

Introduction

OPERATING SYSTEMS

Sercan Külcü | Operating Systems | 16.04.2023

PAGE 1

Contents

Contents .. 1

1 Welcome to the world of operating systems! 4

1.1 Definition of operating systems .. 5

1.2 Importance of operating systems ... 6

1.3 Brief history of operating systems ...7

1.3.1 The First Generation (1945–55): ... 9

1.3.2 The Second Generation (1955–65): ... 10

1.3.3 The Third Generation (1965–1980): ... 11

1.3.4 The Fourth Generation (1980–Present): 12

1.3.5 The Fifth Generation (1990–Present): 14

1.4 Why should I study operating systems? 15

1.5 Components of a computer system ... 18

1.6 Computer hardware .. 20

1.6.1 Processors ... 21

1.6.2 Memory ... 21

1.6.3 Disks .. 23

1.6.4 I/O devices ... 23

1.6.5 Buses .. 24

1.7 What does an OS really do? ... 25

1.8 Computer boot process .. 27

1.9 Operating system types ... 28

1.9.1 Mainframe Operating Systems ...28

1.9.2 Server operating systems ..29

1.9.3 Multiprocessor operating systems ...30

PAGE 2

1.9.4 Personal computer operating systems 31

1.9.5 Handheld computer operating systems 31

1.9.6 Embedded operating systems ... 32

1.9.7 Sensor-node operating systems .. 33

1.9.8 Real-time operating systems .. 34

1.9.9 Smart card operating systems .. 35

2 The role of operating systems ..36

2.1 Bridging the gap between hardware and software 37

2.2 Providing abstractions and services ..38

2.3 OS is known as a resource manager ..39

2.4 Ensuring efficient and secure application execution 41

2.5 What happens when a program runs? .. 41

2.6 The Von Neumann model.. 43

2.7 Virtualization: Making the OS More Efficient and User-Friendly

 44

3 Understanding the architecture of operating systems 46

3.1 Kernel ... 47

3.2 Shell .. 49

3.3 User interface .. 51

4 Operating system services .. 53

4.1 User interface .. 53

4.2 Program execution ...54

4.3 I/O operations .. 55

4.4 File system manipulation .. 56

4.5 Communications .. 57

4.6 Error detection .. 57

PAGE 3

4.7 Resource allocation ... 58

4.8 Accounting ... 59

4.9 Protection and security ... 60

5 Operating system operations ... 61

5.1 Process management ... 62

5.2 Memory management ..63

5.3 Storage management ... 64

5.4 Mass-storage management ... 65

6 The future of operating systems ... 66

6.1 Trends in operating systems ... 67

6.1.1 Cloud-Based Operating Systems: .. 67

6.1.2 Containerized Operating Systems: .. 68

6.1.3 Artificial Intelligence: .. 68

6.1.4 Internet of Things (IoT): .. 68

6.1.5 Open Source: .. 69

6.2 Impact of emerging technologies ... 69

6.3 Future developments in operating systems 70

6.3.1 Artificial Intelligence Integration: .. 71

6.3.2 Virtualization and Cloud Computing:.................................... 71

6.3.3 Internet of Things (IoT) Integration: 71

6.3.4 Quantum Computing:... 71

6.3.5 Augmented and Virtual Reality: ... 72

7 Conclusion ... 72

PAGE 4

Chapter 1:
Introduction

1 Welcome to the world of operating systems!

Welcome to the world of operating systems! Whether you're a computer

enthusiast, a student studying computer science, or just curious about

how the technology you use every day works, this is a fascinating and

important subject to explore.

So, what exactly is an operating system? At its core, an operating system

is a software program that manages a computer's resources and provides

a user interface for interacting with those resources. Every computer,

whether it's a desktop, laptop, or mobile device, has an operating system

that runs underneath the applications and programs you use.

But why is understanding operating systems important? For one, it can

help you troubleshoot and solve problems on your computer. If you're

having trouble with an application or hardware device, understanding

how the operating system manages those resources can give you clues

about what's going wrong.

Beyond that, understanding operating systems is essential for anyone

pursuing a career in computer science or related fields. Operating

systems are a foundational piece of technology that underpins

everything from cloud computing to artificial intelligence. Knowing

how they work and how to optimize them can give you a competitive

edge in your career.

So, what can you expect to learn in an operating systems book? You'll

start with an overview of the history and types of operating systems,

including desktop, mobile, real-time, and embedded systems. From

PAGE 5

there, you'll dive into the components of an operating system, including

the kernel, device drivers, and user interface.

You'll also learn about the functions of an operating system, such as

process management, memory management, and file systems. These are

the behind-the-scenes operations that allow your computer to run

smoothly and efficiently.

Throughout the book, you'll find hands-on exercises to reinforce your

understanding, as well as troubleshooting tips for common operating

system issues. By the end of the book, you'll have a deep understanding

of how operating systems work and how to optimize them for your

needs.

1.1 Definition of operating systems

Operating systems are an essential component of any modern computer

system. They are the underlying software that manages all the hardware

and software resources of the computer, including memory, processor,

input/output devices, and storage devices. In simple terms, an operating

system acts as a bridge between the hardware and software of a

computer, providing a layer of abstraction that makes it easier for users

and applications to interact with the computer.

There are many different types of operating systems, each designed for

specific purposes and hardware platforms. For example, desktop

operating systems like Windows, MacOS, and Linux are designed to run

on personal computers, while mobile operating systems like Android

and iOS are designed to run on smartphones and tablets. Real-time

operating systems are used in embedded systems like digital cameras

and smart appliances, while mainframe operating systems are used in

large-scale enterprise systems.

The main functions of an operating system include process

management, memory management, input/output management, and

PAGE 6

file management. Process management involves managing the

execution of multiple processes or tasks simultaneously, allocating

resources like memory and CPU time to each process. Memory

management involves managing the allocation and deallocation of

memory to processes and ensuring that the system doesn't run out of

memory. Input/output management involves managing the input and

output devices of the system, such as keyboards, mouse, and printers.

Finally, file management involves managing the storage and retrieval of

files on the system's storage devices.

Overall, operating systems are essential components of modern

computing, providing the foundation for all software applications and

allowing users to interact with their computers and other devices. By

understanding the basics of operating systems, you can better

troubleshoot and optimize your computer system, as well as gain a

deeper appreciation for the technology that powers our modern world.

1.2 Importance of operating systems

Operating systems are the unsung heroes of the computing world. They

may not be flashy or glamorous, but they play a critical role in ensuring

that our devices run smoothly and reliably. From desktops to

smartphones, and everything in between, operating systems are the

foundation upon which all software applications are built.

One of the most important functions of an operating system is resource

management. This includes managing the computer's memory, CPU,

and other resources to ensure that all applications have the resources

they need to run efficiently. Without an operating system to manage

these resources, a computer would quickly become overwhelmed and

crash.

Another important function of operating systems is security. Modern

operating systems have built-in security features like firewalls and

PAGE 7

antivirus software to protect against viruses, malware, and other cyber

threats. Operating systems also provide user management features to

control who has access to the system and what actions they can perform.

Operating systems also provide a standardized platform for software

developers. By providing a common set of tools and APIs, operating

systems allow developers to create applications that can run on a wide

range of devices and hardware configurations. This helps to promote

innovation and competition in the software industry, ultimately

benefiting consumers with a wider range of high-quality software

options.

Finally, operating systems play a critical role in ensuring that our devices

are easy to use and understand. Through the use of graphical user

interfaces (GUIs) and other user-friendly features, operating systems

make it easy for users to interact with their devices and perform

common tasks like browsing the web, sending emails, and creating

documents.

In conclusion, operating systems are the backbone of modern

computing. They provide essential functions like resource management,

security, and standardized platforms for software development, while

also making devices easier to use and understand. While they may not

be the most exciting aspect of computing, operating systems are truly

indispensable, and their importance cannot be overstated.

1.3 Brief history of operating systems

Operating systems are an integral part of modern computing, but they

have a long and storied history. From the early days of punch cards to

the rise of the internet, operating systems have evolved alongside

technology to become the backbone of modern computing.

PAGE 8

The first operating systems were developed in the 1950s and 1960s for

mainframe computers. These early operating systems, such as the IBM

OS/360, were designed to manage the complex hardware and software

configurations of these massive machines. They were also responsible

for managing batch processing, which allowed large numbers of jobs to

be processed in sequence.

In the 1970s, the development of microprocessors and personal

computers led to a new generation of operating systems. This era was

dominated by Unix, which was first developed in the late 1960s by Bell

Labs. Unix was designed to be portable and scalable, making it ideal for

use on a wide range of hardware platforms. It also introduced the

concept of a command-line interface, which allowed users to interact

with the system using typed commands.

In the 1980s, the rise of personal computing led to the development of

graphical user interfaces (GUIs) and operating systems like Windows

and MacOS. These new operating systems made it easier for users to

interact with their computers and perform common tasks like word

processing and email.

The 1990s saw the rise of networked computing and the internet, which

led to the development of new operating systems like Linux and

FreeBSD. These operating systems were designed to be open source,

which allowed developers to collaborate and contribute to their

development. This led to a rapid evolution of these operating systems

and the development of new technologies like virtualization and cloud

computing.

Today, operating systems continue to evolve alongside new

technologies like artificial intelligence, the Internet of Things (IoT), and

blockchain. The history of operating systems shows that they have come

a long way from their humble beginnings as batch processing systems

for mainframes. As computing continues to evolve, it's clear that

operating systems will continue to play a critical role in managing the

hardware and software resources of our devices.

PAGE 9

1.3.1 The First Generation (1945–55):

The first generation of computers, from 1945 to 1955, was characterized

by the use of vacuum tubes as the primary electronic components. These

early computers were large, expensive, and unreliable, with a limited

capacity for storing and processing information. Despite their

limitations, these first-generation computers laid the foundation for the

development of the modern operating system.

One of the earliest operating systems used in the first generation of

computers was the General Motors Research Operating System (GM-

Ros). This system was developed by General Motors to control the

operations of a computer used for engineering calculations. It consisted

of a series of machine language programs that provided basic

input/output operations and memory management.

Another early operating system used in the first generation of

computers was the Manchester Mark 1 Autocode system. This system

was developed at the University of Manchester and provided an early

example of a high-level programming language. It allowed users to write

programs in a symbolic language, rather than in machine language,

making programming more accessible to a wider range of users.

One of the most significant contributions to the development of the

modern operating system during the first generation of computers was

the invention of the stored program concept. This concept, first

proposed by John von Neumann, allowed programs to be stored in a

computer's memory, along with the data they operated on. This

innovation made it possible to write more complex programs and paved

the way for the development of more advanced operating systems.

Despite the limitations of the first-generation computers, they

represented an important step forward in the evolution of computing

technology. The use of vacuum tubes as electronic components laid the

foundation for the development of more sophisticated hardware, while

PAGE 10

the early operating systems developed during this period provided the

basis for the modern operating systems we use today.

1.3.2 The Second Generation (1955–65):

The second generation of operating systems (1955-1965) was marked by

the widespread use of transistors. These replaced the vacuum tubes used

in the first generation of computers, allowing for faster and more

reliable computing. With this new technology, computer systems

became smaller and more affordable, leading to the development of

batch processing systems.

Batch processing systems allowed for the execution of multiple

programs in a sequence, without the need for constant user interaction.

This increased efficiency and reduced the time required for large-scale

data processing. The first operating system of this generation was the

IBM 7090/7094 Operating System, which was introduced in 1960.

Batch processing systems worked by taking a large number of jobs and

grouping them together into batches. These batches were then

processed sequentially, with the output of one job serving as the input

for the next. The operating system would allocate resources such as CPU

time, memory, and I/O devices to each job in the batch, and monitor

their progress.

One of the key features of batch processing systems was the use of job

control language (JCL), which allowed users to specify the resources

required for their job and the order in which they should be executed.

This enabled the system to manage the execution of multiple jobs

simultaneously and prioritize them based on their importance.

The second generation of operating systems also saw the development

of the first time-sharing systems. These allowed multiple users to access

a computer system simultaneously, with each user being allocated a

small amount of CPU time in turn. The first time-sharing system was

PAGE 11

the Compatible Time-Sharing System (CTSS), which was developed by

MIT in 1961.

In summary, the second generation of operating systems was

characterized by the use of transistors and the development of batch

processing systems. These systems allowed for more efficient and

automated data processing, paving the way for the development of more

advanced operating systems in the future.

1.3.3 The Third Generation (1965–1980):

The Third Generation of operating systems saw the introduction of

Integrated Circuits (ICs) and Multiprogramming techniques. This

period spanned from 1965 to 1980 and was marked by significant

advances in computer hardware, software, and operating systems.

The use of ICs in computer hardware allowed for the creation of smaller,

faster, and more reliable machines. These new machines were capable

of handling more complex tasks, and the trend towards time-sharing

systems continued. This meant that multiple users could share a

computer system simultaneously, with each user being allocated a slice

of the processing time.

Multiprogramming was another key development during this period. It

allowed multiple programs to be loaded into main memory

simultaneously, and the CPU would switch between them as necessary.

This approach maximized CPU utilization, making it more efficient and

reducing the overall response time for users.

Operating systems during this period were designed to manage multiple

tasks, each of which had its own requirements and priorities. The system

had to balance the needs of each task, ensure that the CPU was utilized

efficiently, and manage resources such as memory and input/output

devices.

PAGE 12

In addition to multiprogramming, the third generation of operating

systems introduced the concept of time-sharing. This allowed multiple

users to access the computer system simultaneously and was made

possible by advances in hardware and software.

During this period, the first operating system for IBM mainframes was

developed. The OS/360 operating system allowed users to run multiple

programs simultaneously, with each program having its own virtual

memory space. This was a significant advance, and it set the standard

for operating systems for many years to come.

Another notable development during this period was the creation of

UNIX, which was initially developed by Bell Labs in 1969. UNIX was a

multi-user, multi-tasking operating system that was designed to be

portable across different hardware platforms. It became a popular

choice for scientific computing and was used extensively in academia.

Overall, the third generation of operating systems was marked by

significant advances in hardware and software. These advances enabled

the development of more powerful operating systems capable of

managing multiple tasks and users simultaneously. The concept of time-

sharing was introduced, which allowed multiple users to share a

computer system, and this was made possible by advances in hardware

and software.

1.3.4 The Fourth Generation (1980–Present):

The Fourth Generation of operating systems began in the early 1980s

with the advent of personal computers. The IBM PC, released in 1981,

was a watershed moment in the history of computing. It made personal

computing a reality for the masses, and set the stage for the proliferation

of desktop and laptop computers that followed.

At the heart of the IBM PC was the Intel 8088 processor, which was

much more powerful than previous processors. This made it possible to

run more complex operating systems and software. The first operating

PAGE 13

system for the IBM PC was PC DOS, developed by Microsoft, which was

later succeeded by MS-DOS. These early operating systems were

primarily command-line based, with a limited graphical user interface

(GUI).

As personal computing became more widespread, operating systems

began to evolve to meet the needs of the masses. Apple's Mac OS,

released in 1984, was the first commercially successful operating system

to use a graphical user interface. Microsoft followed suit with Windows,

which was released in 1985. Windows quickly became the dominant

operating system for personal computers, and it remains so to this day.

The Fourth Generation of operating systems also saw the rise of

networking. Local Area Networks (LANs) and Wide Area Networks

(WANs) became more common, and operating systems evolved to

support them. Novell's NetWare, released in 1983, was the first popular

network operating system. Microsoft's Windows NT, released in 1993,

was another popular network operating system, and it evolved into

Windows Server, which is widely used in enterprise environments today.

The Fourth Generation also saw the rise of open source operating

systems, such as Linux. Linux was developed by Linus Torvalds in 1991,

and it quickly gained popularity among tech enthusiasts and businesses

alike. Today, Linux is widely used in data centers, servers, and

embedded systems.

Another major development in the Fourth Generation of operating

systems was the rise of mobile devices. The first commercially successful

mobile operating system was Palm OS, which was released in 1996.

However, it was the release of Apple's iPhone in 2007 that really changed

the game. The iPhone, and its iOS operating system, set the standard for

mobile devices, and it paved the way for the rise of Android, which is

now the most widely used mobile operating system in the world.

In conclusion, the Fourth Generation of operating systems was marked

by the rise of personal computing, networking, open source operating

PAGE 14

systems, and mobile devices. These developments have fundamentally

changed the way we live and work, and they continue to shape the world

we live in today.

1.3.5 The Fifth Generation (1990–Present):

The Fifth Generation of operating systems began in the 1990s with the

emergence of mobile computers, such as smartphones and tablets.

These devices require operating systems that can run on limited

hardware resources and support a wide range of applications.

Mobile operating systems, like Android and iOS, are designed to provide

a seamless user experience on small screens with touch-based input.

These systems are optimized for low-power consumption to extend

battery life, and they employ various strategies to manage the resources

of the device, such as memory and CPU usage.

One of the most significant features of mobile operating systems is their

ability to run multiple applications at the same time, a capability known

as multitasking. This is accomplished through the use of a task

scheduler, which determines which application should be given access

to the CPU at any given time. Multitasking is essential for mobile

devices since users often need to switch between multiple applications

quickly.

Another important aspect of mobile operating systems is their support

for mobile-specific hardware, such as GPS, accelerometers, and

touchscreens. Mobile operating systems provide application

programming interfaces (APIs) that allow developers to interact with

these hardware components in a standardized way, making it easier to

develop applications that take advantage of these features.

Security is also a significant concern for mobile operating systems, as

users often store sensitive data, such as passwords and financial

information, on their devices. To protect user data, mobile operating

systems employ various security mechanisms, such as encryption,

PAGE 15

secure boot, and app sandboxing. App sandboxing is a technique that

restricts an application's access to the device's resources, such as

contacts, location, and camera, unless the user explicitly grants

permission.

In summary, the Fifth Generation of operating systems is characterized

by mobile devices, such as smartphones and tablets, which require

operating systems optimized for limited hardware resources and

support for a wide range of applications. These operating systems

provide features such as multitasking, support for mobile-specific

hardware, and robust security mechanisms to protect user data.

1.4 Why should I study operating systems?

It is a common misconception that the development of operating

systems has already been completed, and that there is no more to be

done. However, this is far from the truth. Operating systems continue

to evolve, adapting to new hardware and software, security threats, and

user needs. As an undergraduate student studying operating systems,

you will learn about the design of large software systems, including how

to manage resources, implement security protocols, and optimize

performance.

Moreover, understanding operating systems is crucial to understanding

how computers work. Without an OS, the hardware would not be able

to function properly. The OS provides an environment in which

applications can run, and manages the resources of the system so that

they are used efficiently. By studying operating systems, you will gain a

deeper understanding of how computers work at a low level, and how

software interacts with hardware.

It is important to keep in mind that while some aspects of operating

system design may remain constant, new technologies and user needs

are constantly emerging. Therefore, there is always room for innovation

PAGE 16

and improvement in the field of operating systems. As an undergraduate

student, you have the opportunity to contribute to this ongoing

development.

In short, studying operating systems is an essential part of computer

science education, as it provides a foundation for understanding how

computers work and how to design large software systems. By learning

about operating systems, you will gain valuable skills that can be applied

to a wide range of computer science fields, and contribute to the

ongoing evolution of this critical technology.

While it may be true that operating systems like Windows and Linux

have already been developed, studying OS design is still incredibly

important. OS design is, in fact, studying the design of large software

systems. It is necessary to study operating systems to understand how

to make hardware useful, which is critical to the development of other

software applications.

One might wonder why they should bother studying operating systems,

given that the operating system they use has already been written. The

answer to this is simple: studying operating systems will make you a

better programmer and a better thinker. The OS is really large, with

Windows Vista consisting of 50 million lines of code or more. This

means that studying OS design can provide insight into how to manage

concurrency, which can lead to interesting programming challenges.

These challenges can lead to wisdom and better problem-solving skills.

Operating systems manage raw hardware, and programming raw

hardware can be very challenging, with timing-dependent behavior,

undocumented behavior, and hardware bugs. Because OS code must be

efficient, with low CPU, memory, and disk usage, studying OS design

can teach valuable lessons about coding efficiently.

Another important aspect of operating system design is that the OS

must fail less than user programs. If the operating system fails, the entire

machine fails. The OS provides services that enable application

PAGE 17

programs, and knowledge of OS design can lead to better application

development.

Finally, operating systems are the basis of system security.

Understanding how the operating system manages security can provide

insight into developing secure software applications.

In conclusion, studying operating system design is still critical for

anyone interested in computer science and software development. It

can make you a better programmer, a better thinker, and provide

valuable insight into how to make hardware useful and how to develop

secure software applications.

As a computer user, you probably have a lot of devices that make your

life easier, from smartphones and laptops to music players and eBook

readers. But have you ever wondered how these devices work? What

makes it possible for you to stream music, take photos, or read a book

on your electronic device? The answer is the operating system (OS).

The OS is the backbone of all computing systems. It is responsible for

managing the hardware resources of your device and running your

applications. Without an OS, your device would be nothing more than

a collection of circuits and components.

Multiplexing resources for efficiency and security is one of the most

important functions of an OS. The OS allocates resources such as CPU

time, memory, and disk space to various applications and users. It also

ensures that applications do not interfere with each other, thus

enhancing system security.

Designing an MP3 player, for instance, involves many OS issues. Its OS

implements a file system that is specially designed to store music files.

The OS manages communication with your PC, reads music from the

disc, and buffers it in memory. It also controls the volume of the output

device and the display, among other functions.

PAGE 18

The design of an operating system involves complex problem-solving

and critical thinking. Writing an OS is not an easy task, as the code base

is often very large. For instance, Windows Vista comprises over 50

million lines of code. Furthermore, the OS must be efficient and use as

little CPU, memory, and disk space as possible.

An OS must also be robust and reliable. If the OS fails, the entire

machine fails. Therefore, the OS must fail less often than user programs.

An OS must also provide services that enable application programs to

run efficiently.

Knowledge of OS design can make you a better computer user. It can

help you understand how your device works and why it sometimes

behaves in unexpected ways. It can also make you a better programmer,

as OS development involves complex problem-solving and critical

thinking.

In conclusion, the OS is the cornerstone of what makes computing fun.

It is responsible for managing the hardware resources of your device and

running your applications. Multiplexing resources for efficiency and

security is one of the most important functions of an OS. The design of

an operating system involves complex problem-solving and critical

thinking. Therefore, studying OS design is an essential part of computer

science education.

1.5 Components of a computer system

A computer system consists of four primary components: hardware,

operating system, application programs, and users. These components

work together to provide a complete computing environment that can

be used for a wide range of purposes.

The hardware component of a computer system consists of physical

devices that provide the basic computing resources. This includes the

central processing unit (CPU), which performs computations and

PAGE 19

executes instructions, as well as memory, which stores data and

instructions that the CPU needs to access quickly. Other hardware

components include input/output (I/O) devices, such as keyboards,

mice, printers, and monitors, which allow users to interact with the

system.

The operating system is the software component of a computer system

that controls and coordinates the use of hardware among various

applications and users. It manages the computer's resources, including

the CPU, memory, and I/O devices, and provides a user interface that

allows users to interact with the system. The operating system also

provides services that enable application programs to perform tasks,

such as managing files, communicating with other computers, and

accessing the Internet.

Application programs are the software components that define the ways

in which the system resources are used to solve the computing problems

of the users. Examples of application programs include word processors,

compilers, web browsers, database systems, video games, and many

others. These programs are designed to perform specific tasks and are

typically written in programming languages, such as C++, Java, or

Python.

Finally, the users of a computer system can be people, machines, or

other computers. Users interact with the system through a variety of

interfaces, including graphical user interfaces (GUIs), command-line

interfaces (CLIs), and application programming interfaces (APIs). Users

can run application programs, create and modify files, access the

Internet, and perform many other tasks depending on their needs.

PAGE 20

1.6 Computer hardware

Understanding computer hardware is essential to understanding how

operating systems work. In this chapter, we'll review the basic

components found in modern personal computers.

The Central Processing Unit (CPU) is the brain of the computer. It

performs calculations and executes instructions that make the

computer function. The CPU contains registers, which are used to store

data and intermediate results during computation.

Memory, also known as Random Access Memory (RAM), is the

computer's short-term storage area. It holds the programs and data that

are currently being used by the computer. RAM is volatile, meaning that

it loses its contents when the computer is turned off.

Storage devices are used to store programs and data for long-term use.

Hard disk drives, solid-state drives, and optical drives are common

storage devices.

Input devices allow users to provide information to the computer.

Keyboards, mice, and touchscreens are examples of input devices.

Output devices display information generated by the computer.

Monitors, printers, and speakers are examples of output devices.

The system bus is used to transfer data between the CPU, memory, and

other components of the computer. It is made up of wires and circuits

that carry electrical signals.

Understanding the components of a computer is important for

understanding how an operating system interacts with them. The

operating system manages the CPU, memory, storage, and input/output

devices to provide a platform for applications to run. As we delve deeper

into the details of operating systems, we'll explore how they interact

with each of these components to provide a smooth computing

experience.

PAGE 21

1.6.1 Processors

Processors, also known as central processing units (CPUs), are the core

component of a computer system. They are responsible for executing

instructions and performing calculations required to run computer

programs. Modern CPUs consist of billions of transistors, all packed

onto a small piece of silicon, and can perform a staggering amount of

calculations in a very short amount of time.

The basic cycle of a CPU involves fetching instructions from memory,

decoding them to determine their type and operands, executing them,

and then moving onto the next instruction. This cycle is repeated until

the program has finished executing. Each instruction is made up of a

combination of opcodes (operation codes) and operands (data or

memory addresses). The CPU's control unit fetches instructions from

memory, decodes them to determine their opcodes and operands, and

then passes them on to the appropriate functional unit (such as the

arithmetic logic unit or the memory unit) for execution.

The speed of a CPU is typically measured in clock cycles per second, or

hertz (Hz). The faster the clock speed, the more instructions the CPU

can execute per second. However, clock speed is not the only factor that

determines a CPU's performance. Other factors, such as the number of

cores (each core can execute instructions independently), cache size

(small amounts of memory on the CPU used for frequently accessed

data), and architecture (how efficiently the CPU processes instructions)

can also play a significant role.

1.6.2 Memory

Memory is a crucial component of any computer system. It serves as a

temporary storage for data and instructions that are currently being

processed by the CPU. Memory should be fast, have large capacity, and

be inexpensive, but unfortunately, no current technology satisfies all of

these requirements. This is why memory is constructed as a hierarchy

PAGE 22

of layers, with each layer having different characteristics in terms of

speed, capacity, and cost per bit.

The top layer of the memory hierarchy is the CPU's internal cache. This

is a small amount of high-speed memory that is integrated directly into

the CPU. The cache is designed to store frequently accessed data and

instructions, so that the CPU can access them quickly and without

having to wait for slower memory to fetch them. The cache is expensive

to manufacture, but its high speed and small size make it an important

performance-enhancing feature of modern CPUs.

The next layer of the memory hierarchy is the main memory, also known

as RAM (Random Access Memory). RAM is volatile memory, which

means that its contents are lost when power is turned off. RAM is faster

than secondary storage (such as hard drives), but slower than CPU cache.

RAM is typically divided into multiple modules, each consisting of a

number of memory chips. The amount of RAM installed in a computer

can significantly affect its performance, since it directly affects the

number of programs and data that can be held in memory at once.

Below the main memory is the secondary storage, such as hard disk

drives or solid-state drives. This layer of the memory hierarchy is slower

than main memory but provides much greater storage capacity. Data

and programs are stored on the secondary storage when they are not

being actively used. When the CPU needs to access data or programs

that are not in main memory, they must be retrieved from the secondary

storage, which takes time.

There are other layers of the memory hierarchy, including tertiary

storage such as tape drives, but they are less frequently used in modern

computer systems. The design of the memory hierarchy plays an

important role in determining the performance of a computer system,

and the operating system must manage the use of these different layers

of memory to ensure efficient use of resources.

PAGE 23

1.6.3 Disks

Disks are a crucial component in any modern computer. Disk storage is

much cheaper than RAM, and the storage capacity of disks is often much

larger than that of RAM as well. The only downside is that accessing

data on disks is much slower than accessing data from RAM. This is

because disks are mechanical devices, and the time required to access

data on them is significantly slower than accessing data from electronic

memory.

Traditionally, disks were made up of spinning platters with read-write

heads that would move across the platters to access the data. However,

there are now newer technologies, such as Solid State Disks (SSDs),

which are faster and more reliable than traditional disk drives. SSDs do

not have moving parts, and they store data in Flash memory instead of

on spinning disks.

Regardless of the type of disk used, the operating system plays a critical

role in managing disk storage. One important function of the operating

system is to provide a file system that organizes and manages the data

stored on the disk. The file system provides a way for applications and

users to access and manage their data. Additionally, the operating

system must manage disk I/O requests from multiple applications and

users to ensure that the disk is used efficiently and that no data is lost.

1.6.4 I/O devices

In addition to the CPU, memory, and disks, I/O devices are also crucial

components that the operating system must manage. These devices

include keyboards, mice, printers, scanners, cameras, and many others.

In general, an I/O device has two components: a controller and the

device itself.

The controller is a chip or a set of chips that is responsible for

controlling the physical operation of the device. It accepts commands

from the operating system, such as reading data from a keyboard or

PAGE 24

writing data to a printer, and then carries out those commands by

sending signals to the device.

Each I/O device has its own specific set of commands that it can accept

and execute. The operating system must be aware of these commands

and use the appropriate ones when communicating with each device.

For example, when a user presses a key on the keyboard, the operating

system must send a command to the keyboard controller to retrieve the

data for that key and send it to the appropriate application.

One of the biggest challenges in managing I/O devices is ensuring that

multiple devices can share the CPU and memory resources efficiently.

This is particularly important in multi-tasking systems, where many

applications may be trying to use the same device simultaneously. To

address this issue, the operating system uses a variety of techniques,

such as buffering, spooling, and interrupt-driven I/O.

Buffering is the process of temporarily storing data from an I/O device

in memory until it can be processed by the CPU. Spooling, on the other

hand, involves storing data on a disk temporarily to allow multiple

devices to access the data at different times. Interrupt-driven I/O allows

the device to signal the CPU when it is ready to transfer data, which

helps to reduce the amount of time that the CPU spends waiting for I/O

operations to complete.

1.6.5 Buses

Buses are an essential component in computer hardware architecture,

as they are responsible for transporting data between different hardware

components. The organization of buses has undergone several changes

over the years as processors and memories have become faster. In this

chapter, we will discuss the evolution of buses and their importance in

modern computers.

The earliest computers had only one bus, which was used for all data

transfers between the CPU and other components. As the speed of

PAGE 25

processors and memories increased, the performance of the single bus

architecture became a bottleneck. This led to the development of new

buses that could handle more data and operate at higher speeds.

The first improvement was the addition of an I/O bus, which was

separate from the main system bus. This allowed the CPU to

communicate with I/O devices without interfering with the operation

of the main system bus. The I/O bus could also be optimized for slower

devices such as printers, which did not require the same level of

performance as the main system bus.

Next, the industry moved to a dual-bus architecture. In this

configuration, one bus was dedicated to CPU-to-memory traffic, while

the other was used for I/O operations. This allowed each bus to operate

at a different speed, optimizing performance for the type of data being

transferred.

As technology continued to advance, even more buses were added to

the architecture. For example, modern computers often have a PCI

Express bus, which is designed specifically for high-speed data transfers

between the CPU and peripherals such as graphics cards and storage

devices.

Buses are critical to the functioning of a computer system, as they

provide the necessary pathways for data to flow between components.

The evolution of buses has allowed for faster and more efficient

communication between components, improving overall system

performance. However, managing multiple buses can also be a

challenge for the operating system, which must ensure that data is being

transferred efficiently and without errors.

1.7 What does an OS really do?

An operating system (OS) is a fundamental piece of software that

manages computer hardware and software resources and provides

PAGE 26

common services for computer programs. It is the software that runs on

a computer and allows users to interact with hardware and software

resources. But what does an OS really do? The answer depends on the

point of view.

For users, an OS provides convenience, ease of use, and good

performance. Users don't really care about resource utilization or how

the OS works, as long as it delivers what they need. They want to run

their favorite applications, browse the web, and perform various tasks

with minimal effort.

On the other hand, a shared computer such as a mainframe or a

minicomputer must keep all users happy. In such cases, the OS must

allocate and manage resources efficiently, ensuring that each user gets

a fair share of resources such as CPU time, memory, and disk space. The

OS must also provide security, so that users cannot access each other's

data or interfere with each other's work.

Users of dedicated systems such as workstations have dedicated

resources but frequently use shared resources from servers. In such

cases, the OS must provide a way for users to access these shared

resources securely and efficiently. It must also provide tools for

managing and monitoring the use of shared resources, such as print

queues and network connections.

Handheld computers, such as smartphones and tablets, are resource-

poor but optimized for usability and battery life. The OS must provide

a simple and intuitive interface that allows users to perform tasks

quickly and easily. It must also manage resources efficiently to maximize

battery life, as battery life is a critical factor for mobile devices.

Finally, some computers have little or no user interface, such as

embedded computers in devices and automobiles. In such cases, the OS

provides a way for the device to interact with its environment, such as

reading sensors, controlling motors, and communicating with other

devices.

PAGE 27

1.8 Computer boot process

When you power on your computer, it goes through a series of steps

before you can start using it. These steps are often referred to as "booting

up" or "starting up." The first step in this process is the execution of a

bootstrap program, which is loaded at power-up or reboot.

The bootstrap program is typically stored in read-only memory (ROM)

or erasable programmable read-only memory (EPROM), which is often

referred to as firmware. It is responsible for initializing all aspects of the

system, including the hardware components such as the CPU, memory,

and input/output devices.

Once the hardware components have been initialized, the bootstrap

program loads the operating system kernel into memory and starts its

execution. The kernel is the core component of the operating system

that controls and manages the system's resources, including memory,

CPU, and input/output devices.

The process of booting up a computer can vary depending on the type

of computer and the operating system that is being used. However, the

basic steps of loading the bootstrap program, initializing the hardware,

and loading the operating system kernel are common to all computers.

In summary, the computer startup process begins with the execution of

the bootstrap program, which initializes the system's hardware

components and loads the operating system kernel into memory. This

process is crucial in enabling the computer to function and be ready for

use.

PAGE 28

1.9 Operating system types

1.9.1 Mainframe Operating Systems

Mainframe computers are some of the most powerful machines in the

world. They are used by large corporations and organizations that

require a lot of computing power to handle their data and processes.

These machines are usually kept in special rooms with cooling systems

to prevent overheating.

Mainframe operating systems are designed to handle massive amounts

of data and traffic. They are optimized for reliability, availability, and

serviceability. Mainframe operating systems are also designed to handle

multiple users and applications at the same time, often with different

priorities and service level agreements.

One of the most popular mainframe operating systems is IBM's z/OS. It

is designed to run on IBM's System z mainframe computers. z/OS

provides a highly secure, scalable, and reliable platform for enterprise

applications and data processing. It supports multiple programming

languages, including COBOL, PL/I, and Java, and includes a variety of

tools for system management, performance monitoring, and security.

Another popular mainframe operating system is UNIX System Services

(USS), which runs on top of z/OS. It provides a UNIX-like environment

for running shell scripts and other UNIX-based applications. USS also

supports a variety of open standards, including TCP/IP, FTP, and SSH.

Other mainframe operating systems include z/VSE, which is designed

for smaller mainframes and provides a virtual storage environment for

running batch and online applications, and Linux on z Systems, which

allows Linux applications to run on IBM mainframes.

Mainframe operating systems are critical to the success of large

organizations that rely on their mainframes for mission-critical business

applications. They provide a highly secure, reliable, and scalable

PAGE 29

platform for processing large amounts of data and traffic, and are

optimized for high availability and performance.

1.9.2 Server operating systems

Server operating systems are designed to run on servers, which are

machines that provide services to multiple users over a network. These

operating systems allow users to share hardware and software resources,

providing print services, file services, web services, and more. In the

world of the internet, server operating systems are crucial for running

websites, handling incoming requests, and supporting internet

providers and their customers.

Server operating systems can run on a variety of machines, including

very large personal computers, workstations, or even mainframes. Some

of the most popular server operating systems are Solaris, FreeBSD, Linux,

and Windows Server 201x. Each of these operating systems has its own

strengths and weaknesses, and the choice of operating system depends

on the specific needs of the organization.

One of the key features of server operating systems is their ability to

handle multiple users at once over a network. This requires

sophisticated management of resources, such as memory, CPU, and I/O

devices. Additionally, server operating systems often come with built-in

security features to protect the data and resources being shared by users.

Server operating systems can be configured in a variety of ways,

depending on the specific needs of the organization. For example, a

server might be dedicated to providing file services, while another server

might be dedicated to providing web services. In some cases, multiple

servers might be combined into a cluster to provide even greater

scalability and redundancy.

PAGE 30

1.9.3 Multiprocessor operating systems

Multiprocessor operating systems are designed to efficiently manage

and coordinate the resources of multiple CPUs within a single system.

By connecting multiple CPUs, the system can achieve high processing

power and improved performance. Multiprocessor systems are common

in high-performance computing applications, scientific simulations,

and database systems.

The operating systems designed for these systems are often variations

of server operating systems, but with additional features to manage and

coordinate the resources of multiple CPUs. These features include

specialized algorithms for load balancing, process synchronization, and

communication between the processors.

In multiprocessor systems, CPUs can access shared resources such as

memory, I/O devices, and storage. This requires careful management to

prevent conflicts and ensure consistency of data. Operating systems for

multiprocessor systems must provide mechanisms for efficient and

reliable access to shared resources. This includes methods for

maintaining cache coherency, which is the consistency of data stored in

the cache across multiple CPUs.

Operating systems for multiprocessor systems also need to provide

mechanisms for interprocess communication and synchronization. This

is necessary to ensure that multiple processes running on different CPUs

can coordinate their activities and share resources. Examples of such

mechanisms include semaphores, mutexes, and message passing.

Examples of operating systems designed for multiprocessor systems

include Linux, Windows Server, and Solaris. These operating systems

provide features such as symmetric multiprocessing (SMP), which

allows multiple CPUs to access shared resources and work together as a

single system. Additionally, some operating systems provide features

such as thread-level parallelism and process-level parallelism, which

PAGE 31

allow for parallel execution of multiple threads or processes across

multiple CPUs.

1.9.4 Personal computer operating systems

Personal computer operating systems are the most common and

familiar types of operating systems. They run on laptops, desktops, and

other small devices and are designed to provide a great user experience

for a single person. These operating systems are responsible for

managing resources like memory, CPU, and I/O devices, and also

provide a graphical user interface (GUI) for users to interact with.

Personal computer operating systems support multiprogramming,

which means that multiple programs can run at the same time. They

also come with a range of applications and utilities, such as web

browsers, email clients, media players, and text editors, which users can

use to perform their tasks.

Some popular personal computer operating systems are Windows 7,

Windows 8, Linux, FreeBSD, and Apple's OS X. These operating systems

have different features, user interfaces, and software availability, so

users can choose the one that best fits their needs.

Personal computer operating systems also allow users to connect to

networks, access remote resources, and share files and printers with

other users. They come with built-in security features like firewalls,

antivirus software, and encryption to protect users' data and prevent

unauthorized access.

1.9.5 Handheld computer operating systems

Handheld computer operating systems have come a long way since the

first Personal Digital Assistants (PDAs) were introduced in the late

1990s. Today, we have smartphones and tablets that are incredibly

powerful and sophisticated. These devices are designed to be portable

PAGE 32

and can be carried around in a pocket or purse, making them incredibly

convenient.

The operating systems for these devices are optimized for small screens,

touch input, and long battery life. They also support a wide range of

sensors, including GPS, accelerometers, and gyroscopes, which allow

the device to detect movement and orientation. These sensors are used

to provide features such as automatic screen rotation, fitness tracking,

and location-based services.

Two of the most popular handheld computer operating systems are

Google's Android and Apple's iOS. Android is an open-source operating

system based on the Linux kernel and is used by many different device

manufacturers. This makes it a popular choice for smartphones and

tablets at various price points. On the other hand, iOS is Apple's

proprietary operating system used exclusively on their iPhone and iPad

devices.

In addition to Android and iOS, there are other operating systems for

handheld devices, such as Microsoft's Windows 10 Mobile and

Blackberry's QNX. However, these have a much smaller market share

compared to Android and iOS.

Handheld computer operating systems also have a large ecosystem of

third-party applications, or "apps," that can be downloaded from an app

store. These apps range from games and entertainment to productivity

and business tools. There are millions of apps available for both Android

and iOS, making these devices incredibly versatile and useful in many

different scenarios.

1.9.6 Embedded operating systems

Embedded operating systems are designed to run on devices that are

not typically thought of as computers, such as appliances, cars, and

other devices that do not accept user-installed software. These systems

are built to provide a dedicated function, and often operate in real-time.

PAGE 33

Unlike handheld devices, embedded systems are not designed to run

arbitrary software applications, and therefore have no need for software

protection between applications. This leads to a simplified design, as all

the software is typically stored in ROM and there is little concern for

potential security vulnerabilities.

Popular embedded operating systems include Embedded Linux, QNX,

and VxWorks. These systems are used in a variety of applications, from

industrial control systems to consumer electronics. They are designed

to be small, efficient, and reliable, with a focus on providing the required

functionality with minimal overhead.

One of the key challenges in developing embedded operating systems is

ensuring that they operate in real-time. This means that they must be

able to respond to input quickly and reliably, and provide predictable

output in a timely manner. This is particularly important in safety-

critical systems, where a delay or failure could have serious

consequences.

1.9.7 Sensor-node operating systems

Sensor-node operating systems are designed to run on these tiny sensor

nodes that are typically low-power and have limited computational

resources. They are often used in large numbers to create wireless sensor

networks that can be used for a variety of purposes, including

environmental monitoring, home automation, and industrial

applications.

The main challenge for sensor-node operating systems is to provide

efficient and reliable communication with other nodes and with the

base station, while at the same time minimizing power consumption

and conserving resources. Some of the popular sensor-node operating

systems are TinyOS, Contiki, and RIOT, which are optimized for the

constraints of these devices.

PAGE 34

Sensor networks are used in a wide range of applications, including

environmental monitoring, precision agriculture, and industrial

automation. These networks can be used to collect data from a variety

of sensors, including temperature, humidity, pressure, and light sensors,

and transmit the data wirelessly to a base station or a cloud server for

analysis.

Sensor-node operating systems are designed to be lightweight, modular,

and scalable, allowing developers to easily add new sensors and

functionality to the network. They also provide support for various

communication protocols, including ZigBee, Bluetooth Low Energy, and

LoRaWAN, which enable communication over longer distances and

with lower power consumption.

1.9.8 Real-time operating systems

Real-time operating systems (RTOS) are designed to execute tasks with

specific time constraints. These systems are used in applications where

timing is critical and tasks must be executed at precise intervals. RTOS

can be classified as either hard real-time or soft real-time systems,

depending on the severity of missing a deadline.

Hard real-time systems are used in applications where missing a

deadline can have serious consequences, such as in industrial process

control or avionics. These systems must guarantee that a certain action

will occur by a certain time. A common example of a hard real-time

system is the fly-by-wire system in modern aircraft, where the control

systems must respond in real-time to the pilot's commands.

Soft real-time systems, on the other hand, are used in applications

where missing an occasional deadline is acceptable and does not cause

any permanent damage. For example, digital audio or multimedia

systems fall in this category. Smartphones are also considered soft real-

time systems, as they can tolerate occasional delays without causing

significant harm.

PAGE 35

RTOS typically have a small footprint and are designed to be highly

efficient. They often have specialized scheduling algorithms that ensure

that tasks are executed on time. Common examples of RTOS include

VxWorks, QNX, and FreeRTOS.

One of the key challenges in designing real-time systems is ensuring

that the hardware and software are deterministic. In other words, the

system must behave predictably, without any unexpected delays or

behavior. This requires careful attention to system design, as well as

extensive testing and validation.

1.9.9 Smart card operating systems

Smart cards are small electronic devices that contain a microprocessor

and memory, and are used for a variety of purposes including electronic

payments, identification, and access control. To make this possible,

smart cards need to run an operating system designed specifically for

them. These operating systems are typically very small and have limited

processing power and memory.

Smart card operating systems are designed to be very secure. This is

because smart cards often contain sensitive information such as

financial details or personal identification data. To protect this

information, smart card operating systems use a variety of security

features including encryption, secure boot, and secure data storage.

One of the main challenges in designing a smart card operating system

is balancing security with functionality. Smart cards need to be able to

perform their intended functions quickly and efficiently, while at the

same time ensuring that sensitive data is protected. As a result, smart

card operating systems are highly optimized and use specialized

algorithms and techniques to maximize performance within the

constraints of the hardware.

There are many different types of smart card operating systems,

including both open source and proprietary systems. Some of the most

PAGE 36

popular open source smart card operating systems include Java Card

and GlobalPlatform, while proprietary systems are typically developed

by smart card manufacturers or financial institutions.

Smart cards are used in a variety of applications, including banking,

healthcare, government, and transportation. With their small size and

high level of security, smart cards have become an increasingly popular

way to provide secure access to sensitive information and services.

2 The role of operating systems

Operating systems are the backbone of modern computing, managing

the hardware and software resources of our devices and enabling us to

interact with them in meaningful ways. They are essential for everything

from running applications and browsing the web to managing files and

connecting to networks.

One of the primary roles of operating systems is to manage hardware

resources like the CPU, memory, and storage. This involves allocating

resources to different applications and processes, scheduling tasks to

run on the CPU, and managing memory usage to prevent crashes and

errors.

Another important role of operating systems is to manage software

resources, including drivers, libraries, and system services. This involves

providing a platform for applications to run on, as well as ensuring that

they can communicate with other applications and devices.

Operating systems also play a crucial role in providing security and

protecting against unauthorized access and malware. This involves

managing user accounts, permissions, and access controls, as well as

providing tools for virus scanning and malware removal.

In addition to these fundamental roles, operating systems also provide

a range of other features and functionalities. They often include built-in

PAGE 37

utilities for file management, system maintenance, and troubleshooting,

as well as support for networking, printing, and other peripherals.

Operating systems also provide a platform for software development,

providing APIs and development tools that enable developers to create

applications and services that run on a wide range of devices and

platforms.

Overall, the role of operating systems is to manage the hardware and

software resources of our devices, provide a platform for applications to

run on, ensure security and protect against unauthorized access and

malware, and provide a range of other features and functionalities that

make computing more accessible and efficient. Without operating

systems, the devices we rely on every day would not be able to function

as they do.

2.1 Bridging the gap between hardware and software

In the world of computing, there is a fundamental divide between

hardware and software. Hardware refers to the physical components of

a computing device, such as the processor, memory, and storage, while

software refers to the programs and applications that run on those

components. The role of an operating system is to bridge this gap,

providing a layer of software that enables hardware components to work

together and function as a cohesive system.

At its core, an operating system is a piece of software that manages

hardware resources and provides a platform for other software to run

on. This involves a wide range of tasks, including managing memory and

disk space, scheduling tasks to run on the CPU, providing access to

input and output devices, and providing a user interface for users to

interact with the system.

One of the primary ways that operating systems bridge the gap between

hardware and software is through the use of drivers. Drivers are small

PAGE 38

pieces of software that provide a way for the operating system to

communicate with hardware components, allowing them to work

together seamlessly. Without drivers, hardware components would be

unable to communicate with the operating system, and software would

be unable to interact with those components.

Another important way that operating systems bridge the gap between

hardware and software is through the use of APIs, or Application

Programming Interfaces. APIs provide a way for software developers to

interact with the operating system and access its features and

functionalities. This allows developers to create applications and

services that can run on a wide range of hardware platforms, regardless

of their specific hardware configurations.

Overall, the role of operating systems in bridging the gap between

hardware and software is crucial to the functioning of modern

computing devices. Without operating systems, the hardware and

software components of our devices would be unable to communicate

and work together, making it impossible for us to run the applications

and services that we rely on every day.

2.2 Providing abstractions and services

Operating systems play a critical role in modern computing

environments by providing abstractions and services that make it easier

for software developers to create applications and services that run

efficiently and reliably. In this section, we'll take a closer look at the

abstractions and services that operating systems provide, and why they

are so important.

Abstractions are a key concept in computing, referring to the process of

simplifying complex systems by hiding unnecessary details and

providing a more manageable interface for users and developers.

Operating systems provide a wide range of abstractions that make it

PAGE 39

easier for developers to write software that can run on a variety of

different hardware platforms.

One of the most important abstractions provided by operating systems

is the file system. A file system provides a logical structure for organizing

data on a storage device, making it easier for applications to access and

manipulate files without having to worry about the underlying hardware

or storage device.

Another important abstraction provided by operating systems is the

process. A process is an instance of a program that is currently executing

on the CPU, and operating systems provide a variety of mechanisms for

managing and scheduling processes to ensure that they run efficiently

and don't interfere with each other.

In addition to abstractions, operating systems also provide a wide range

of services that are critical for modern computing environments. For

example, operating systems provide security services to protect against

unauthorized access and ensure that sensitive data is kept secure. They

also provide networking services to enable applications to communicate

with each other over the internet or other networks.

Overall, the abstractions and services provided by operating systems are

crucial for modern computing environments, enabling software

developers to create complex applications and services that run

efficiently and reliably on a wide range of hardware platforms. Without

operating systems, software development would be much more complex

and difficult, and modern computing would not be possible.

2.3 OS is known as a resource manager

The operating system (OS) is like a traffic cop for your computer,

managing the resources of your system so that your applications can run

smoothly and efficiently. The OS is responsible for managing your CPU,

memory, disk, and other resources so that they are shared fairly among

PAGE 40

all the running programs. In this chapter, we will explore how the OS

manages these resources and why it is sometimes referred to as a

resource manager.

Let's start with the CPU. The CPU is the heart of your computer,

executing instructions and performing calculations. But what happens

when two or more programs want to use the CPU at the same time? The

OS has to decide which program gets to use the CPU and for how long.

This is known as CPU scheduling, and the OS uses algorithms to decide

which program gets the CPU next. Some common CPU scheduling

algorithms include round-robin, priority scheduling, and shortest job

first.

Now let's talk about memory. Each program needs memory to run, but

what happens when two or more programs want to use the same

memory at the same time? The OS uses a technique called virtual

memory to manage memory efficiently. Virtual memory allows each

program to think it has its own private memory space, even though it is

actually sharing the physical memory with other programs. The OS

keeps track of which memory addresses are being used by which

programs and swaps data in and out of physical memory as needed.

Finally, let's consider disk I/O. When a program wants to access a file

on disk, the OS must manage the disk access so that multiple programs

can share the disk fairly. The OS uses techniques such as buffering and

caching to optimize disk I/O and improve performance. For example,

the OS might buffer data in memory so that multiple programs can

access it without having to access the disk each time.

In conclusion, the OS is like a traffic cop, managing the resources of

your computer so that your applications can run efficiently. It does this

through virtualization, system calls, and resource management

techniques such as CPU scheduling, virtual memory, and disk I/O

management. Understanding how the OS works is essential for

understanding how your computer functions and how to write efficient

and effective programs.

PAGE 41

2.4 Ensuring efficient and secure application execution

In modern computing environments, ensuring efficient and secure

application execution is a top priority. Operating systems play a critical

role in this process by providing a variety of mechanisms and policies

that help protect system resources, data, and applications from

unauthorized access and other forms of attack.

One of the most important mechanisms provided by operating systems

is memory management. Memory management ensures that

applications have access to the memory they need to run efficiently and

that they do not interfere with each other. Operating systems use a

variety of techniques, such as virtual memory and paging, to manage

memory and prevent applications from accessing memory that does not

belong to them.

Another critical aspect of ensuring efficient and secure application

execution is process isolation. Operating systems use various techniques,

such as process scheduling and memory protection, to ensure that

different applications are kept separate from each other and do not

interfere with each other's execution. This helps prevent security

vulnerabilities and ensures that applications run efficiently.

In addition to memory management and process isolation, operating

systems provide a variety of security mechanisms to protect against

attacks and ensure that sensitive data is kept secure. These mechanisms

may include access control, authentication, and encryption, among

others. These security mechanisms help protect against unauthorized

access and prevent sensitive data from being stolen or compromised.

2.5 What happens when a program runs?

Have you ever wondered what happens when you run a program on your

computer? How does the program execute its code, and how does the

PAGE 42

operating system manage the resources required to run the program?

The very first thing that happens when a program is executed is that the

processor fetches the first instruction from the program's memory. This

instruction is then decoded to determine what operation needs to be

performed. The processor then executes the instruction, which could

involve doing something like adding two numbers together, accessing

memory, or checking a condition.

Once the first instruction is completed, the processor moves on to the

next instruction and repeats the process. This continues until all of the

instructions in the program have been executed, and the program comes

to an end. It's important to note that the processor can execute many

millions, if not billions, of instructions per second, which is why

programs can appear to run very quickly.

But how does the operating system manage the resources required to

run a program? One of the most important concepts in operating

systems is process management. When a program is executed, the

operating system creates a process for that program, which is essentially

a container that provides the program with the resources it needs to

execute.

One of the key components of a process is the Process Control Block

(PCB), which contains information about the process, such as its current

state, the program counter (i.e., the memory address of the next

instruction to be executed), and the registers used by the processor to

execute the program's instructions.

The operating system uses the PCB to manage the execution of the

program. For example, if the program needs to access a file or other

resource, the operating system will check to see if the program has the

necessary permissions to do so, and then provide the program with

access to the resource if it does. Similarly, if the program attempts to

access memory that it doesn't have permission to access, the operating

system will terminate the program to prevent it from causing any harm.

PAGE 43

In addition to managing resources, the operating system also manages

the execution of multiple programs at the same time. This is known as

multitasking, and it allows you to run multiple programs simultaneously.

The operating system uses scheduling algorithms to determine which

program should be executed next, based on factors like the priority of

the program, the amount of time it has been waiting to execute, and the

amount of resources it requires.

In conclusion, when a program is executed on an operating system, the

processor fetches and executes instructions from the program's memory,

while the operating system manages the resources required to run the

program and ensures that the program doesn't cause any harm to the

system. Understanding how programs run on an operating system is a

fundamental concept in computer science and is essential for anyone

interested in operating systems.

2.6 The Von Neumann model

The Von Neumann model of computing is the foundation for modern

computer architecture. It was first proposed by mathematician and

computer scientist John von Neumann in the 1940s and has since

become the standard for designing computer systems.

The Von Neumann model is based on the concept of a stored-program

computer. This means that the computer's instructions are stored in

memory alongside its data, and the processor reads and executes these

instructions in sequence.

The model consists of several key components: the central processing

unit (CPU), memory, input/output (I/O) devices, and a bus system that

connects them all. The CPU is the "brain" of the computer, responsible

for executing instructions and performing calculations. Memory stores

both data and instructions, while I/O devices allow the computer to

interact with the outside world.

PAGE 44

One of the key features of the Von Neumann model is its use of binary

code to represent instructions and data. Each instruction is encoded as

a series of 1s and 0s, which the CPU can read and interpret. This allows

for a high degree of flexibility and programmability, as software can be

written to control the behavior of the hardware.

Another important aspect of the Von Neumann model is its ability to

perform logical operations on data. The CPU can compare two values,

perform arithmetic operations, and make decisions based on

conditional statements. This allows for complex calculations and data

manipulation, which is essential for many modern applications.

Overall, the Von Neumann model provides a powerful framework for

understanding how computers work. Its basic concepts have remained

largely unchanged for over 70 years, and continue to form the basis for

modern operating systems and computer architecture. By

understanding this model, we can gain a deeper appreciation for the

inner workings of our computers, and develop more effective software

that takes advantage of their full potential.

2.7 Virtualization: Making the OS More Efficient and

User-Friendly

The operating system (OS) is the backbone of modern computing,

providing a layer of abstraction between the hardware and the user

applications. One of the primary goals of the OS is to make the

underlying hardware resources easier to use, more efficient, and more

flexible. This is achieved through a technique known as virtualization,

which allows the OS to take physical resources and transform them into

virtual ones.

Virtualization is a general technique that is used throughout the OS,

from memory management to file systems to networking. At its core,

virtualization involves the creation of an abstraction layer between the

PAGE 45

physical resource and the applications that use it. This abstraction layer

presents a virtual view of the resource that is more general, more

powerful, and easier to use than the underlying physical resource.

For example, consider the processor. The physical processor is a

complex piece of hardware that executes instructions in a very specific

way. However, the OS can virtualize the processor by creating the

illusion of multiple processors, each of which can execute instructions

independently. This allows the OS to schedule multiple applications to

run concurrently on a single physical processor, increasing the overall

efficiency of the system.

Similarly, the OS can virtualize memory by providing each application

with its own virtual address space. This allows each application to access

memory as if it were the only application running on the system, even

though multiple applications may be running simultaneously. The OS is

responsible for managing the physical memory and mapping it to the

appropriate virtual address spaces.

The benefits of virtualization are clear: it makes the system easier to use,

more efficient, and more flexible. By providing a more general and

powerful abstraction of the underlying physical resources, the OS can

enable applications to run more efficiently and with less overhead. This

is particularly important in today's computing environments, where

applications are increasingly complex and require more resources to run.

Of course, virtualization is not without its challenges. One of the key

challenges is achieving virtualization efficiently. Virtualization requires

the OS to perform additional tasks, such as managing the virtual address

spaces or scheduling multiple applications on a single processor. This

can introduce additional overhead and potentially slow down the

system. To mitigate this, modern operating systems often rely on

hardware support for virtualization, such as hardware virtualization

extensions or memory management units.

PAGE 46

In summary, virtualization is a fundamental technique used by

operating systems to transform physical resources into more powerful,

flexible, and easy-to-use virtual ones. The OS accomplishes this through

the creation of an abstraction layer that provides a virtual view of the

resource, allowing applications to run more efficiently and with less

overhead. While virtualization introduces additional challenges,

modern operating systems have developed efficient techniques to

achieve virtualization while maintaining system performance.

3 Understanding the architecture of operating systems

Understanding the architecture of operating systems is key to

developing a deep understanding of how these complex systems work.

The architecture of an operating system can be thought of as the

underlying structure that defines how the system is organized and how

its components interact with each other.

The architecture of an operating system typically includes a number of

key components, including the kernel, system libraries, device drivers,

and user-space applications. Each of these components plays a critical

role in the overall functioning of the operating system.

The kernel is the core component of the operating system and is

responsible for managing system resources and providing a layer of

abstraction between applications and the hardware. The kernel also

provides services such as process scheduling, memory management,

and input/output operations.

System libraries are collections of pre-written code that provide

functionality to applications. These libraries are typically organized by

function, such as networking, graphics, or file input/output.

Applications can use these libraries to access system resources without

having to write low-level code themselves.

PAGE 47

Device drivers are pieces of software that enable the operating system

to communicate with hardware devices such as printers, scanners, and

network adapters. Device drivers provide a layer of abstraction between

the hardware and the rest of the operating system, allowing applications

to interact with the hardware without having to know the details of its

operation.

Finally, user-space applications are the programs that users interact

with directly. These applications can be anything from simple

command-line utilities to complex graphical applications. User-space

applications communicate with the kernel and system libraries to access

system resources and provide functionality to users.

Understanding the architecture of operating systems is important for

both developers and users. Developers need to understand how the

operating system is organized and how its components interact in order

to build efficient and reliable applications. Users benefit from

understanding the architecture of operating systems because it can help

them troubleshoot issues and make more informed decisions about

which operating system to use.

In conclusion, the architecture of operating systems is a complex and

important topic that requires careful study and understanding. By

understanding the key components of operating system architecture,

developers and users can build and use operating systems more

effectively and efficiently.

3.1 Kernel

The kernel is the core component of any operating system, and it plays

a critical role in managing system resources and providing a layer of

abstraction between applications and the hardware. The kernel is

responsible for handling low-level system operations, including

PAGE 48

memory management, process scheduling, input/output operations,

and device driver management.

The kernel is typically loaded into memory when the system boots up,

and it remains resident in memory for the duration of the system's

operation. The kernel provides services to user-space applications

through system calls, which are a set of functions that allow applications

to request specific services from the kernel.

One of the key functions of the kernel is memory management. The

kernel is responsible for allocating and deallocating memory as

applications request it. The kernel also provides virtual memory services,

which allow applications to access memory that may not be physically

present in the system. This provides a layer of abstraction between the

applications and the hardware, allowing the operating system to

manage memory more efficiently.

Process scheduling is another critical function of the kernel. The kernel

is responsible for managing the allocation of system resources to

running processes, including CPU time, memory, and input/output

operations. The kernel uses scheduling algorithms to determine which

processes should be executed next and for how long, based on a variety

of factors such as process priority and resource availability.

Input/output operations are another area where the kernel plays a

critical role. The kernel manages the interaction between the system's

hardware and software, ensuring that data is transmitted correctly and

efficiently between the two. The kernel provides device drivers, which

are pieces of software that enable the operating system to communicate

with hardware devices such as printers, scanners, and network adapters.

In conclusion, the kernel is a critical component of any operating system,

responsible for managing system resources, providing a layer of

abstraction between applications and the hardware, and ensuring

efficient and reliable operation of the system. By understanding the role

PAGE 49

of the kernel in an operating system, developers and users can build and

use systems more effectively and efficiently.

3.2 Shell

The shell is a program that provides a command-line interface to an

operating system. It allows users to interact with the operating system

by typing commands that are interpreted by the shell and executed by

the operating system. The shell is a powerful tool for system

administrators and developers, providing a flexible and efficient way to

manage the system and run applications.

There are many different shells available for various operating systems,

but the most common is the Unix shell, also known as the Bourne shell

(sh). The Unix shell was first introduced in the early 1970s and has since

been adopted by many other operating systems, including Linux and

macOS. The Unix shell is known for its powerful command-line tools,

including grep, sed, and awk, which allow users to manipulate text and

data in a variety of ways.

One of the key features of the shell is its ability to execute scripts. Shell

scripts are programs written in a scripting language that is interpreted

by the shell. Shell scripts can automate repetitive tasks, configure the

system, and perform a wide range of other tasks. Shell scripts can also

be used to write simple programs, making it easy for developers to create

custom tools and applications.

Example: Here's a basic shell script example that prints "Hello, World!"

to the console:

#!/bin/sh

echo "Hello, World!"

PAGE 50

Here's a breakdown of what's happening in the script:

The first line #!/bin/sh is called a shebang and tells the operating system

to use the shell interpreter to execute the script. In this case, we're using

the /bin/sh shell.

The second line echo "Hello, World!" is the actual command that the

script executes. In this case, the echo command prints the text "Hello,

World!" to the console.

To run this script, you'll need to save it to a file with a .sh extension (e.g.,

hello.sh) and make it executable with the chmod +x command. Then,

you can run it by typing ./hello.sh in the terminal.

Another important feature of the shell is its support for input/output

redirection. The shell allows users to redirect the input and output of

commands to files, pipes, and other processes, enabling powerful data

processing and analysis workflows. For example, users can use the shell

to redirect the output of one command as the input of another, allowing

for complex data transformations.

Example: You can use shell redirection to redirect the output of one

command as the input of another command. Here's an example:

Let's say you want to list all the files in a directory and then count the

number of files in the output. You can use the ls command to list the

files and then pipe the output to the wc (word count) command to count

the number of files:

ls | wc -l

In this example, the | symbol is called a pipe and it redirects the output

of the ls command to the input of the wc command. The -l flag tells wc

to count the number of lines in the input, which corresponds to the

number of files in the directory.

PAGE 51

Another example is to redirect the contents of a file as input to another

command. For instance, let's say you have a file called data.txt and you

want to sort the contents of the file and save the sorted output to a new

file called sorted_data.txt. You can use the < symbol to redirect the

contents of data.txt as input to the sort command, and then use the >

symbol to redirect the output of the sort command to sorted_data.txt:

sort < data.txt > sorted_data.txt

In this example, the < symbol redirects the contents of data.txt as input

to the sort command, and the > symbol redirects the output of the sort

command to sorted_data.txt.

The shell also provides a powerful set of built-in commands, including

cd (change directory), ls (list files), and echo (print text to the screen).

These commands provide a simple and intuitive way to navigate the file

system, view files, and manipulate text.

In conclusion, the shell is a powerful tool for managing and interacting

with an operating system. By providing a flexible and efficient

command-line interface, the shell enables users to automate tasks,

configure the system, and run custom applications. Whether you are a

system administrator, developer, or power user, the shell is an essential

tool for getting the most out of your operating system.

3.3 User interface

As you sit at your computer, navigating through your favorite

applications and software, have you ever stopped to consider the role of

the user interface in this experience? The user interface (UI) is a crucial

component of any operating system, serving as the bridge between the

user and the underlying technology.

PAGE 52

In essence, the user interface is the way in which you interact with your

computer or device. It encompasses all the visual and auditory elements

that help you navigate and interact with your system, including icons,

menus, windows, and sounds. Depending on the operating system you

are using, the UI may be highly graphical, with a focus on touch gestures

and visual design, or it may be more command-line-based, with an

emphasis on text-based input and output.

The importance of a well-designed user interface cannot be overstated.

A good UI can make the difference between a frustrating, confusing

experience and a smooth, intuitive one. It can help users complete tasks

more quickly and easily, reducing the likelihood of errors and increasing

productivity. A good UI can also improve accessibility, making it easier

for users with disabilities to interact with their devices.

The user interface is not just about aesthetics, though. It is also an

important tool for managing complexity. As technology has advanced,

operating systems have become increasingly complex, with more and

more features and functions to manage. A good UI can help to simplify

this complexity, presenting users with the most important information

and functions in a clear, easy-to-understand way.

Different operating systems use different UIs. For example, Microsoft

Windows uses a graphical UI with a Start menu and taskbar, while

macOS uses a similar UI but with a focus on the Dock and Finder. Linux

systems often have a more customizable UI, with users able to choose

from a variety of graphical shells, such as GNOME or KDE, or more

minimalistic command-line-based shells like Bash.

In conclusion, the user interface is a critical component of any operating

system, serving as the primary way in which users interact with their

devices. A well-designed UI can improve productivity, reduce errors,

and make technology more accessible for all users. Whether you prefer

a graphical UI with touch-based gestures or a more command-line-

based approach, the UI plays a key role in shaping your computing

experience.

PAGE 53

4 Operating system services

An operating system (OS) provides various services to enable the

execution of programs and enhance the user's experience.

4.1 User interface

The user interface is an essential component of any operating system, as

it provides users with a means of interacting with the computer. There

are several types of user interfaces available, including Command-Line

Interface (CLI), Graphics User Interface (GUI), and Batch interfaces.

A Command-Line Interface (CLI) is a text-based interface that allows

users to enter commands into a terminal window. This type of interface

is typically used by advanced users and system administrators who

prefer the flexibility and power of the command line. CLI interfaces are

highly customizable and can be used to automate complex tasks.

A Graphics User Interface (GUI) is a graphical interface that uses icons,

menus, and windows to allow users to interact with the computer. This

type of interface is more user-friendly and is designed for beginners or

users who prefer a visual interface. GUI interfaces are highly intuitive

and require little training.

A Batch interface is an interface that allows users to automate a series

of commands or tasks. This type of interface is typically used by system

administrators or power users who need to perform repetitive tasks

quickly and efficiently. Batch interfaces can be highly customized and

can automate complex tasks.

Regardless of the type of user interface used, the goal is to provide users

with a means of interacting with the operating system and the computer

in a way that is intuitive and efficient. The operating system provides

PAGE 54

the necessary tools and services to create and manage user interfaces,

ensuring that users have a seamless and satisfying experience.

4.2 Program execution

Program execution is a core function of any operating system. Without

this functionality, a computer system would not be able to run any

programs or applications. When a program is executed, the operating

system must load the program into memory and allocate the necessary

system resources, such as CPU time and memory, to the program.

The process of loading a program into memory involves several steps.

The first step is to locate the program's executable file on the storage

device, such as a hard drive or solid-state drive. The operating system

must then read the program's instructions and data from the storage

device and load them into memory. The operating system also sets up

the program's environment, including any necessary system resources,

such as file handles and network connections.

Once the program has been loaded into memory, the operating system

can begin executing it. The program's instructions are executed one at a

time by the CPU, with each instruction modifying the program's state

and potentially accessing or modifying system resources. The operating

system must ensure that the program executes safely and does not

access system resources that it is not authorized to access.

Programs can end their execution in one of two ways: normally or

abnormally. When a program ends normally, it indicates that it has

completed its task and is ready to terminate. The operating system then

deallocates the resources that were allocated to the program, such as

memory and CPU time. When a program ends abnormally, it indicates

that an error has occurred, and the program must be terminated

immediately. The operating system must handle such errors gracefully,

PAGE 55

freeing any resources that were allocated to the program and informing

the user of the error.

4.3 I/O operations

I/O (Input/Output) operations are a fundamental aspect of computer

systems, as they allow programs to communicate with the outside world.

In the context of an operating system, I/O operations can take several

forms, such as accessing files, communicating with devices (e.g. printers,

keyboards, etc.), or communicating with other systems over a network.

When a program requests an I/O operation, the operating system must

manage the communication between the program and the device or file

being accessed. This involves several steps, such as buffering, queuing,

and scheduling, to ensure that the I/O operations are performed

efficiently and effectively.

Buffering is an important mechanism used by operating systems to

optimize I/O performance. In essence, buffering involves temporarily

storing data in a special area of memory (a buffer) before it is transferred

to or from a device or file. By using buffers, the operating system can

minimize the amount of time that a program has to wait for I/O

operations to complete, as data can be transferred in larger, more

efficient chunks.

In addition to buffering, the operating system also uses queuing and

scheduling to manage I/O operations. Queuing involves organizing I/O

requests in a specific order to optimize performance, while scheduling

involves determining which I/O operations to perform first based on

factors such as priority and available resources.

PAGE 56

4.4 File system manipulation

The file system is a crucial aspect of an operating system, and it is of

particular interest to users and programs. Programs need to access and

manipulate files and directories, including reading and writing files,

creating and deleting them, searching them, listing file information, and

managing permissions.

The file system provides a hierarchical view of the computer's storage

system, abstracting the physical properties to a logical storage unit

called a file. Files are usually organized into directories, and access

control mechanisms are in place to determine who can access what.

Operating systems offer different file system types, including FAT, NTFS,

HFS+, and ext4. The file system type determines how the data is stored

on the disk and how the OS accesses and manages files.

File manipulation is one of the most common tasks for a user or a

program. When a user creates a new file or directory, the operating

system is responsible for allocating space on the storage device and

storing the data. Similarly, when a user deletes a file, the OS deallocates

the space on the device and removes the file's metadata from the file

system.

Programs also use file manipulation services to access data stored in files.

The OS provides various primitives to manipulate files and directories,

including reading and writing data to files, searching for files, and

creating or deleting files and directories.

Another critical aspect of file-system manipulation is managing file

permissions. The OS must ensure that only authorized users or

programs can access or modify specific files. Typically, the OS provides

mechanisms for access control, allowing administrators to define access

levels for files and directories.

PAGE 57

4.5 Communications

Communications between processes or between computers is an

important feature provided by modern operating systems. The OS is

responsible for managing communication between processes, whether

it be on the same computer or between computers over a network.

Processes can exchange information through shared memory or

message passing. In shared memory communication, two or more

processes can access the same memory region. This enables faster

communication between the processes as the data doesn't need to be

copied from one process to another. However, it requires a high degree

of synchronization between the processes to prevent data corruption.

On the other hand, message passing involves sending data through

messages that are moved by the operating system. The sender and

receiver processes can be on the same computer or on different

computers connected through a network. This method provides a more

reliable and secure form of communication as the OS is responsible for

ensuring that the message is delivered to the intended recipient.

The OS also provides mechanisms for communication between different

types of processes, such as interprocess communication (IPC) and

remote procedure calls (RPC). IPC enables communication between

processes running on the same computer, while RPC allows processes

running on different computers to communicate with each other.

4.6 Error detection

Error detection is a crucial aspect of operating systems. The OS needs

to be constantly aware of possible errors that may occur in the CPU and

memory hardware, I/O devices, or user programs. The operating system

must be designed to detect and handle these errors appropriately to

ensure correct and consistent computing.

PAGE 58

The OS performs various error detection activities to maintain the

stability and reliability of the system. For example, it monitors hardware

and software events such as disk read/write errors, memory errors, and

device failures. When an error occurs, the OS should take the

appropriate action to minimize its impact and prevent it from spreading

further.

In addition to error detection, the OS must also provide debugging

facilities to enhance the user's and programmer's abilities to efficiently

use the system. These facilities may include tools to trace program

execution, view system state, and modify program behavior.

The error detection and debugging facilities of the OS are critical for

maintaining the stability and reliability of the system. The OS must

provide a robust set of tools and mechanisms to ensure that errors are

detected and handled appropriately, and that users and programmers

can efficiently diagnose and correct problems that may arise. By doing

so, the operating system can minimize the impact of errors and ensure

a smooth and consistent computing experience for all users.

4.7 Resource allocation

Resource allocation is a crucial aspect of operating system design as it

ensures that multiple users or processes can run concurrently without

conflicts. There are various types of resources that may need allocation,

such as CPU cycles, main memory, file storage, and I/O devices.

The allocation of resources is handled by the operating system through

a set of algorithms that determine how much of a resource to allocate

and to which process or user. The system must ensure that resources are

distributed efficiently to maximize performance and minimize waiting

time for users or processes.

One important consideration in resource allocation is fairness. The

system should ensure that resources are distributed fairly among users

PAGE 59

and processes, regardless of their priority or importance. This can be

achieved through various scheduling algorithms, such as round-robin,

priority-based, or shortest-job-first.

Another important consideration is the prevention of deadlocks, which

occur when multiple processes are waiting for the same resources, and

none of them can proceed. To avoid deadlocks, the operating system

must carefully manage resource allocation and implement techniques

such as resource preemption and deadlock detection.

In addition to managing resource allocation within a single system,

modern operating systems also allow for resource allocation across

multiple systems. This is known as distributed resource allocation and

is essential in cloud computing and other distributed computing

environments.

4.8 Accounting

Accounting is an important aspect of operating system services. It allows

system administrators to keep track of the resources consumed by each

user and application running on the system. The purpose of accounting

is to provide information on resource utilization and billing to the

system administrators.

Resource utilization is the measurement of the resources consumed by

each user or application, including CPU time, memory usage, and disk

space. The accounting system keeps track of this information for each

user or application and provides reports on resource usage.

Billing is the process of charging users for the resources they have

consumed. The accounting system can be configured to provide reports

on resource usage for each user, department, or project. This

information can be used to allocate costs to each user or project, and to

identify areas where resource utilization can be optimized.

PAGE 60

The accounting system can also be used for security purposes. For

example, if a security breach occurs, the accounting system can provide

information on who was using the system at the time of the breach and

what resources were being accessed. This information can be used to

identify the source of the breach and to take appropriate action to

prevent future breaches.

4.9 Protection and security

Protection and security are important aspects of any operating system.

When multiple users have access to a computer system, it is crucial to

ensure that each user is able to access only the resources that they are

authorized to use. This involves controlling all access to system

resources, including CPU cycles, main memory, file storage, and I/O

devices.

Protection involves implementing mechanisms that ensure that only

authorized users have access to system resources. For example, access

to certain files or directories may be restricted to specific users or groups.

Protection mechanisms can also be used to prevent users from

modifying system files or accessing sensitive data.

Security is another important consideration for operating systems.

External threats such as hackers or viruses can pose a serious risk to

computer systems, and it is important to take steps to defend against

such threats. Security measures can include user authentication,

encryption, and the use of firewalls to protect external I/O devices from

unauthorized access attempts.

Operating systems also need to provide mechanisms for monitoring

system activity to detect and prevent security breaches. This can involve

tracking system logs and auditing user activity to identify potential

security threats.

PAGE 61

5 Operating system operations

An operating system (OS) provides various services to enable the

execution of programs and enhance the user's experience. These

services can be categorized into several areas, including process

management, memory management, storage management, device

management, security, and user interface.

Process management services are responsible for creating, managing,

and terminating processes. This includes allocating resources to

processes, scheduling their execution on the CPU, and coordinating

their communication and synchronization.

Memory management services manage the allocation and deallocation

of memory to processes, ensuring that processes have access to the

memory they require. They also handle virtual memory management,

allowing processes to access memory that is not physically available by

swapping data between memory and storage devices.

Storage management services handle the allocation and deallocation of

storage space, and they are responsible for managing files and

directories. This includes providing mechanisms for file creation,

deletion, and manipulation, as well as backup and restore services.

Device management services handle the management of input and

output devices. This includes device drivers, which translate device-

specific operations into OS-specific operations and manage the

communication between devices and the OS.

Security services are responsible for providing a secure environment for

users and processes. This includes access control mechanisms,

authentication and authorization, and data encryption and decryption.

User interface services provide the means for users to interact with the

OS and the programs running on it. This includes providing a graphical

PAGE 62

user interface (GUI), command-line interface (CLI), and other input and

output mechanisms.

5.1 Process management

Process management is a fundamental aspect of any modern operating

system. A process is a program in execution, and it is an active entity

that requires various resources to accomplish its task. These resources

include CPU, memory, I/O devices, and files, as well as initialization

data.

When a process terminates, the operating system must reclaim any

reusable resources that were allocated to that process. In a single-

threaded process, there is one program counter that specifies the

location of the next instruction to execute. The process executes

instructions sequentially, one at a time, until completion. In contrast, a

multi-threaded process has one program counter per thread.

Typically, a system has many processes running concurrently on one or

more CPUs. Some processes are user processes, while others are part of

the operating system itself. Concurrency is achieved by multiplexing the

CPUs among the processes and threads.

The operating system is responsible for managing processes and

ensuring that they run smoothly. This involves allocating and

deallocating resources, scheduling processes for execution, and

switching between processes as needed. The operating system must also

provide mechanisms for interprocess communication and

synchronization, allowing processes to communicate and coordinate

their activities.

The operating system is responsible for creating and deleting both user

and system processes. User processes are initiated by users, whereas

system processes are initiated by the operating system. The creation of

PAGE 63

a process requires allocating memory to store process data and

initializing process control blocks.

The operating system also suspends and resumes processes as necessary.

For example, when a higher-priority process arrives, the operating

system may suspend a lower-priority process and start executing the

higher-priority one. Additionally, processes may be suspended when

they are waiting for input/output operations to complete.

Another important responsibility of the operating system in process

management is providing mechanisms for process synchronization.

Synchronization mechanisms ensure that processes do not interfere

with each other's execution, leading to incorrect results. The operating

system provides various synchronization mechanisms, such as

semaphores, monitors, and message passing.

Process communication is another critical aspect of process

management. Processes often need to communicate with each other to

share data or coordinate their activities. The operating system provides

various mechanisms for inter-process communication, such as shared

memory, message passing, and pipes.

Finally, the operating system is responsible for providing mechanisms

for deadlock handling. Deadlock occurs when two or more processes are

waiting for resources held by each other, leading to a state where none

of the processes can proceed. The operating system provides various

techniques to detect and recover from deadlocks, such as resource

allocation graphs and timeouts.

5.2 Memory management

Memory management is a critical function of the operating system as it

ensures that there is enough memory to perform various tasks. Memory

is the working area where programs and data are stored when they are

PAGE 64

being executed or processed. In most systems, memory is divided into

several regions, such as the kernel space, user space, and shared libraries.

The operating system is responsible for keeping track of which parts of

memory are currently being used and by whom. It also decides which

processes or parts of the data need to move into and out of memory to

optimize CPU utilization and computer response to users. This is done

through memory allocation and deallocation, which involves assigning

blocks of memory to processes as they need it and freeing up memory

when it is no longer in use.

In addition to memory allocation and deallocation, the operating system

also provides various memory management mechanisms such as virtual

memory, paging, and segmentation. Virtual memory is a technique used

to allow a process to use more memory than is physically available in

the system. Paging is a mechanism that allows the operating system to

move pages of memory between main memory and secondary storage

to free up space. Segmentation is a method that divides memory into

segments, which can be allocated to processes independently.

5.3 Storage management

Storage management is an essential component of an operating system

that provides a logical view of the information storage. It abstracts the

physical properties to a logical storage unit, which is usually a file. Each

storage medium, such as a disk drive or tape drive, is controlled by a

device that has varying properties, including access speed, capacity,

data-transfer rate, and access method.

File-system management is a crucial activity of the OS that involves

organizing files into directories and controlling access to determine who

can access what. The OS provides primitives to manipulate files and

directories, creates and deletes them, and maps them onto secondary

storage. Additionally, the OS is responsible for backing up files onto

PAGE 65

stable storage media to protect against data loss due to hardware or

software failure.

The OS manages the storage hierarchy, which is a structure of storage

devices that differ in speed, cost, and size. The hierarchy includes cache,

main memory, secondary storage, and tertiary storage. The OS uses

caching techniques to enhance the performance of storage management

by reducing the average access time.

The OS also employs storage allocation strategies, including contiguous

allocation, linked allocation, and indexed allocation, to manage the

allocation and deallocation of memory space. Contiguous allocation

allocates a contiguous block of memory to a file or a process, whereas

linked allocation uses pointers to link blocks of memory. Indexed

allocation uses an index block to keep track of the location of files on

disk.

5.4 Mass-storage management

Mass-storage management is a crucial aspect of operating system design

that deals with the storage of data that doesn't fit in main memory or

needs to be kept for a long period of time. This type of data is usually

stored on disks, which are slower than main memory but offer much

larger storage capacity. Proper management of mass-storage is essential

for the smooth functioning of the computer system.

The operating system is responsible for several activities related to

mass-storage management. These include free-space management,

storage allocation, and disk scheduling. Free-space management

involves keeping track of which parts of the disk are free and which are

being used. This is important because new data needs to be stored on

the disk, and the OS needs to know where there is space available for

new data.

PAGE 66

Storage allocation involves allocating space on the disk for new data.

The OS needs to decide where to put the new data and how much space

to allocate. Disk scheduling is another important aspect of mass-storage

management. When multiple programs are trying to access the disk at

the same time, the OS needs to decide which program gets access to the

disk first. The OS uses algorithms to schedule disk access in a way that

minimizes the time programs spend waiting for access to the disk.

In addition to disks, there are other types of storage media that are used

for data storage. Tertiary storage, which includes optical storage and

magnetic tape, is slower than disks but offers even greater storage

capacity. The OS or applications are responsible for managing tertiary

storage as well. Depending on the requirements, data can be stored on

write-once, read-many-times (WORM) or read-write (RW) storage

media.

6 The future of operating systems

As technology continues to advance at a rapid pace, so too does the

world of operating systems. From the early days of DOS to the modern

era of macOS and Linux, the evolution of operating systems has been

shaped by changing hardware, new software demands, and the constant

drive to improve performance, security, and user experience. But what

does the future hold for operating systems? Let's take a look.

One trend that is already emerging is the rise of containerization and

virtualization. Containerization allows applications to be isolated from

the underlying operating system, improving compatibility, scalability,

and security. Virtualization, on the other hand, enables multiple

operating systems to run on a single machine, making it easier to

manage complex software environments.

Another key trend is the growth of artificial intelligence (AI) and

machine learning (ML) in operating systems. AI and ML algorithms can

PAGE 67

help operating systems to automatically optimize system resources,

improve security, and personalize the user experience. For example, an

AI-powered operating system could learn a user's habits and preferences,

and automatically adjust settings and applications accordingly.

The proliferation of mobile devices and the Internet of Things (IoT) is

also driving the development of new operating systems. Mobile

operating systems like iOS and Android have become dominant players

in the market, while IoT devices require lightweight, efficient operating

systems that can run on low-power hardware.

Finally, the rise of cloud computing is changing the way that operating

systems are designed and used. Cloud-based operating systems can run

on remote servers and be accessed from anywhere with an internet

connection, making them ideal for enterprise applications and remote

work environments.

6.1 Trends in operating systems

As technology continues to evolve, the world of operating systems is

constantly changing. New trends emerge and old ones fade away, and

it's important for us to keep up with these changes in order to stay

relevant and competitive in the market. In this post, we'll discuss some

of the latest trends in operating systems and what they mean for the

future of computing.

6.1.1 Cloud-Based Operating Systems:

With the growing popularity of cloud computing, it's no surprise that

cloud-based operating systems are becoming increasingly popular.

These operating systems run entirely in the cloud, allowing users to

access their files and applications from any device with an internet

connection. This trend is likely to continue as more and more

companies move their applications to the cloud, making cloud-based

PAGE 68

operating systems an attractive option for both individuals and

businesses.

6.1.2 Containerized Operating Systems:

Containers are a lightweight, portable way to package and deploy

software applications. Containerized operating systems take this

concept a step further by running the entire operating system in a

container. This approach offers many benefits, including improved

security, faster startup times, and more efficient use of resources. As

containerization becomes more popular, we can expect to see more

containerized operating systems in the future.

6.1.3 Artificial Intelligence:

Artificial intelligence (AI) is already playing a big role in operating

systems, with features like voice assistants and predictive text becoming

commonplace. In the future, we can expect AI to become even more

integrated into operating systems, with features like automatic file

organization and personalized recommendations based on usage

patterns. AI will also play a key role in improving security, by analyzing

system logs and detecting anomalies that could indicate a security

breach.

6.1.4 Internet of Things (IoT):

As more and more devices become connected to the internet, operating

systems will need to adapt to handle the unique challenges of the IoT.

This includes providing support for low-power, resource-constrained

devices, as well as new networking protocols and security measures.

Operating systems that are specifically designed for IoT devices are

already starting to emerge, and we can expect to see more of these in

the future.

PAGE 69

6.1.5 Open Source:

Open source operating systems like Linux have been around for decades,

but they're still going strong. In fact, open source is becoming more

popular than ever, with companies like Microsoft embracing Linux and

contributing to the open source community. As more and more

developers get involved in open source operating system development,

we can expect to see continued innovation and rapid progress in this

area.

In conclusion, the world of operating systems is constantly evolving,

with new trends emerging and old ones fading away. As users,

developers, and businesses, it's important for us to stay up-to-date with

these trends in order to take advantage of the latest advances in

technology. Whether it's cloud-based operating systems,

containerization, AI, IoT, or open source, the future of operating

systems looks bright, and we can't wait to see what the next few years

will bring.

6.2 Impact of emerging technologies

As technology continues to evolve, the impact on operating systems is

significant. The integration of emerging technologies such as artificial

intelligence, cloud computing, and the Internet of Things has paved the

way for new possibilities in operating systems.

One of the most significant impacts of emerging technologies on

operating systems is the shift towards cloud-based computing. Cloud

computing has enabled a more distributed computing model, which has

in turn led to the development of operating systems that are designed

specifically for cloud environments. These operating systems offer

benefits such as scalability, reliability, and security, making them an

attractive option for businesses looking to move their operations to the

cloud.

PAGE 70

Another impact of emerging technologies is the integration of artificial

intelligence into operating systems. AI can be used to optimize system

performance, automate tasks, and even provide personalized user

experiences. For example, an AI-powered operating system could learn

a user's preferences and adapt the interface and features to suit their

needs.

The Internet of Things (IoT) is also having an impact on operating

systems. With the increasing number of connected devices, operating

systems need to be able to manage and interact with these devices

efficiently. IoT operating systems are designed to support the unique

requirements of IoT applications, such as low power consumption and

real-time data processing.

In addition to these technologies, the rise of virtual and augmented

reality is also having an impact on operating systems. These systems

require specialized hardware and software to provide a seamless user

experience. Operating systems designed for virtual and augmented

reality need to be able to manage complex 3D environments and provide

high-performance graphics capabilities.

Overall, the impact of emerging technologies on operating systems is

significant and will continue to shape the future of computing. As new

technologies are developed, we can expect to see further innovation in

operating systems, enabling new possibilities and transforming the way

we interact with technology.

6.3 Future developments in operating systems

As technology continues to evolve, operating systems must keep up with

the changing landscape to provide efficient, secure, and user-friendly

experiences. In this blog post, we'll explore some future developments

in operating systems that could revolutionize the way we interact with

our devices.

PAGE 71

6.3.1 Artificial Intelligence Integration:

Artificial intelligence (AI) is already making significant strides in various

fields, and operating systems are no exception. With AI integration,

operating systems could learn from user behavior to anticipate needs

and automate tasks, making devices more intuitive and personalized.

6.3.2 Virtualization and Cloud Computing:

Virtualization and cloud computing technologies are rapidly changing

the way we use and access software and hardware resources. In the

future, operating systems could be designed to take full advantage of

these technologies, allowing users to seamlessly switch between local

and cloud-based resources based on their needs.

6.3.3 Internet of Things (IoT) Integration:

As IoT devices become more prevalent, operating systems will need to

adapt to provide seamless integration and management of these devices.

This could involve developing new protocols and standards to ensure

interoperability, as well as providing new interfaces for controlling and

monitoring connected devices.

6.3.4 Quantum Computing:

Quantum computing is a nascent technology with the potential to

revolutionize computing as we know it. Operating systems could be

designed to take full advantage of quantum computing's unique

properties, such as superposition and entanglement, to provide faster

and more efficient processing.

PAGE 72

6.3.5 Augmented and Virtual Reality:

Augmented and virtual reality technologies are already transforming

industries like gaming and entertainment, but they also have potential

applications in fields like education, healthcare, and manufacturing. As

these technologies continue to mature, operating systems will need to

provide the necessary support and optimizations to enable immersive

and responsive experiences.

In conclusion, the future of operating systems is exciting and full of

possibilities. As emerging technologies continue to mature, operating

systems will need to adapt to provide new and innovative features and

services. By staying abreast of these developments and embracing new

approaches to computing, operating systems can continue to provide

value and enhance the user experience for years to come.

7 Conclusion

As we come to the end of this introduction to the world of operating

systems, it's important to reflect on the key takeaways.

Operating systems are the backbone of modern computing, providing

the necessary layer of abstraction between hardware and software, as

well as a wide range of services and utilities that facilitate efficient and

secure application execution. They have a long and rich history,

constantly evolving to meet the changing needs of users and developers.

We have explored the various components that make up an operating

system, including the kernel, shell, and user interface. We have also

discussed emerging trends and technologies that will shape the future

of operating systems, such as virtualization, cloud computing, and the

Internet of Things.

Whether you are a student, professional, or simply someone interested

in the world of technology, understanding operating systems is essential.

PAGE 73

With this knowledge, you can gain a deeper appreciation for the

underlying mechanisms that make our digital lives possible.

In the following chapters, we will delve deeper into the inner workings

of operating systems, exploring their design principles, security

mechanisms, multimedia capabilities, and more. So stay tuned, and get

ready to dive into the exciting world of operating systems!

