout the life of the process. In

dynamic priority scheduling, on the other hand, the priority level of a

process can be adjusted dynamically based on its behavior.

Priority Scheduling can be further divided into two different scheduling

policies: Preemptive and Non-preemptive. In Preemptive Priority

Scheduling, a higher-priority process can interrupt a lower-priority

process while it is running. This allows the higher-priority process to

start executing immediately, thus ensuring that the most important

tasks get executed first. In Non-preemptive Priority Scheduling,

however, a running process cannot be interrupted by a higher-priority

process. In this case, the scheduler must wait for the currently running

process to finish before scheduling the higher-priority process.

One of the key advantages of Priority Scheduling is that it allows the

most important tasks to be executed first. This improves the overall

performance and responsiveness of the system, especially in real-time

PAGE 51

systems where timely execution of critical tasks is essential. Priority

Scheduling also allows for efficient utilization of system resources, as it

ensures that the most important tasks get executed first, thus reducing

wastage of CPU time.

One major disadvantage of Priority Scheduling is that it can lead to

starvation. If a low-priority process is constantly preempted by higher-

priority processes, it may never get a chance to execute, thus leading to

starvation. Another disadvantage is that it can lead to low-priority

processes getting neglected. If there are too many high-priority

processes, the low-priority processes may never get a chance to execute,

leading to poor performance and responsiveness.

Priority Scheduling is widely used in modern operating systems, such as

Linux, Windows, and macOS. In these systems, priority levels are

assigned based on various factors, such as the type of process, its

behavior, and its importance. The scheduler then uses these priorities

to schedule the processes, giving the highest-priority process the CPU

time first.

5.3.4 Round Robin (RR)

Round Robin (RR) is a widely used CPU scheduling algorithm in

operating systems. This algorithm is designed to schedule multiple

processes concurrently in a fair and efficient manner. In this chapter, we

will discuss the details of the Round Robin scheduling algorithm.

The Round Robin (RR) scheduling algorithm is a preemptive scheduling

algorithm. In this algorithm, each process is assigned a fixed time

interval, called a time quantum or time slice, to use the CPU. The time

quantum is usually a small unit of time, typically between 10 to 100

milliseconds.

When a process is given the CPU, it is allowed to run for a time quantum.

If the process completes its task before the end of the time quantum, it

releases the CPU voluntarily. If the process does not complete its task

PAGE 52

before the end of the time quantum, it is preempted and moved to the

back of the ready queue. The next process in the ready queue is then

given the CPU to execute.

If a process arrives while the CPU is busy, it is placed at the end of the

ready queue. This ensures that processes are executed in the order in

which they arrived.

Round Robin (RR) scheduling algorithm offers the following

advantages:

 Fairness: The Round Robin scheduling algorithm provides

fairness to all processes by giving each process an equal

opportunity to use the CPU.

 Time-sharing: The Round Robin scheduling algorithm is ideal for

time-sharing systems where multiple users access the system

simultaneously.

 Low response time: The Round Robin scheduling algorithm

ensures that each process gets a turn to execute quickly, resulting

in a low response time.

The Round Robin scheduling algorithm has the following

disadvantages:

 Inefficiency: The Round Robin scheduling algorithm can be

inefficient when the time quantum is too long or too short.

 Overhead: The Round Robin scheduling algorithm has a higher

overhead compared to other scheduling algorithms, as it requires

the scheduler to keep track of the time quantum for each process.

The Round Robin (RR) scheduling algorithm is a widely used scheduling

algorithm in operating systems. It provides fairness to all processes and

PAGE 53

is ideal for time-sharing systems. However, it can be inefficient and has

a higher overhead compared to other scheduling algorithms.

5.3.5 Multilevel Queue Scheduling (MLQS)

In the previous chapters, we discussed various CPU scheduling

algorithms, such as FCFS, SJF, Priority Scheduling, and Round Robin. In

this chapter, we will discuss another important algorithm called

Multilevel Queue Scheduling (MLQS). The MLQS algorithm is widely

used in modern operating systems, especially in systems that need to

manage multiple types of processes with varying priority levels.

Multilevel Queue Scheduling is a scheduling algorithm that divides the

ready queue into several separate queues, each with its own scheduling

algorithm. Each queue has its own priority level, and the scheduling

algorithm is applied to each queue based on the priority level. This

approach allows the operating system to prioritize different types of

processes based on their needs, without compromising the

responsiveness of the system.

In Multilevel Queue Scheduling, the ready queue is divided into

multiple queues, each with its own priority level. The operating system

assigns each process to a queue based on its priority level. Each queue

can have its own scheduling algorithm, such as FCFS, SJF, Priority

Scheduling, or Round Robin.

In most implementations of MLQS, the highest priority queue is served

first, followed by the next highest priority queue, and so on. Within each

queue, the scheduling algorithm is applied to determine the order in

which processes are executed. The processes in each queue are typically

scheduled in a non-preemptive manner, meaning that a process must

yield the CPU voluntarily before another process can be executed.

Multilevel Queue Scheduling is an important scheduling algorithm in

modern operating systems. It allows the operating system to prioritize

different types of processes based on their priority level and the needs

PAGE 54

of the system. This is important in systems that need to manage multiple

types of processes with varying priority levels, such as real-time systems

and systems that run both user-level and system-level processes.

The MLQS algorithm can also help improve the responsiveness of the

system by ensuring that high-priority processes are given priority access

to the CPU. By dividing the ready queue into multiple queues, the

operating system can ensure that each type of process is given the

appropriate amount of CPU time, without compromising the

performance of the system.

Multilevel Queue Scheduling is an important scheduling algorithm in

modern operating systems. It allows the operating system to prioritize

different types of processes based on their priority level and the needs

of the system. The MLQS algorithm can help improve the

responsiveness of the system and ensure that high-priority processes are

given priority access to the CPU.

5.3.6 Multilevel Feedback Queue Scheduling (MLFQS)

Multilevel Feedback Queue Scheduling (MLFQS) is a complex

scheduling algorithm that dynamically adjusts the priority of processes

based on their behavior over time. It is an extension of the Multilevel

Queue Scheduling (MLQS) algorithm and is widely used in modern

operating systems.

The MLFQS algorithm works by dividing the ready queue into multiple

priority queues. Each queue is assigned a different priority level, with

the highest priority queue being reserved for the most important

processes, such as system processes or real-time processes. Each queue

also has its own scheduling algorithm, with different algorithms being

used for different priority levels.

When a process is created, it is placed in the highest priority queue. The

process is then given a certain amount of time to execute, known as a

time slice or quantum. If the process completes its execution before the

PAGE 55

time slice expires, it is removed from the queue. If the time slice expires

before the process completes its execution, the process is preempted

and moved to a lower priority queue.

The priority of a process in MLFQS is determined dynamically based on

its behavior over time. Processes that use a lot of CPU time are given

lower priority to prevent them from monopolizing the CPU. Conversely,

processes that use less CPU time are given higher priority to ensure that

they are executed quickly.

MLFQS also includes a mechanism for promoting and demoting

processes between priority levels. When a process is blocked, it is moved

to a lower priority queue. When it becomes unblocked, it is moved back

to its original priority level. This ensures that long-running processes do

not hold up the system and that important processes are executed as

quickly as possible.

In summary, Multilevel Feedback Queue Scheduling (MLFQS) is a

powerful scheduling algorithm that dynamically adjusts the priority of

processes based on their behavior over time. It is designed to ensure that

important processes are executed quickly while preventing long-

running processes from monopolizing the CPU.

5.3.7 Lottery Scheduling

In operating systems, the lottery scheduling algorithm is a probabilistic

scheduling algorithm used to allocate resources to processes. It is a

unique scheduling algorithm because it provides equal opportunities for

all processes to win a "lottery ticket" and acquire CPU time. The

algorithm uses a lottery ticket metaphor to determine which process

gets the CPU next, making the process selection entirely random.

The lottery scheduling algorithm assigns each process a set of lottery

tickets. A lottery ticket represents the process's share of the CPU time.

The more lottery tickets a process has, the higher the chances of it

winning the lottery and acquiring the CPU.

PAGE 56

To allocate CPU time, the lottery scheduling algorithm randomly selects

a ticket from the ticket pool. The process that owns the ticket wins the

lottery and gets to run on the CPU for a set time quantum. After the

time quantum expires, the process returns the CPU, and the lottery

begins again.

The lottery scheduling algorithm uses a number of data structures to

maintain the ticket pool and manage processes' ticket allocation. One

such data structure is a list of processes, each with a number of lottery

tickets associated with it. The algorithm also maintains a list of unused

tickets and a counter that tracks the number of tickets in the pool.

The lottery scheduling algorithm has several advantages over other

scheduling algorithms. One significant advantage is its ability to provide

fairness to all processes. Since each process has an equal chance of

winning the lottery, the scheduling algorithm ensures that no process is

left behind or unfairly treated.

Another advantage of the lottery scheduling algorithm is its simplicity.

The algorithm is easy to implement and does not require complex data

structures or sophisticated algorithms. This simplicity translates to low

overhead costs and makes it a good choice for systems with limited

resources.

However, the lottery scheduling algorithm has some disadvantages.

One significant disadvantage is that the algorithm is entirely random.

There is no guarantee that a process with a large number of tickets will

win the lottery or that a process with few tickets will not win the lottery

several times in a row. This randomness can lead to inefficiencies in the

system's performance and unpredictability in the scheduling results.

Additionally, the lottery scheduling algorithm may not be suitable for

systems with strict scheduling requirements. The randomness of the

algorithm may lead to scheduling delays and missed deadlines, which

can be detrimental in real-time systems.

PAGE 57

The lottery scheduling algorithm is a unique scheduling algorithm that

uses a lottery ticket metaphor to allocate CPU time to processes. The

algorithm provides fairness to all processes and is easy to implement,

making it a good choice for systems with limited resources.

However, the algorithm's randomness can lead to inefficiencies and

unpredictability in the scheduling results, making it unsuitable for

systems with strict scheduling requirements. In such cases, other

scheduling algorithms, such as Round Robin or Priority Scheduling, may

be more appropriate.

5.3.8 Fair-Share Scheduling

In a multi-user system, it is important to ensure fairness and prevent

any single user from monopolizing system resources. Fair-Share

Scheduling is a scheduling algorithm that addresses this issue by

allocating system resources fairly among all users. In this chapter, we

will discuss the concept of Fair-Share Scheduling and how it works in an

operating system.

Fair-Share Scheduling is a scheduling algorithm that dynamically

allocates system resources based on the proportion of resources each

user is entitled to. Each user is assigned a "share" of the system resources,

and the scheduler ensures that each user gets their fair share. The

concept of fair sharing can be applied to various system resources,

including CPU time, memory, and I/O devices.

The Fair-Share Scheduling algorithm works by maintaining a record of

each user's resource usage over time. This record is used to calculate

each user's share of the resources based on a predetermined policy. The

policy may be based on factors such as the number of active processes,

the amount of CPU time used, or a combination of factors.

When a user requests a resource, such as CPU time or memory, the

scheduler checks their entitlement to that resource based on the user's

share. If the user's share has been used up, they may be placed in a

PAGE 58

waiting queue until their share becomes available again. This prevents

any user from monopolizing system resources and ensures that all users

are treated fairly.

The main advantage of Fair-Share Scheduling is that it ensures fairness

in the allocation of system resources. This is particularly important in

multi-user systems where resources are shared among multiple users.

By dynamically adjusting each user's share based on their resource usage,

the scheduler ensures that no user can monopolize the system resources.

Another advantage of Fair-Share Scheduling is that it allows

administrators to set policies that reflect the organization's priorities.

For example, a policy can be set to give higher priority to certain users

or groups of users, based on their role within the organization.

One potential disadvantage of Fair-Share Scheduling is that it can be

complex to implement and maintain. The scheduler needs to keep track

of each user's resource usage over time, which requires additional

system overhead. Additionally, the policies used to calculate each user's

share can be complex and difficult to configure.

Another potential disadvantage of Fair-Share Scheduling is that it may

not be suitable for all types of systems. For example, in a system where

users are performing real-time tasks, such as video streaming or audio

processing, Fair-Share Scheduling may not provide the necessary

responsiveness.

Fair-Share Scheduling is a scheduling algorithm that ensures fairness in

the allocation of system resources. It works by dynamically adjusting

each user's share based on their resource usage, preventing any single

user from monopolizing system resources. While Fair-Share Scheduling

has its advantages, such as allowing administrators to set policies that

reflect the organization's priorities, it also has potential disadvantages,

such as increased complexity and possible lack of responsiveness in real-

time systems.

PAGE 59

5.3.9 Guaranteed Scheduling

In the context of Operating Systems, a Guaranteed Scheduling

Algorithm is a type of scheduling algorithm that ensures that certain

processes are guaranteed a certain amount of CPU time, regardless of

the presence of other processes in the system. This is particularly useful

in situations where there are real-time processes that require a certain

level of responsiveness from the system.

In a Guaranteed Scheduling Algorithm, the system sets aside a certain

amount of CPU time for specific processes, known as guaranteed

processes. These guaranteed processes are given a certain priority level,

which determines the amount of CPU time they are allocated. Once a

guaranteed process is scheduled to run, it is given the CPU until it either

completes or reaches its maximum allocated time slice.

If there are no guaranteed processes ready to run, the system switches

to a different scheduling algorithm to assign CPU time to non-

guaranteed processes. This helps to ensure that non-guaranteed

processes don't starve for CPU time.

One of the main advantages of a Guaranteed Scheduling Algorithm is

that it ensures that certain processes receive the CPU time they need to

function properly. This is particularly important in real-time systems,

where a delay in processing a critical task could have serious

consequences.

Another advantage of Guaranteed Scheduling Algorithm is that it allows

for more precise control over system resources. By allocating specific

amounts of CPU time to specific processes, system administrators can

ensure that all processes receive an appropriate amount of resources,

while also preventing any single process from monopolizing the CPU.

The main disadvantage of a Guaranteed Scheduling Algorithm is that it

can be difficult to implement in a way that balances the needs of all

processes in the system. For example, if too much CPU time is allocated

PAGE 60

to guaranteed processes, non-guaranteed processes may experience

unacceptable levels of latency or may be starved for CPU time.

Additionally, a Guaranteed Scheduling Algorithm can be complex to

implement, requiring careful tuning of the system parameters and a

thorough understanding of the needs of each process in the system.

5.4 Importance of process scheduling in multi-tasking

and concurrency

In multi-tasking and concurrent environments, it is essential to have a

proper process scheduling mechanism in place. The scheduling

algorithm plays a vital role in deciding which process gets to execute on

the CPU and for how long. The process scheduling algorithm decides

the efficiency of an operating system in handling multiple tasks

simultaneously.

The primary goal of process scheduling is to improve system

performance by reducing the CPU idle time and improving the response

time of the system. The following are the key reasons why process

scheduling is essential in a multi-tasking and concurrent environment:

Resource Utilization: In a multi-tasking environment, several processes

compete for resources such as CPU, memory, and I/O devices. Process

scheduling ensures that these resources are allocated efficiently and

utilized to their maximum capacity.

Throughput: Process scheduling influences the throughput of the

system. The throughput refers to the number of processes that the

system can execute in a given period. A good process scheduling

algorithm can significantly improve the throughput of the system.

Response Time: The response time of a system refers to the time taken

by the system to respond to a user's input. A good process scheduling

PAGE 61

algorithm can ensure that the system responds to the user's input

promptly.

Fairness: Process scheduling ensures that every process gets a fair share

of the system resources. A fair process scheduling algorithm can ensure

that no process is starved of system resources.

Prioritization: Process scheduling can prioritize processes based on

their importance. The priority of a process determines its access to the

system resources. A good process scheduling algorithm can ensure that

critical processes get higher priority, ensuring that the system operates

efficiently.

In conclusion, process scheduling is an essential aspect of any operating

system, particularly in a multi-tasking and concurrent environment.

The scheduling algorithm used by an operating system can significantly

impact its performance, response time, throughput, fairness, and

prioritization. Operating system designers need to consider these

factors while designing the process scheduling algorithm to ensure that

the operating system is efficient and responsive.

6 Interprocess Communication (IPC) and

Synchronization

In this chapter, we will explore the various methods of IPC and

synchronization, such as shared memory, message passing, semaphores,

and monitors. These methods provide a means for different processes

to exchange information and coordinate their activities. We will also

discuss the importance of IPC and synchronization in multi-tasking and

concurrency, and how they help in preventing race conditions,

deadlocks, and other synchronization problems that may arise when

multiple processes access shared resources simultaneously. Overall, this

PAGE 62

chapter will provide you with an understanding of how IPC and

synchronization play a crucial role in the effective management of

processes in operating systems.

6.1 Definition of IPC and synchronization

Interprocess Communication (IPC) and synchronization are two

important concepts in operating systems that are necessary for effective

multi-tasking and concurrency.

IPC refers to the mechanisms and techniques used by different

processes to communicate with each other and share resources. In a

multi-tasking environment, it is essential for different processes to

communicate with each other to coordinate their activities, share data,

and perform tasks collaboratively.

Synchronization, on the other hand, refers to the process of

coordinating access to shared resources among different processes. In a

multi-tasking environment, multiple processes may require access to

the same resources simultaneously, and synchronization ensures that

they do not interfere with each other.

IPC and synchronization are closely related concepts, as

synchronization is necessary for proper communication and resource

sharing between processes. There are various methods available for IPC

and synchronization, each with its own advantages and disadvantages.

In the following chapters, we will explore different methods of IPC and

synchronization in detail, along with their advantages, disadvantages,

and real-world applications.

PAGE 63

6.2 Race conditions

Race conditions are a common issue in operating systems, particularly

in systems that allow multiple processes to access shared storage. In a

race condition, two or more processes or threads access shared storage

concurrently, and the order in which they access the storage affects the

outcome of the program. This can lead to unpredictable behavior and

errors in the system.

For example, in a print spooler, two or more processes might try to add

a file to the spooler directory at the same time. If the directory is not

protected against simultaneous access, one process might overwrite the

file added by another process. Alternatively, the printer daemon might

try to print a file that has not been completely spooled, leading to

printing errors.

To avoid race conditions, operating systems use various synchronization

mechanisms, such as semaphores, mutexes, and monitors. These

mechanisms ensure that only one process or thread can access shared

storage at a time, preventing conflicts and ensuring the correct

operation of the system.

It's important to note that while synchronization mechanisms can

prevent race conditions, they can also introduce new problems, such as

deadlocks and livelocks. Deadlocks occur when two or more processes

or threads are blocked, waiting for each other to release a resource.

Livelocks occur when two or more processes or threads are blocked, but

continue to perform nonproductive actions, preventing progress in the

system.

In summary, race conditions are a common issue in operating systems

that allow multiple processes or threads to access shared storage. To

avoid race conditions, operating systems use synchronization

mechanisms such as semaphores, mutexes, and monitors. However,

these mechanisms can introduce new problems such as deadlocks and

PAGE 64

livelocks. Therefore, careful design and implementation are necessary

to ensure the correct and efficient operation of the system.

6.3 Critical Regions

When multiple processes access shared data, they may run into race

conditions, causing unpredictable behavior and potential data

corruption. To avoid these issues, we need to ensure that only one

process accesses the shared data at any given time. This is achieved by

creating critical regions or mutual exclusion.

A critical region is a section of code in a process that accesses shared

resources. To prevent race conditions, only one process should execute

the critical region at any given time. This is accomplished by using

synchronization mechanisms that ensure exclusive access to the critical

region.

The two most commonly used synchronization mechanisms for

implementing critical regions are semaphores and monitors.

Semaphores are integer variables that are used to control access to

shared resources. Monitors are a higher-level synchronization construct

that includes shared variables and procedures for accessing them.

Semaphores and monitors work by allowing only one process to access

the shared resource at a time. If a process tries to access the resource

while it is being used by another process, it is blocked until the resource

is released. This ensures that only one process executes the critical

region at any given time.

One important consideration when implementing critical regions is

deadlock, a situation where two or more processes are blocked, waiting

for resources that are held by other blocked processes. Deadlock can

occur when synchronization mechanisms are not properly implemented,

leading to a situation where no progress can be made.

PAGE 65

To prevent deadlock, it is essential to ensure that synchronization

mechanisms are used consistently throughout the system. This includes

ensuring that all critical regions are properly protected and that

processes release shared resources when they are no longer needed.

In summary, critical regions are essential for ensuring that shared

resources are accessed safely and effectively in a multi-process system.

By implementing synchronization mechanisms such as semaphores and

monitors, we can prevent race conditions and ensure that processes

access shared resources in a mutually exclusive manner. However, care

must be taken to prevent deadlock by ensuring consistent use of

synchronization mechanisms throughout the system.

6.4 Mutual Exclusion with Busy Waiting

One of the most straightforward ways to achieve mutual exclusion is

through busy waiting. In this approach, a process repeatedly tests a

shared variable in a loop, waiting until the variable is available for use.

The process then enters its critical region, performs its task, and then

releases the variable so that another process can access it.

While this method is simple to understand and implement, it has some

significant drawbacks. The main issue with busy waiting is that it can

waste a lot of CPU time. Since the process is continuously looping while

waiting for the variable to be available, it is using CPU resources that

could be better used by other processes. In addition, if a process forgets

to release the variable after it is done, other processes will be locked out

of the critical region indefinitely.

Despite these issues, busy waiting is still used in some situations. For

example, it is commonly used in low-level synchronization primitives

such as spinlocks, which are used in kernel-level code to protect shared

data structures.

PAGE 66

To mitigate the downsides of busy waiting, operating systems also

provide alternative methods for mutual exclusion, such as sleep-and-

wakeup and semaphores, which we will explore in the following sections.

6.4.1 Disabling interrupts

Disabling interrupts is a technique for achieving mutual exclusion in a

single-processor system. When a process enters its critical region, it

disables all interrupts to prevent other processes from interrupting it

and accessing the shared memory. Once the process has finished

updating the shared memory, it re-enables interrupts before leaving the

critical region.

While disabling interrupts may seem like a simple and effective solution,

it has some drawbacks. For one, it can cause the system to become

unresponsive if a process forgets to re-enable interrupts, as the clock

interrupt will not occur and the system will hang. Additionally,

disabling interrupts can also lead to problems with I/O operations, such

as disk accesses, which require interrupts to signal when an operation is

complete.

Despite these drawbacks, disabling interrupts can still be a useful

technique in certain situations, particularly in embedded systems where

the hardware is tightly integrated with the software and the system is

designed specifically to handle this type of mutual exclusion. However,

in most general-purpose operating systems, disabling interrupts is not

the preferred method for achieving mutual exclusion, as there are other

techniques that are safer and more efficient, such as semaphores and

mutexes.

6.4.2 Lock variables

Lock variables are a commonly used software solution to achieve mutual

exclusion. The idea is simple: have a single, shared variable that acts as

a lock. When a process wants to enter its critical region, it first tests the

PAGE 67

lock. If the lock is 0, the process sets it to 1 and enters the critical region.

If the lock is already 1, the process just waits until it becomes 0 again.

The use of lock variables is a simple and effective way of ensuring mutual

exclusion. However, there are some potential issues that need to be

considered. For example, suppose two processes are waiting to enter

their critical regions, and the lock variable is currently 0. Both processes

may simultaneously try to set the lock variable to 1, which could result

in a race condition. In order to avoid such problems, some form of

atomic operation is required to set the lock variable to 1.

Another issue to consider is the possibility of deadlock. Deadlock can

occur when two or more processes are waiting for each other to release

locks that they currently hold. For example, suppose two processes each

hold a lock variable, and they are both waiting to acquire the other's

lock. This situation can be avoided by ensuring that lock variables are

always acquired in a predetermined order.

Lock variables can also be used to implement more sophisticated

synchronization mechanisms. For example, a semaphore is a

synchronization primitive that uses a lock variable and a counter. The

counter is used to keep track of the number of available resources, and

the lock variable is used to ensure that only one process at a time can

access the counter.

Overall, lock variables are a simple and effective way of ensuring mutual

exclusion in a shared memory system. However, care must be taken to

avoid race conditions and deadlocks, and more sophisticated

synchronization mechanisms may be required in some situations.

6.4.3 Strict alternation

Strict alternation is a technique for achieving mutual exclusion that uses

a shared boolean variable to enforce strict alternation between two

processes. The idea behind strict alternation is that two processes, P0

and P1, take turns accessing a shared resource. When P0 wants to enter

PAGE 68

its critical section, it first sets the shared boolean variable to true,

indicating that it is its turn to enter the critical section. It then enters its

critical section and performs its task. When P0 is finished, it sets the

shared boolean variable to false, indicating that it is P1's turn to enter

the critical section. P1 can then proceed in the same way, and so on.

Example: Here is an example implementation of strict alternation:

bool turn = false; // shared boolean variable

// Process P0

while (true) {

 while (turn == true); // wait for P1 to finish

 // critical section for P0

 turn = true; // pass the turn to P1

}

// Process P1

while (true) {

 while (turn == false); // wait for P0 to finish

 // critical section for P1

 turn = false; // pass the turn to P0

}

In this implementation, the two processes P0 and P1 take turns entering

their critical sections, based on the value of the shared boolean variable

turn. The while loops ensure that a process waits until it is its turn to

enter the critical section, and the setting of turn at the end of each

critical section ensures that the other process will eventually have its

turn.

PAGE 69

While strict alternation is simple and easy to implement, it has several

limitations. The most significant limitation is that it does not scale well

to more than two processes. With more than two processes, the

processes would need to wait for each other in a specific order, which

can become complicated and error-prone. Additionally, strict

alternation can lead to starvation, where a process is unable to enter its

critical section because it is repeatedly passed over in favor of the other

process. To avoid starvation, it may be necessary to introduce additional

rules or mechanisms, such as a timeout or a fairness policy.

6.4.4 Peterson's solution

Peterson's solution is a software-based algorithm designed to solve the

mutual exclusion problem in a concurrent system without using busy

waiting. The algorithm was proposed by Gary L. Peterson in 1981, and it

builds on the idea of taking turns between two processes in a critical

section.

Peterson's solution uses two shared variables, turn and flag, to control

the entry of two processes into their critical regions. The turn variable

is used to indicate whose turn it is to enter the critical section, and the

flag variable is used to indicate whether a process wants to enter its

critical region. The two processes alternate turns, and when one process

is in its critical section, the other process waits until it is its turn.

The algorithm works as follows:

 Initialize the turn variable to either 0 or 1, depending on which

process should go first.

 Initialize both flag variables to false.

 Process P0 sets its flag to true and sets turn to 1.

 Process P0 enters the critical section if and only if P1's flag is false

or turn is 0.

 Process P0 exits the critical section and sets its flag to false.

 Process P1 sets its flag to true and sets turn to 0.

PAGE 70

 Process P1 enters the critical section if and only if P0's flag is false

or turn is 1.

 Process P1 exits the critical section and sets its flag to false.

The key idea behind Peterson's solution is that a process checks the turn

variable to see if it is its turn to enter the critical section. If it is not its

turn, the process waits until it is its turn. Additionally, a process sets its

flag to indicate that it wants to enter the critical section. If the other

process's flag is already set, then the process waits until the other

process has finished.

Peterson's solution is an improvement over strict alternation and lock

variables because it avoids busy waiting. The algorithm is also simple

and easy to implement, although it only works for two processes.

However, Peterson's solution suffers from several drawbacks. The

algorithm assumes that processes take turns, which may not be true in

all cases. Moreover, the algorithm does not work for more than two

processes, and it is vulnerable to priority inversion, a situation where a

low-priority process holds the lock and prevents a high-priority process

from entering its critical section.

Overall, Peterson's solution is a useful algorithm for solving the mutual

exclusion problem in a concurrent system, but it has limitations that

must be taken into account when designing a real-time operating

system.

6.4.5 The TSL instruction

In the previous sections, we have examined various software solutions

to the mutual exclusion problem. In this section, we will take a look at

a hardware solution that relies on a special instruction available on some

computers called Test and Set Lock (TSL).

TSL is a single instruction that performs two operations atomically: it

reads the value at a given memory location into a register and sets the

PAGE 71

value of the memory location to a non-zero value. This means that the

read and write operations happen without any interruption from other

processors, ensuring mutual exclusion.

The TSL instruction is especially useful in systems with multiple

processors where software solutions like lock variables and Peterson's

solution may not work effectively. By relying on a hardware instruction,

TSL avoids the need for busy waiting and reduces the overhead involved

in mutual exclusion.

However, the use of TSL also requires careful consideration. If multiple

processes are contending for the same lock, the order in which they are

granted access can affect system performance. Also, in systems without

TSL, software solutions like Peterson's algorithm may be more portable

and easier to implement.

In conclusion, the TSL instruction provides a powerful mechanism for

achieving mutual exclusion in hardware, but its use requires careful

consideration of its advantages and limitations. It is up to the operating

system designer to weigh the trade-offs involved and choose the most

appropriate mechanism for their system.

While the solutions we have discussed so far, such as Peterson's solution

and the ones using TSL or XCHG instructions, are correct in ensuring

mutual exclusion, they have the drawback of requiring busy waiting.

This means that when a process is unable to enter its critical region, it

repeatedly checks for availability in a tight loop, wasting CPU time and

potentially causing unexpected effects.

6.5 Sleep and Wakeup

To overcome this drawback, we need to find a solution that allows the

waiting process to give up the CPU and only resume its attempt to enter

the critical region when it receives some sort of notification that the

PAGE 72

resource is available. This notification can be in the form of an interrupt,

a signal, or a message.

One way to implement this solution is to use a sleep/wakeup

mechanism. When a process finds that the critical region is currently in

use, it calls a sleep function that blocks the process until the resource is

available. The process is then placed in a waiting queue, and the CPU is

made available for other processes to run.

When the resource becomes available, the process holding the resource

calls a wakeup function that signals the waiting processes that the

resource is now available. The processes in the waiting queue are then

made ready to run, and the operating system scheduler decides which

process should be granted the CPU next.

This approach not only saves CPU time by avoiding busy waiting but

also allows for better use of resources, as other processes can use the

CPU while a process is waiting for a critical resource.

In conclusion, while solutions like Peterson's solution and those using

TSL or XCHG instructions are effective in ensuring mutual exclusion,

they have the drawback of requiring busy waiting. A sleep/wakeup

mechanism can be used to overcome this drawback by allowing waiting

processes to give up the CPU and only resume their attempt to enter the

critical region when the resource is available, thus saving CPU time and

enabling better resource utilization.

6.6 Methods of IPC and synchronization:

In a multi-tasking and concurrent environment, processes often need to

communicate and synchronize with each other to achieve their

intended goals. This is where Interprocess Communication (IPC) and

synchronization techniques come into play. IPC and synchronization

allow processes to exchange information and coordinate their activities,

ensuring that the system operates correctly and efficiently.

PAGE 73

There are several methods of IPC and synchronization, each with its

strengths and weaknesses. In this chapter, we will explore four of the

most commonly used methods: shared memory, message passing,

semaphores, and monitors.

6.6.1 Semaphores

Semaphores are a synchronization technique that allows processes to

coordinate their activities by controlling access to shared resources. A

semaphore is essentially a counter that can be incremented and

decremented by processes. When the counter reaches zero, the

semaphore is considered to be locked, and any process attempting to

access the shared resource must wait until the semaphore is unlocked.

Semaphores can be used to implement critical sections, where only one

process at a time is allowed to access a shared resource. They can also

be used to implement synchronization between processes, ensuring that

one process completes its task before another process begins.

6.6.2 Mutexes

Mutexes, short for mutual exclusion objects, are a synchronization

primitive that is widely used in operating systems to manage concurrent

access to shared resources or pieces of code. They work in a similar way

to semaphores but are simpler and more efficient to implement, which

makes them popular in user-space thread packages.

A mutex is a shared variable that can be either in an unlocked or locked

state. This state is indicated by a single bit or an integer, with zero

indicating that the mutex is unlocked and any other value indicating

that the mutex is locked. Two procedures are associated with mutexes:

lock and unlock.

When a thread or process needs access to a critical region, it calls the

lock procedure. If the mutex is currently unlocked (i.e., the critical

region is available), the lock call succeeds, and the thread is allowed to

PAGE 74

enter the critical region. If the mutex is already locked (i.e., the critical

region is currently in use), the lock call blocks the thread until the mutex

becomes unlocked again. This blocking mechanism prevents busy

waiting, which can waste CPU time and degrade system performance.

Once a thread finishes executing in the critical region, it must call the

unlock procedure to release the mutex and make the critical region

available to other threads. The unlock procedure simply sets the mutex

to an unlocked state, indicating that the critical region is available again.

Mutexes provide a simple and effective way of managing mutual

exclusion and preventing race conditions in a concurrent environment.

They are widely used in operating systems and are an essential

component of many synchronization mechanisms.

6.6.3 Shared Memory

Shared memory is a technique that allows multiple processes to access

the same region of memory. This region of memory is called a shared

memory segment and is typically created by one process and then

shared with other processes. Once a process has access to the shared

memory segment, it can read from and write to it just like any other

region of memory.

Shared memory is a fast and efficient way for processes to exchange

large amounts of data because there is no need to copy the data between

processes. However, it requires careful management to ensure that

processes do not overwrite each other's data or access the shared

memory segment at the same time.

6.6.4 Message Passing

Message passing is a technique that involves sending messages between

processes. In this method, one process sends a message to another

process, which receives and processes the message. Messages can be

sent using either synchronous or asynchronous communication.

PAGE 75

Synchronous communication means that the sender and receiver must

synchronize their actions, such that the sender will not send another

message until the receiver has processed the first message.

Asynchronous communication, on the other hand, allows the sender to

continue processing without waiting for the receiver to respond.

Message passing is a flexible and reliable method of IPC, but it can be

slower and less efficient than shared memory, especially when large

amounts of data need to be exchanged.

6.6.5 Monitors

Monitors are a synchronization technique that provides a higher-level

abstraction than semaphores. A monitor is a module that encapsulates

shared data and the procedures that operate on that data. Only one

process can access a monitor at a time, and any other process that

attempts to access the monitor is blocked until the first process

completes its work.

Monitors are a powerful tool for IPC and synchronization because they

simplify the development of concurrent programs. They provide a

natural way to encapsulate shared data and procedures and ensure that

processes do not interfere with each other.

IPC and synchronization are essential concepts in the field of operating

systems. The methods we have discussed in this chapter provide ways

for processes to communicate and coordinate their activities effectively,

ensuring that the system operates correctly and efficiently. Shared

memory, message passing, semaphores, and monitors all have their

strengths and weaknesses, and the choice of which method to use

depends on the specific requirements of the system. As such, it is

important for operating system developers to have a solid

understanding of these concepts and their implementation.

PAGE 76

6.6.6 Barriers

Barriers are synchronization mechanisms designed for groups of

processes rather than just two processes. They are commonly used in

applications that are divided into phases, where no process is allowed to

proceed to the next phase until all processes have completed the current

one. Barriers are particularly useful for parallel computing, where

multiple processes work together to solve a problem.

The basic idea behind barriers is to place a synchronization point at the

end of each phase, which ensures that all processes have completed their

work before moving on to the next phase. When a process reaches the

barrier, it is blocked until all other processes have also reached the

barrier. Once all processes have reached the barrier, they are released

and can proceed to the next phase.

One common implementation of barriers is the "counting barrier",

which works as follows: when a process reaches the barrier, it

decrements a counter that keeps track of the number of processes that

have reached the barrier. If the counter reaches zero, all processes have

reached the barrier, and they are released. If the counter is not zero, the

process is blocked until all other processes have reached the barrier.

Another type of barrier is the "sense-reversing barrier", which requires

each process to maintain a "sense" variable that is toggled between true

and false at each barrier. When a process reaches the barrier, it checks

the sense variable of another process. If the sense variable is different

from its own, the process is blocked until the other process has also

reached the barrier. Once all processes have reached the barrier, they

toggle their sense variables and release the waiting processes.

Barriers can be implemented using any synchronization mechanism,

such as semaphores or mutexes, but they are often implemented using

specialized barrier objects provided by the operating system or

programming language. These objects typically provide higher-level

PAGE 77

interfaces for creating and using barriers, making it easier for

programmers to synchronize groups of processes.

In summary, barriers are a powerful synchronization mechanism that

can be used to ensure that groups of processes complete their work in a

coordinated and efficient manner. They are particularly useful in

parallel computing and other applications that are divided into phases.

6.7 Importance of IPC and synchronization

In a multi-tasking and concurrent operating system, several processes

run simultaneously, accessing and manipulating shared resources, such

as memory, files, or hardware devices. To ensure correct and safe

operation, these processes must communicate and synchronize with

each other through Interprocess Communication (IPC) and

synchronization mechanisms.

IPC allows processes to exchange information and coordinate their

activities. This is crucial for tasks such as data sharing, interlocking, or

coordination, which can be accomplished using different methods, such

as shared memory, message passing, semaphores, or monitors.

Synchronization mechanisms, on the other hand, ensure that processes

access shared resources in an orderly and safe manner. For instance,

mutual exclusion mechanisms, like semaphores or monitors, prevent

two processes from accessing the same resource simultaneously, thus

avoiding race conditions and data inconsistencies. Similarly,

synchronization mechanisms like barriers, locks, or condition variables,

ensure that processes wait for each other until a specific condition is

met, allowing them to coordinate their activities.

In conclusion, IPC and synchronization are critical components of

multi-tasking and concurrent operating systems, as they ensure that

processes can communicate and coordinate with each other in a safe

and efficient manner. By using these mechanisms, processes can access

PAGE 78

and manipulate shared resources while avoiding data inconsistencies,

race conditions, or deadlocks.

7 Case Study: Process Management in Linux

In this chapter, we will explore the process management in Linux, one

of the most popular operating systems in the world. We will begin by

giving an overview of the Linux process management, including its

design principles and features.

Next, we will compare Linux process management with other operating

systems, such as Windows and MacOS. This will help us to understand

the strengths and weaknesses of Linux process management and how it

differs from other systems.

Finally, we will discuss the impact of process management on the

performance, reliability, and functionality of the Linux Operating

System. We will analyze the various techniques and strategies employed

by the Linux process management system to achieve these goals.

7.1 Overview of Linux process management

Linux is one of the most widely used operating systems in the world,

powering everything from servers to mobile devices. One of the key

reasons for its success is the robust process management capabilities it

provides. In this chapter, we will take a closer look at the process

management features of Linux.

Processes in Linux are managed using the process table, which is a data

structure that holds information about all currently running processes.

Each process is identified by a unique process ID (PID) and is associated

with other data, including its state, priority, parent process, and

resource usage.

PAGE 79

Linux provides a range of tools for managing processes, including the

top command, which displays information about running processes,

and the kill command, which is used to terminate a running process.

The ps command is used to list processes and their attributes, while the

nice and renice commands are used to adjust process priorities.

In Linux, processes are organized into a hierarchical structure, with each

process having a parent process and the root process (init) as the

ultimate parent. This structure helps to ensure that processes are

properly managed and terminated when they are no longer needed.

Another key feature of Linux process management is the ability to create

and manage threads. Threads are lightweight processes that share

memory and other resources with their parent process. Linux provides

a range of threading models, including POSIX threads, Native Posix

threads library (NPTL), and LinuxThreads.

Overall, Linux's process management capabilities are a major strength

of the operating system. They enable efficient multitasking and

concurrency, ensuring that the system can handle multiple tasks

simultaneously without becoming bogged down or crashing. Linux's

process management features have also been influential in the

development of other operating systems, making them an important

area of study for anyone interested in operating system design and

implementation.

7.2 Comparison with process management in other

operating systems

Linux process management has several unique features and capabilities

that set it apart from process management in other operating systems.

In this chapter, we will compare Linux process management with

process management in other popular operating systems, including

Windows and macOS.

PAGE 80

7.2.1 Windows Process Management:

In Windows, the process management system is similar to that of Linux,

where each process has its own virtual address space. However, there

are some notable differences between the two. For example, in Windows,

processes are assigned a priority value, which determines the order in

which they are executed. This priority value can be changed by the

operating system or the user, depending on the needs of the system.

Additionally, Windows uses a system of "job objects" to group processes

together and apply policies such as CPU time limits, memory limits, and

more.

7.2.2 macOS Process Management:

Like Linux and Windows, macOS also uses a similar process

management system. However, there are some notable differences

between the three. For example, macOS uses a concept called "launchd"

to manage processes. Launchd is a daemon that manages system

services, user applications, and other processes. It provides a single

point of control for starting, stopping, and monitoring processes on the

system. Additionally, macOS uses a system of "sandboxing" to limit the

resources available to individual processes, providing an additional layer

of security.

7.2.3 Linux Process Management:

Linux process management is highly flexible and customizable. Each

process has its own virtual address space and is managed by the kernel.

The Linux kernel provides a variety of scheduling algorithms, including

the Completely Fair Scheduler (CFS) and the Round Robin Scheduler.

Additionally, Linux supports a wide range of IPC mechanisms, including

shared memory, message passing, and semaphores.

Linux also has a unique process management feature called "cgroups"

(control groups). Cgroups allow processes to be organized into

PAGE 81

hierarchical groups, with each group having its own set of resource

limits (CPU, memory, etc.). This feature is particularly useful for

managing large-scale deployments such as web servers, where it is

essential to limit resource usage.

In conclusion, Linux process management provides a high degree of

flexibility and customization, allowing it to be adapted to a wide range

of use cases. While other operating systems have similar process

management systems, Linux stands out for its support for cgroups, its

variety of scheduling algorithms, and its range of IPC mechanisms.

7.3 Impact on Linux Operating System's performance,

reliability, and functionality

Linux is known for its excellent process management system, which

allows for efficient multi-tasking and concurrency. The process

management system in Linux is responsible for creating, managing, and

terminating processes, as well as allocating resources to these processes.

The impact of Linux's process management system on its performance

is significant. The kernel's scheduler is designed to be efficient and can

quickly switch between processes, allowing for smooth multi-tasking.

This means that users can run multiple programs simultaneously

without any noticeable lag or slowdown.

Moreover, Linux's process management system is designed with

reliability in mind. It includes several mechanisms for ensuring that

processes run smoothly and without interruption. For example, Linux

uses signals to communicate with processes and notify them of events

such as errors or resource availability.

In addition to performance and reliability, Linux's process management

system also has an impact on the system's functionality. The system is

designed to be flexible and can adapt to different requirements. For

PAGE 82

example, it allows for the creation of real-time processes that require

immediate attention and prioritization.

Furthermore, Linux's process management system supports various

synchronization and interprocess communication mechanisms,

including shared memory, message passing, semaphores, and monitors.

These mechanisms enable processes to communicate and synchronize

their activities efficiently, which is essential for multi-tasking and

concurrency.

Overall, Linux's process management system is a critical component of

the operating system, and its impact on performance, reliability, and

functionality cannot be overstated. It is a testament to the power and

flexibility of open-source software development and community-driven

innovation.

8 Conclusion

In conclusion, processes are the fundamental building blocks of

operating systems. They allow users to run multiple tasks concurrently

and efficiently use the resources of a computer system. Process

management includes various activities such as process creation,

scheduling, synchronization, and communication. Operating systems

use a range of scheduling algorithms to manage processes effectively,

depending on the needs of the system and the tasks being performed.

Interprocess communication and synchronization play a crucial role in

maintaining the integrity of processes and preventing errors or conflicts

in multi-tasking and concurrent environments.

As we have seen, Linux operating system provides a robust and efficient

process management system, allowing users to run multiple processes

simultaneously and effectively utilize system resources. The Linux

process management system is superior to other operating systems in

terms of scalability, flexibility, and reliability.

PAGE 83

Overall, understanding processes and their management is essential for

anyone interested in operating systems and computer science. By

understanding how processes work, how they communicate with each

other, and how they interact with system resources, we can build more

efficient and reliable operating systems that meet the demands of

modern computing.

