

Input Output

OPERATING SYSTEMS

Sercan Külcü | Operating Systems | 16.04.2023

PAGE 1

Contents

Contents .. 1

1 Introduction ... 4

1.1 Definition and importance of input/output operations 5

1.2 Overview of the goals of the chapter ..7

1.3 Background .. 9

1.4 I/O Hardware .. 10

1.5 I/O instructions and device control ... 11

2 Input/Output System Architecture ... 12

2.1 Overview of the I/O subsystem: .. 13

2.2 I/O operations: ... 15

2.2.1 Polling .. 17

2.2.2 Interrupts .. 18

2.2.3 Direct Memory Access (DMA) ... 24

2.3 I/O channels: .. 27

2.4 I/O interface .. 28

2.4.1 Character stream or block mode .. 31

2.4.2 Sequential or random-access devices 32

2.4.3 Synchronous or asynchronous ... 32

2.4.4 Sharable or dedicated .. 33

2.4.5 Speed of their operation .. 34

2.4.6 Capability to read, write, or both ... 35

2.5 Kernel I/O Structure ..36

3 I/O Device Management .. 37

3.1 Device discovery and configuration: ...38

PAGE 2

3.2 Device I/O Port Locations .. 40

3.3 Device drivers: .. 41

3.4 I/O scheduling: ... 43

3.5 I/O Requests .. 44

3.6 I/O bus ..45

3.7 Disk management .. 47

3.8 RAID ... 48

3.8.1 RAID 0: Striped disk array without fault tolerance 49

3.8.2 RAID 1: Mirroring and duplexing..50

3.8.3 RAID 2: Hamming-code error correction 51

3.8.4 RAID 3: Bit-level striping with dedicated parity..................... 51

3.8.5 RAID 4: Block-level striping with dedicated parity 52

3.8.6 RAID 5: Block-level striping with distributed parity 53

3.8.7 RAID 6: Block-level striping with double distributed parity .. 54

3.8.8 RAID 10 (also known as RAID 1+0): Nested RAID levels,

combining mirroring and striping ... 55

4 I/O File Systems and Networking .. 55

4.1 I/O file systems: ... 56

4.1.1 Device Files: ...56

4.1.2 Socket Files: ...59

4.2 Networking I/O .. 61

4.2.1 Sockets: .. 61

4.2.2 Ports: ... 61

4.2.3 Protocols: .. 61

4.3 Examples: TCP/IP, UDP, and NFS ...63

4.3.1 TCP/IP: ..63

PAGE 3

4.3.2 UDP: ..63

4.3.3 NFS: .. 64

5 I/O Performance and Optimization ... 65

5.1 I/O performance .. 65

5.2 I/O performance metrics: ... 67

5.2.1 Throughput: ... 67

5.2.2 Latency: .. 67

5.2.3 Response Time: .. 67

5.2.4 I/O Buffering: ... 68

5.2.5 Read-Ahead: ... 68

5.2.6 Write-Behind: ... 69

5.2.7 I/O Tuning:... 70

5.2.8 Block Size: ... 71

5.2.9 Queue Depth: .. 71

5.2.10 Parallelism: ... 71

5.3 I/O buffering: read-ahead and write-behind 71

6 Case Study: I/O in Windows ... 74

6.1 Overview of Windows I/O architecture 75

7 Conclusion .. 76

PAGE 4

Chapter 11:
Input Output

1 Introduction

Welcome to the chapter on input/output (I/O) operations in operating

systems! In this chapter, we will be discussing the importance of I/O

operations in computer systems and the goals that operating systems

aim to achieve when it comes to I/O operations.

Input/output operations refer to the communication between a

computer's central processing unit (CPU) and external devices, such as

disks, keyboards, mice, and printers. These operations are an essential

part of any computer system since they allow users to interact with their

devices and make use of various functionalities. Without I/O operations,

a computer system would not be able to perform useful tasks and would

essentially be useless.

The goals of I/O operations in operating systems are to provide efficient,

reliable, and secure communication between the CPU and external

devices. Operating systems must handle these operations efficiently to

ensure that they do not become a bottleneck and slow down the entire

system. Additionally, the reliability of I/O operations is crucial to ensure

that data is not lost or corrupted during transmission, which could have

severe consequences for the user. Finally, operating systems must also

ensure that I/O operations are secure, preventing unauthorized access

to sensitive data or the system itself.

In the following sections, we will explore the various aspects of I/O

operations in more detail, including different I/O devices, I/O system

architecture, I/O operations, and I/O performance. We will also discuss

PAGE 5

the challenges that operating systems face when dealing with I/O

operations and the various techniques that are used to optimize and

improve I/O performance.

1.1 Definition and importance of input/output

operations

In modern computing, input/output (IO) operations play a crucial role

in the transfer of data between the system and external devices. IO

operations are responsible for reading data from and writing data to

devices such as hard drives, printers, keyboards, and network cards.

Understanding how IO operations work and how to optimize their

performance is essential for any developer or system administrator

working with computers.

In this chapter, we will explore the definition and importance of IO

operations, looking at the different types of IO operations and the

various factors that impact their performance.

Input/output operations refer to the transfer of data between the system

and external devices. These operations can be classified into two main

categories: input operations and output operations.

 Input operations involve reading data from external devices and

transferring it to the system. For example, when a user types on a

keyboard, the keyboard sends the input data to the computer,

which then processes the data and performs the necessary actions.

 Output operations, on the other hand, involve transferring data

from the system to external devices. For example, when a user

prints a document, the computer sends the data to the printer,

which then prints the document.

PAGE 6

IO operations are essential for the proper functioning of modern

computer systems. Without IO operations, computers would not be

able to communicate with external devices, making them useless.

Optimizing IO operations is crucial for improving the overall

performance of the system. Slow IO operations can lead to decreased

system responsiveness, decreased productivity, and even system crashes.

By optimizing IO operations, we can improve the speed and efficiency

of the system, making it more productive and reliable.

Several factors can impact the performance of IO operations. These

include the type of device being used, the amount of data being

transferred, the transfer rate, and the distance between the system and

the device.

 The type of device being used can impact IO performance. Some

devices, such as solid-state drives (SSDs), are faster than

traditional hard drives. Using faster devices can significantly

improve IO performance.

 The amount of data being transferred can also impact IO

performance. Transferring large amounts of data can be slower

than transferring smaller amounts of data. Chunking data into

smaller pieces can help optimize IO performance.

 The transfer rate is another critical factor that impacts IO

performance. The transfer rate determines how quickly data can

be transferred between the system and the device. Higher transfer

rates generally result in faster IO operations.

 Finally, the distance between the system and the device can

impact IO performance. When devices are located farther away

from the system, the distance can result in slower IO operations.

Using network devices such as routers and switches can help

improve IO performance when devices are located far away from

the system.

PAGE 7

IO operations are a critical component of modern computing,

responsible for the transfer of data between the system and external

devices. Optimizing IO performance is essential for improving the

overall speed and efficiency of the system. Understanding the different

factors that impact IO performance is essential for achieving optimal

performance. In the following chapters, we will explore IO operations in

more detail, looking at the different types of IO operations, IO file

systems, networking IO, and IO performance optimization.

1.2 Overview of the goals of the chapter

The primary goals of IO operations can be classified into three

categories: reliability, efficiency, and compatibility.

 Reliability: IO operations must be reliable, ensuring that data is

accurately transferred between the system and external devices.

Data integrity is critical in IO operations, and any errors or data

loss can lead to significant problems.

 Efficiency: IO operations must be efficient, transferring data as

quickly and effectively as possible. Slow IO operations can lead to

decreased system performance and productivity, impacting the

overall user experience.

 Compatibility: IO operations must be compatible with a wide

range of devices and systems, ensuring that data can be

transferred between different devices and platforms.

Compatibility is critical in modern computing, where systems and

devices are increasingly interconnected.

In addition to the primary goals of reliability, efficiency, and

compatibility, there are other goals that IO operations aim to achieve.

These include:

 Scalability: IO operations must be scalable, able to handle

increasing amounts of data as the system grows. Scalability is

PAGE 8

critical in modern computing, where data volumes are increasing

at an unprecedented rate.

 Security: IO operations must be secure, protecting data from

unauthorized access or theft. Security is crucial in modern

computing, where data breaches can have significant financial

and reputational impacts.

 Manageability: IO operations must be manageable, allowing

system administrators to monitor and control IO operations as

necessary. Manageability is critical in complex computing

environments, where multiple systems and devices are

interconnected.

Balancing the various goals of IO operations can be challenging.

Improving reliability may require sacrificing efficiency, while improving

efficiency may impact compatibility. Achieving optimal performance

requires finding the right balance between these competing goals.

One approach to achieving this balance is to prioritize the primary goals

of reliability, efficiency, and compatibility while considering the

additional goals of scalability, security, and manageability. By

prioritizing these goals and understanding the trade-offs involved, it is

possible to optimize IO operations for a given system and environment.

Input/output operations are critical in modern computing, responsible

for the transfer of data between the system and external devices. The

goals of IO operations include reliability, efficiency, compatibility,

scalability, security, and manageability. Achieving optimal performance

requires finding the right balance between these competing goals,

prioritizing the primary goals while considering the additional goals. In

the following chapters, we will explore how IO operations can be

optimized to achieve these goals, looking at IO file systems, networking

IO, and IO performance optimization.

PAGE 9

1.3 Background

Input/output, or I/O, refers to the communication between a computer

and external devices such as printers, scanners, keyboards, and disk

drives. Managing I/O is an important aspect of computer operation, as

it enables data to be transferred between the computer and external

devices, making it possible for users to interact with the system.

I/O devices vary greatly in their nature, speed, capacity, and

characteristics. They can be classified into several categories, including

block devices, character devices, and network devices. Each device has

unique features, and the methods used to control them differ as well.

I/O performance management is also crucial for system efficiency. The

speed of I/O operations can have a significant impact on system

performance, and thus, the operating system must employ methods to

optimize I/O performance. Techniques such as buffering, caching, and

scheduling are used to improve I/O performance.

New types of I/O devices are frequently introduced, making it necessary

for the operating system to support them. These devices can range from

simple USB drives to complex network interfaces. The operating system

must provide support for these devices to ensure seamless integration

with the system.

Ports, buses, and device controllers are the means by which devices are

connected to the computer. Ports are physical connections used to

connect external devices to the computer, while buses are

communication channels that allow data to be transferred between

devices. Device controllers are hardware components that manage the

communication between the device and the computer.

Device drivers are software components that encapsulate the details of

the device and present a uniform device-access interface to the I/O

subsystem. Device drivers are critical for enabling the operating system

to communicate with devices in a consistent and standardized manner.

PAGE 10

They provide a layer of abstraction that shields the I/O subsystem from

the complexity of individual devices.

In conclusion, I/O management is a critical component of operating

system design and operation. It enables the computer to communicate

with external devices, allowing users to interact with the system. I/O

devices vary greatly in their nature and characteristics, and the

operating system must support new types of devices as they are

introduced. Ports, buses, and device controllers are the means by which

devices are connected to the computer, and device drivers provide a

uniform interface for the I/O subsystem to communicate with devices.

Efficient I/O management is crucial for system performance, and the

operating system employs various techniques to optimize I/O

performance.

1.4 I/O Hardware

In modern computing, there is an incredible variety of I/O devices

available, ranging from storage devices to transmission devices to

human-interface devices. Each type of device has unique characteristics,

and the operating system must be able to communicate with them in a

standardized manner.

The common concept behind all I/O devices is that they send signals

that interface with the computer. These signals are received by the

computer through a port, which is a connection point for the device.

The computer uses a bus to communicate with the device, which can be

either a daisy chain or a shared direct access.

The PCI bus is a common type of bus used in PCs and servers, while PCI

Express (PCIe) is used for higher bandwidth devices. Expansion buses

are used to connect relatively slow devices. These buses allow the

computer to communicate with the device in a standardized manner,

regardless of the type of device.

PAGE 11

A controller, also known as a host adapter, is an electronic component

that operates the port, bus, and device. Controllers can be either

integrated or separate circuit boards known as host adapters. They

contain a processor, microcode, private memory, and a bus controller,

among other components.

Sometimes, controllers communicate directly with per-device

controllers using bus controllers, microcode, memory, and other

components. This allows for greater flexibility in communication

between the computer and the device, as well as improved performance.

In conclusion, I/O hardware plays a crucial role in modern computing.

With an incredible variety of I/O devices available, each with unique

characteristics, the operating system must be able to communicate with

them in a standardized manner. Ports, buses, and controllers are the

means by which the computer communicates with the device. They

contain a variety of components, including processors, microcode, and

memory, that enable the computer to communicate with the device in

a standardized and efficient manner.

1.5 I/O instructions and device control

In order to interact with I/O devices, the operating system relies on a

set of instructions that allow it to communicate with the device. These

instructions are used to place commands, addresses, and data into the

registers of the device driver.

Devices usually have four types of registers - data-in register, data-out

register, status register, and control register. These registers typically

range from 1-4 bytes, or FIFO buffers. The data-in and data-out registers

are used to read and write data to the device, while the status register

indicates the status of the device (such as whether it is ready to accept

data). The control register is used to send commands to the device, such

as to start or stop an operation.

PAGE 12

In addition to registers, devices also have addresses that are used to

access them. The operating system uses either direct I/O instructions or

memory-mapped I/O to access these addresses.

Direct I/O instructions are used to access the device directly through its

input/output ports. These instructions send commands and data

directly to the device driver, allowing the operating system to

communicate with the device in real-time.

Memory-mapped I/O, on the other hand, maps the device's data and

command registers to the processor's address space. This allows the

operating system to access the device's registers as if they were regular

memory addresses. Memory-mapped I/O is particularly useful for

devices that have large address spaces, such as graphics cards.

In conclusion, I/O instructions and device control are critical

components of the operating system. Devices have registers where data,

addresses, and commands are placed, and the operating system uses

direct I/O instructions or memory-mapped I/O to access these registers.

Understanding these concepts is essential for creating efficient and

effective device drivers that allow the operating system to interact with

I/O devices in a standardized and reliable manner.

2 Input/Output System Architecture

In modern computing systems, input/output (IO) operations are an

essential part of the overall system performance. IO operations involve

the communication between a computer and its peripherals, such as

disks, keyboards, printers, and network interfaces. In order to achieve

efficient and reliable communication with these devices, a well-

designed IO subsystem is necessary.

The IO subsystem is responsible for managing the flow of data between

the computer and its peripherals. It consists of three main components:

devices, controllers, and drivers. Devices are the physical components

PAGE 13

that provide input or output services to the computer, such as disks or

keyboards. Controllers are the intermediary components that manage

the communication between devices and the computer's CPU. Drivers

are the software components that provide an interface between the

operating system and the controllers.

IO operations can be categorized into three types: polling, interrupt-

driven, and Direct Memory Access (DMA). Polling is a simple method

in which the CPU continuously checks the status of the device to see if

data is available. Interrupt-driven IO is a more efficient method that

allows the device to signal the CPU when data is ready, freeing up the

CPU to perform other tasks. DMA is an even more efficient method that

allows the device to directly transfer data to or from the computer's

memory without CPU involvement.

IO channels refer to the way in which data is transferred between the

computer and the peripheral device. Synchronous IO channels transfer

data in a fixed time interval, while asynchronous IO channels transfer

data on an as-needed basis. Each IO channel has its own advantages and

disadvantages depending on the specific use case.

In this chapter, we will explore the architecture of the IO subsystem and

the various IO operations and channels available to modern computing

systems. By understanding the different methods and components

involved in IO, we can optimize IO performance and ensure reliable

communication with our computer's peripherals.

2.1 Overview of the I/O subsystem:

The IO subsystem is composed of several components, each responsible

for a specific function:

 Device Drivers: Device drivers are software components that

communicate with the hardware devices connected to the system.

They provide a standard interface between the IO subsystem and

PAGE 14

the devices, allowing the operating system to communicate with

them.

 IO Manager: The IO manager is responsible for managing IO

requests and ensuring that they are properly processed. It acts as

an intermediary between applications and device drivers,

translating application requests into device-specific requests that

the driver can understand.

 IO Request Queue: The IO request queue is a data structure that

holds IO requests waiting to be processed by the IO manager.

When an application sends an IO request, it is added to the queue

until it can be processed.

 IO Completion Queue: The IO completion queue is a data

structure that holds completed IO requests. When a request is

completed, it is removed from the IO request queue and added to

the completion queue.

The IO subsystem performs several critical functions, including:

 Data Transfer: The IO subsystem is responsible for transferring

data between the system and external devices. It manages the flow

of data, ensuring that it is accurately transmitted and received.

 Request Processing: The IO subsystem processes IO requests from

applications, translating them into device-specific requests that

the device driver can understand. It also manages the IO request

queue, ensuring that requests are processed in the correct order.

 Error Handling: The IO subsystem is responsible for detecting and

handling errors that may occur during IO operations. It must

detect errors and take appropriate action, such as retrying the

operation or reporting the error to the user.

 Performance Optimization: The IO subsystem must optimize

performance by managing the flow of data and minimizing delays

in data transfer. This includes managing the IO request queue and

ensuring that requests are processed as efficiently as possible.

PAGE 15

The components of the IO subsystem work together to ensure that IO

operations are processed efficiently and reliably. When an application

sends an IO request, it is added to the IO request queue by the IO

manager. The IO manager then communicates with the device driver to

translate the request into a device-specific request. The device driver

communicates with the hardware device to execute the request, and the

resulting data is transferred back to the system. The IO manager then

removes the completed request from the IO request queue and adds it

to the IO completion queue.

The IO subsystem also performs error handling and performance

optimization functions. If an error occurs during an IO operation, the

IO manager must detect and handle it appropriately, such as by retrying

the operation or reporting the error to the user. To optimize

performance, the IO subsystem manages the flow of data and minimizes

delays in data transfer by managing the IO request queue and ensuring

that requests are processed efficiently.

The IO subsystem is responsible for managing IO operations in an

operating system. Its components include device drivers, the IO

manager, the IO request queue, and the IO completion queue. The IO

subsystem performs critical functions, including data transfer, request

processing, error handling, and performance optimization. These

components work together to ensure that IO operations are processed

efficiently and reliably.

2.2 I/O operations:

Input/output (I/O) operations are essential functions of any operating

system. In this chapter, we will explore the different types of I/O

PAGE 16

operations, how they are performed, and the factors that affect their

performance.

There are two types of I/O operations: blocking and non-blocking.

 Blocking IO: In blocking IO operations, the application waits until

the IO operation is complete before continuing. This means that

the application is blocked until the IO operation is complete, and

it cannot perform any other functions during this time.

 Non-blocking IO: In non-blocking IO operations, the application

continues to execute while the IO operation is being performed.

This means that the application can perform other functions

during the IO operation, and it is not blocked.

IO operations are performed by the IO subsystem. When an application

sends an IO request, the IO manager adds it to the IO request queue.

The IO manager then communicates with the device driver to translate

the request into a device-specific request. The device driver

communicates with the hardware device to execute the request, and the

resulting data is transferred back to the system. The IO manager then

removes the completed request from the IO request queue and adds it

to the IO completion queue.

Several factors affect the performance of IO operations, including:

 The speed of the hardware device: The speed of the hardware

device affects the speed of data transfer. Faster devices can

transfer data more quickly, resulting in faster IO operations.

 The size of the data being transferred: The larger the size of the

data being transferred, the longer the IO operation will take.

 The number of IO operations being performed simultaneously: If

multiple IO operations are being performed simultaneously, the

performance of each operation may be impacted.

PAGE 17

 The type of IO operation being performed: Non-blocking IO

operations are generally faster than blocking IO operations, as the

application can continue to execute during the IO operation.

 The efficiency of the IO subsystem: The efficiency of the IO

subsystem, including the device driver and the IO manager, can

impact the performance of IO operations.

IO scheduling is the process of determining the order in which IO

requests are processed. The IO scheduler determines the order in which

requests are added to the IO request queue based on factors such as the

type of IO operation being performed, the size of the data being

transferred, and the priority of the application requesting the IO

operation.

IO operations are essential functions of any operating system. They are

performed by the IO subsystem and can be either blocking or non-

blocking. Factors such as the speed of the hardware device, the size of

the data being transferred, and the efficiency of the IO subsystem can

impact the performance of IO operations. IO scheduling is used to

determine the order in which IO requests are processed. In the following

chapters, we will explore the different types of IO operations in more

detail, including IO file systems and networking IO operations.

2.2.1 Polling

Polling is a method used by the operating system to communicate with

I/O devices. It involves a series of steps that allow the operating system

to send and receive data to and from the device.

The first step in polling is to read the busy bit from the status register

until it reaches 0. This means that the device is ready to receive or send

data. Once the busy bit is 0, the host can set the read or write bit and

copy data into the data-out register.

PAGE 18

Next, the host sets the command-ready bit, which signals the controller

that the host is ready to execute the transfer. The controller then sets

the busy bit and executes the transfer.

Once the transfer is complete, the controller clears the busy bit, error

bit, and command-ready bit. This signals to the host that the transfer is

complete and the device is once again ready for data.

While polling is a simple and effective method for communicating with

I/O devices, it can be inefficient if the device is slow. This is because the

CPU must continuously check the busy bit, which can tie up system

resources and prevent the CPU from performing other tasks.

To mitigate this issue, the CPU can switch to other tasks while waiting

for the device to become ready. However, this can cause data loss if the

CPU misses a cycle and the data is overwritten.

In conclusion, polling is a straightforward method for communicating

with I/O devices. However, it can be inefficient if the device is slow, and

it can tie up system resources. As a result, other methods such as

interrupts and DMA are often used in conjunction with polling to

optimize I/O performance.

2.2.2 Interrupts

Interrupts are a method used by the operating system to communicate

with I/O devices. They are an efficient way of handling I/O operations

because they allow the CPU to perform other tasks while waiting for the

device to become ready.

When an I/O device is ready to transfer data, it sends an interrupt

request to the CPU. The CPU checks the interrupt-request line after

each instruction and, if an interrupt request is detected, the CPU

suspends its current task and transfers control to the interrupt handler.

PAGE 19

The interrupt handler is a special routine in the operating system that

receives interrupts. It is responsible for processing the data from the I/O

device and updating the system's state accordingly.

Interrupts can be masked, which means that the CPU can ignore or

delay some interrupts. This is useful when there are multiple devices

competing for the CPU's attention, and some devices are more

important than others.

Interrupts are dispatched to the correct handler using an interrupt

vector. The interrupt vector is a table that contains the addresses of the

interrupt handlers for each device. When an interrupt occurs, the CPU

uses the interrupt vector to locate the correct handler and transfer

control to it.

Interrupts are prioritized based on their importance, and some

interrupts are non-maskable. This means that they cannot be ignored or

delayed and must be handled immediately.

If multiple devices share the same interrupt number, interrupt chaining

is used to ensure that each device's interrupt handler is called in the

correct order. Interrupt chaining involves linking together the interrupt

handlers in a chain, with each handler calling the next handler in the

chain when it is finished.

In conclusion, interrupts are an efficient way of handling I/O operations

because they allow the CPU to perform other tasks while waiting for the

device to become ready. They are prioritized based on importance, and

some interrupts are non-maskable. Interrupt chaining is used to ensure

that multiple devices with the same interrupt number are handled

correctly.

In addition to handling I/O requests, the interrupt mechanism is also

used for exceptions, which can occur when a process terminates or when

there is a hardware error in the system. One example of an exception is

the page fault exception, which is executed when there is a memory

access error.

PAGE 20

System calls can also be executed via a trap to trigger the kernel to

execute a request. This allows processes to request services from the

operating system, such as opening a file or allocating memory.

In multi-CPU systems, interrupts can be processed concurrently, but

this requires careful design of the operating system. Interrupts are often

used for time-sensitive processing that needs to be executed quickly and

frequently. For example, real-time systems may use interrupts to

process incoming data from sensors or other devices. The interrupt

mechanism provides a reliable and efficient way for the operating

system to manage these time-sensitive tasks.

2.2.2.1 Processor Event-Vector Table

In order to efficiently handle interrupts and exceptions in a computer

system, the processor needs a table that maps each interrupt or

exception type to the address of its corresponding handler routine. This

table is commonly known as the Processor Event-Vector Table.

The structure and format of the Processor Event-Vector Table varies

depending on the processor architecture. However, the basic concept is

the same across different architectures.

Example: A sample Processor Event-Vector Table might look like this:

Interrupt/Exception Vector Address

Divide Error 0x0000 0000

Debug 0x0000 0004

Non-Maskable Interrupt (NMI) 0x0000 0008

Breakpoint 0x0000 000C

Overflow 0x0000 0010

Bound Range Exceeded 0x0000 0014

Invalid Opcode 0x0000 0018

PAGE 21

Device Not Available 0x0000 001C

Double Fault 0x0000 0020

Coprocessor Segment Overrun 0x0000 0024

Invalid TSS 0x0000 0028

Segment Not Present 0x0000 002C

Stack-Segment Fault 0x0000 0030

General Protection 0x0000 0034

Page Fault 0x0000 0038

Reserved 0x0000 003C

x87 Floating-Point Exception 0x0000 0040

Alignment Check 0x0000 0044

Machine Check 0x0000 0048

SIMD Floating-Point Exception 0x0000 0050

Virtualization Exception 0x0000 0054

Each row in the table represents a specific interrupt or exception type,

along with its corresponding vector address. When an interrupt or

exception occurs, the processor looks up the vector address in the table

to determine the address of the corresponding handler routine. The

processor then jumps to that routine to handle the interrupt or

exception.

It's worth noting that the Interrupt/Exception types in the table are

specific to the processor architecture and may differ from one

architecture to another. Additionally, the vector address is also

architecture-specific and may be located in different parts of the system

memory.

PAGE 22

In summary, the Processor Event-Vector Table is a crucial component

of interrupt handling in a computer system. It maps each interrupt or

exception type to its corresponding handler routine, enabling efficient

handling of these events by the processor.

2.2.2.2 Precise and imprecise interrupts

There are two types of interrupts: precise and imprecise interrupts.

Precise interrupts are interrupts that occur at a well-defined point in the

execution of an instruction, while imprecise interrupts occur at an

indeterminate point.

Precise interrupts occur when the processor has completed the

execution of an instruction and is about to start executing the next

instruction. At this point, the processor checks whether any interrupts

are pending. If an interrupt is pending, the processor completes the

current instruction and then jumps to the interrupt service routine (ISR)

to handle the interrupt. Precise interrupts are often used in real-time

systems where it is important to respond to events in a timely manner.

Imprecise interrupts occur at an indeterminate point during the

execution of an instruction. This can occur when an interrupt is

triggered by an asynchronous event, such as a hardware fault or a user

input. When an imprecise interrupt occurs, the processor saves the

current state of the program and jumps to the ISR. Once the ISR has

completed, the processor returns to the point where the interrupt

occurred and resumes the execution of the program.

Imprecise interrupts can cause problems in real-time systems, as they

can result in unpredictable delays in the execution of critical tasks. For

this reason, many real-time systems use precise interrupts to ensure that

critical tasks are executed in a timely manner.

A precise interrupt is an interrupt that leaves the machine in a well-

defined state. This means that when the CPU receives the interrupt

signal, it can save the current state of the machine and transfer control

PAGE 23

to the interrupt handler without any ambiguity. The precise interrupt

has four properties that ensure that the machine's state is well-defined:

 The PC (Program Counter) is saved in a known place. When the

interrupt occurs, the CPU saves the value of the program counter,

which is the address of the next instruction to be executed, in a

known location in memory. This ensures that the CPU can resume

execution of the interrupted program from the correct location

after the interrupt handler routine has finished.

 All instructions before the one pointed to by the PC have

completed. Before transferring control to the interrupt handler,

the CPU ensures that all instructions before the one pointed to by

the program counter have completed. This ensures that the CPU

does not miss any important state changes that occurred before

the interrupt.

 No instruction beyond the one pointed to by the PC has finished.

The CPU also ensures that no instruction beyond the one pointed

to by the program counter has finished before transferring control

to the interrupt handler. This ensures that the CPU does not miss

any important state changes that occurred after the interrupt.

 The execution state of the instruction pointed to by the PC is

known. Finally, the CPU ensures that the execution state of the

instruction pointed to by the program counter is known. This

means that the CPU knows what the instruction was trying to do

and what the expected outcome of the instruction was.

Precise interrupts are important because they allow the CPU to save the

current state of the machine and transfer control to the interrupt

handler without ambiguity. This ensures that the interrupt handler can

perform its task correctly and efficiently. In contrast, an imprecise

interrupt leaves the machine in an ambiguous state, making it difficult

for the CPU to transfer control to the interrupt handler without risking

data loss or corruption.

PAGE 24

On a superscalar machine, the interrupt handling process becomes even

more complex than on a traditional machine. These machines can

execute multiple instructions simultaneously by breaking down

instructions into smaller micro-operations and executing them

independently. This means that at the time of an interrupt, some

instructions may have started long ago but are still incomplete, while

others may have started more recently and are almost finished. This can

result in a situation where there are many instructions in various states

of completeness, making it difficult to determine the exact state of the

program.

To handle interrupts on superscalar machines, the processor needs to

be able to save the state of all instructions that are in progress. This

includes the state of any micro-operations that have been executed, as

well as the state of any functional units or registers that are being used.

Additionally, the processor needs to be able to restore this state once

the interrupt has been handled, in order to continue executing the

program as if the interrupt had never occurred.

To accomplish this, superscalar processors use sophisticated interrupt

handling mechanisms that are designed to minimize the impact of

interrupts on program execution. These mechanisms typically involve

saving the state of all instructions that are in progress, as well as any

associated micro-operations, in a dedicated buffer known as the

interrupt queue. Once the interrupt has been handled, the processor

can then use the interrupt queue to restore the state of all interrupted

instructions and resume program execution.

2.2.3 Direct Memory Access (DMA)

Direct Memory Access (DMA) is a technique used to transfer large

amounts of data between an I/O device and memory without requiring

the intervention of the CPU. DMA requires a DMA controller, which is

responsible for managing the transfer of data.

PAGE 25

The DMA process starts with the operating system writing a DMA

command block into memory, which specifies the source and

destination addresses, read or write mode, and the count of bytes to be

transferred. The location of the command block is then written to the

DMA controller, which takes control of the bus from the CPU to perform

the data transfer. This process is known as bus mastering and involves

the DMA controller stealing cycles from the CPU to perform the data

transfer.

DMA can be more efficient than programmed I/O because it allows for

the transfer of large amounts of data at once, instead of one byte at a

time. This reduces the overhead associated with I/O processing and

improves system performance. Additionally, DMA can be used to

transfer data between devices, such as between two disk drives, without

requiring the intervention of the CPU.

There is also a version of DMA that is aware of virtual addresses, known

as Direct Virtual Memory Access (DVMA). DVMA allows for even more

efficient data transfers because it eliminates the need for address

translation between physical and virtual addresses. This can be

especially useful for transferring data in virtualized environments,

where virtual machines have their own memory addresses that need to

be translated to physical addresses.

DMA is commonly used in modern operating systems for time-critical

data transfers, such as streaming audio or video, and for transferring

data between storage devices. Overall, DMA is an important technique

for improving the efficiency and performance of I/O operations in

modern computer systems.

2.2.3.1 Six Step Process to Perform DMA Transfer

Direct Memory Access (DMA) is a method used by computers to

transfer large amounts of data between devices without involving the

CPU. It is a more efficient alternative to programmed I/O, which

transfers data one byte at a time, and can cause the CPU to be tied up

for long periods.

PAGE 26

To perform a DMA transfer, a six-step process is used:

1. CPU requests DMA transfer - The CPU requests a DMA transfer

by writing a command block to the DMA controller. This block

contains information about the transfer, such as the source and

destination addresses, the number of bytes to transfer, and the

transfer mode.

2. DMA controller gains control of the bus - The DMA controller

then gains control of the system bus and starts the transfer. The

controller signals the CPU when it has taken control of the bus.

3. DMA controller requests I/O operation - The DMA controller

requests the I/O operation from the device. The device responds

by asserting the DMA request line to indicate that it is ready to

transfer data.

4. Data transfer begins - Once the DMA controller has control of the

bus and the device has asserted the DMA request line, data

transfer begins between the device and the memory.

5. DMA controller signals CPU - When the transfer is complete, the

DMA controller signals the CPU by asserting an interrupt request

line. The CPU then reads the status of the transfer from the DMA

controller.

6. CPU regains control of the bus - The CPU then regains control of

the bus, and the DMA controller releases it. The CPU can then

perform other operations while the DMA transfer is taking place.

Overall, DMA transfer is a powerful method for data transfer and can be

used to achieve high-performance levels in computers. By avoiding CPU

involvement, DMA can greatly speed up data transfers and improve the

overall efficiency of the system. However, the process requires careful

management to ensure that it does not interfere with other system

operations, and to avoid potential conflicts with other devices.

PAGE 27

2.3 I/O channels:

I/O channels are the paths through which data is transferred between

the application and the I/O subsystem. They provide a means of

communication between the application and the I/O subsystem,

allowing the application to send and receive data from external devices.

There are several types of IO channels, including:

 Standard IO: Standard IO channels, such as stdin, stdout, and

stderr, are the default channels used by most applications for

input and output. They are connected to the console and allow

the application to receive input from the user and output to the

console.

 File IO: File IO channels are used to read and write data to files on

a storage device. These channels are used to access files on local

and remote file systems.

 Socket IO: Socket IO channels are used to communicate with

other applications or devices over a network. They allow data to

be sent and received between applications using network

protocols such as TCP/IP and UDP.

 Device IO: Device IO channels are used to communicate with

hardware devices, such as printers, scanners, and disks. These

channels allow the application to read and write data to the device.

IO channels work by providing a standardized interface between the

application and the IO subsystem. When an application sends an IO

request through an IO channel, the request is passed to the IO manager,

which communicates with the device driver to translate the request into

a device-specific request. The device driver then communicates with the

hardware device to execute the request, and the resulting data is

PAGE 28

transferred back to the system. The IO manager then passes the data

back to the application through the IO channel.

Using IO channels has several advantages, including:

 Standardization: IO channels provide a standardized interface

between the application and the IO subsystem, making it easier

for applications to communicate with external devices.

 Flexibility: IO channels provide a flexible means of

communication between the application and the IO subsystem,

allowing data to be transferred between different types of devices

and over different types of networks.

 Portability: IO channels are portable across different operating

systems and hardware devices, making it easier to write

applications that can be used on different systems.

IO channels are an essential part of the IO subsystem, providing a means

of communication between the application and the external devices.

There are several types of IO channels available, including standard IO,

file IO, socket IO, and device IO. Using IO channels has several

advantages, including standardization, flexibility, and portability. In the

following chapters, we will explore each type of IO channel in more

detail, including how to use them in your applications.

2.4 I/O interface

The application I/O interface provides a way for applications to interact

with input and output devices in a simple and standardized way. Instead

of dealing with the complexity of specific device drivers and I/O

PAGE 29

controllers, applications can make use of generic classes that

encapsulate the behavior of the devices.

The device-driver layer acts as an intermediary between the application

layer and the kernel layer, hiding the differences among I/O controllers

from the kernel. This layer also provides a framework for implementing

device drivers, making it easier to add support for new devices. This

means that devices that use already-implemented protocols need no

extra work, making it easier to integrate new devices into the system.

Each operating system has its own I/O subsystem structures and device

driver frameworks, so device drivers must be written to match the

specific structure of the operating system. This can make it difficult to

write device drivers that work on multiple operating systems.

Devices come in many different types, with varying characteristics. For

example, some devices operate on a character-stream basis, while others

operate on a block basis. Some devices are sequential, while others are

random-access. Some devices are synchronous, while others are

asynchronous, or both. Some devices are sharable, while others are

dedicated. Finally, devices also vary in terms of their speed of operation

and whether they support read-write, read-only, or write-only

operations.

I/O devices are an integral part of any computer system, enabling

communication between the user and the computer. However, not all

I/O devices are created equal, and they vary significantly in their

characteristics. In this chapter, we will explore some of the key

characteristics of I/O devices and how they affect the functioning of the

operating system.

One of the most fundamental characteristics of I/O devices is their

speed of operation. Some devices, such as keyboards and mice, operate

at relatively slow speeds, while others, such as hard drives and network

cards, operate at much higher speeds. This speed difference can

significantly impact how the operating system interacts with the device,

PAGE 30

with faster devices requiring more advanced scheduling and buffering

techniques.

Another critical characteristic of I/O devices is their data transfer size.

Some devices, such as serial ports, transfer data one bit at a time, while

others, such as hard drives, transfer data in large blocks. This difference

in transfer size can impact the efficiency of data transfer and buffer

management. For example, a device that transfers data in small chunks

may require more frequent interrupts, leading to increased overhead

and reduced performance.

The type of data transfer is also a critical characteristic of I/O devices.

Some devices transfer data in a synchronous manner, while others

transfer data asynchronously. Synchronous devices operate according to

a clock signal, while asynchronous devices do not. This difference in

transfer type can impact how the operating system interacts with the

device, with synchronous devices requiring tighter synchronization and

more precise timing.

The direction of data transfer is also an important characteristic of I/O

devices. Some devices are read-only, while others are write-only, and

some devices support both read and write operations. This difference in

transfer direction can impact how the operating system interacts with

the device, with read-only devices requiring a different strategy than

write-only or read-write devices.

Finally, the size and type of I/O device buffers can impact their

performance and efficiency. A larger buffer can reduce the frequency of

interrupts and improve overall performance, while a smaller buffer can

increase overhead and reduce performance. The type of buffer, such as

a circular buffer or a double buffer, can also impact performance and

efficiency.

Given all these differences, it is clear that a standardized interface is

needed to provide a common way for applications to interact with

devices. The I/O subsystem provides this interface, abstracting the

PAGE 31

details of the specific devices and providing a simple set of classes and

methods for performing I/O operations. This makes it easier to write

portable applications that can run on different operating systems and

work with a variety of different devices.

2.4.1 Character stream or block mode

When designing an I/O subsystem, one important consideration is

whether the devices will be communicating in character-stream or block

mode.

In character-stream mode, data is transmitted as a stream of characters,

with no fixed block size. This mode is often used for devices such as

keyboards, mice, and serial ports, which generate or receive data one

character at a time. In this mode, the OS reads or writes data one

character at a time, as it becomes available or as needed.

On the other hand, block mode is used for devices that transfer data in

fixed-size blocks. Examples of block devices include disks, flash drives,

and CD-ROMs. In this mode, the OS reads or writes data in blocks of

fixed size, rather than one byte at a time. This can be more efficient, as

it reduces the overhead of individual read or write requests.

The choice of character-stream or block mode also affects the way that

the OS interacts with the device driver. In character-stream mode, the

OS must be able to buffer and process data on a character-by-character

basis, while in block mode, the OS can perform more efficient

operations on blocks of data.

Overall, understanding the mode of operation for a device is an

important consideration when designing an I/O subsystem, as it can

have significant impact on the performance and efficiency of the system.

PAGE 32

2.4.2 Sequential or random-access devices

When we classify I/O devices, one of the dimensions we use is whether

they are sequential or random-access devices. These two terms refer to

the way that data is accessed and processed by the device.

A sequential device processes data in a specific order, one data item at

a time, with each item processed after the previous one. A good example

of a sequential device is a tape drive. With a tape drive, data is stored in

a linear manner on a magnetic tape, with each piece of data stored

sequentially after the previous one. To access a specific piece of data, the

tape must be rewound or fast-forwarded to the correct position, a

process which can be time-consuming.

On the other hand, random-access devices allow data to be accessed in

any order, without the need to access preceding data items. This type of

device provides fast and direct access to any data item in its storage. A

hard disk is a good example of a random-access device, where data is

stored on a magnetic disk in a non-sequential manner, and any data

item can be accessed without having to read through the previous data

items.

In conclusion, the type of data access provided by a device is an

important factor to consider when designing I/O systems and

developing device drivers. The I/O subsystem and device driver

frameworks must be able to accommodate the specific needs of each

device, whether it is sequential or random-access.

2.4.3 Synchronous or asynchronous

When designing an I/O system, one of the key factors to consider is

whether a device is synchronous or asynchronous. Synchronous devices

operate at a fixed rate and can be controlled using clock signals, while

asynchronous devices operate at their own pace and require handshake

protocols to communicate with the system.

PAGE 33

Synchronous devices are typically used for high-speed data transfer,

such as in networking or graphics applications. They require precise

timing and coordination with the system clock, and may use specialized

hardware such as DMA controllers or clock generators. Examples of

synchronous devices include serial communication ports and high-

speed memory interfaces.

Asynchronous devices, on the other hand, are used for slower data

transfer, such as in storage or input devices. They are often controlled

using interrupt signals or handshaking protocols that allow them to

signal the system when they are ready to send or receive data. Examples

of asynchronous devices include hard drives, keyboards, and mice.

When designing an I/O system, it is important to take into account the

synchronous or asynchronous nature of the devices being used. This will

help determine the appropriate protocols, hardware, and drivers needed

to effectively communicate with the devices and achieve optimal

performance.

2.4.4 Sharable or dedicated

When designing an operating system, it's important to consider whether

the devices it supports will be sharable or dedicated. A sharable device

is one that can be used by multiple users or applications simultaneously,

while a dedicated device is one that is reserved for a specific user or

application.

Examples of sharable devices include printers, scanners, and network

cards. These devices typically have multiple input/output (I/O) ports

that can be used by different users or applications at the same time. In

order to support sharable devices, the operating system must provide

mechanisms for managing access to the device and ensuring that

multiple users don't interfere with each other.

On the other hand, dedicated devices are typically used by a single user

or application. Examples of dedicated devices include hard drives, CD-

PAGE 34

ROM drives, and graphics cards. These devices are typically designed to

be accessed by a single user or application at a time, so there is no need

for the operating system to manage access to the device.

When designing an operating system, it's important to consider the

types of devices that will be used with the system and how they will be

accessed. By understanding the characteristics of different types of

devices, designers can create a system that provides efficient and

effective support for all types of devices, whether they are sharable or

dedicated.

2.4.5 Speed of their operation

When it comes to I/O devices, one of the most important factors to

consider is the speed of their operation. Devices can vary greatly in

terms of how fast they can transfer data, and this can have a significant

impact on overall system performance.

For example, a high-speed network interface card (NIC) can transfer

data at rates of multiple gigabits per second, while a USB 1.1 device may

only be able to transfer data at rates of a few megabits per second. These

differences in speed can have a significant impact on the performance

of the system as a whole.

When designing an I/O subsystem, it's important to consider the speed

of the devices being used and to ensure that the system is designed to

handle the maximum possible data transfer rates. This may involve

using specialized hardware, such as DMA controllers, to offload the data

transfer from the CPU and allow for faster, more efficient I/O operations.

It's also important to consider the potential bottlenecks that may exist

in the system. For example, if a fast NIC is connected to a slow storage

device, the NIC may be able to transfer data much faster than the

storage device can handle it, leading to data backups and system

slowdowns.

PAGE 35

Overall, understanding the speed of operation of I/O devices is critical

when designing and optimizing an operating system's I/O subsystem.

By carefully considering the speed of each device and ensuring that the

system is designed to handle the maximum possible data transfer rates,

it's possible to create a high-performance I/O subsystem that can meet

the needs of even the most demanding applications.

2.4.6 Capability to read, write, or both

Devices used in computer systems vary in many dimensions, including

their capability to read, write, or both, their operating speed, their level

of synchronization, and their shareability. Another important

dimension is whether a device is read-write, read-only, or write-only.

A read-write device is one that can both read from and write to a storage

medium, such as a hard disk or flash drive. This type of device is

essential for applications that require both reading and writing data. For

instance, a database system needs to read from a disk to retrieve data

and write to the disk to save data. A read-only device, on the other hand,

only allows reading of data, and not writing to it. Examples of read-only

devices include CD-ROMs, DVDs, and most ROM chips in computer

systems. Finally, a write-only device is one that can only write data and

not read it. Examples of write-only devices include printers, plotters,

and some types of sensors.

The type of device used in a computer system depends on the specific

requirements of the system and the application. For example, a system

that requires high-speed data transfer may use a device with a faster

operating speed, while a system that requires data security may use a

read-only device to prevent unauthorized data modifications. Similarly,

a system that needs to share a device among multiple users may use a

sharable device, while a system that needs dedicated access to a device

may use a dedicated one.

The operating system provides a standard interface for accessing these

devices, regardless of their specific characteristics. This interface

PAGE 36

includes a set of device driver frameworks that enable the system to

communicate with the devices and access their capabilities in a

standardized manner. With the help of these interfaces and frameworks,

applications can access the devices using a consistent set of system calls,

regardless of the specific characteristics of the devices.

2.5 Kernel I/O Structure

In any operating system, the kernel is responsible for managing all

input/output (I/O) operations on the system. The I/O operations

include communication with hardware devices, network interfaces, and

other external systems. The kernel I/O structure is a fundamental

component of the operating system that manages all I/O requests,

regardless of their source or destination.

The kernel I/O structure consists of two primary layers: the device-

independent layer and the device-dependent layer. The device-

independent layer provides an abstraction for I/O operations that is

independent of the specific hardware devices on the system. It handles

requests from user-space applications and translates them into

commands that can be understood by the device-dependent layer.

The device-dependent layer, on the other hand, is responsible for

communicating directly with the hardware devices on the system. It

handles device-specific commands, such as initializing the device,

setting up data transfers, and handling interrupts from the device.

At the device-independent layer, the kernel I/O structure typically

provides a set of system calls that applications can use to initiate I/O

operations. These system calls include read(), write(), open(), and

close(). The kernel I/O structure translates these system calls into

device-specific commands that are sent to the device-dependent layer.

The device-dependent layer, in turn, interacts with the device drivers.

The device drivers are responsible for managing the specific hardware

PAGE 37

devices and communicating with the device-dependent layer of the

kernel I/O structure. The device drivers are typically implemented as

kernel modules that can be loaded and unloaded dynamically.

The kernel I/O structure also includes several other components that

play important roles in managing I/O operations. These include the I/O

scheduler, which is responsible for scheduling I/O operations to

improve system performance, and the interrupt handler, which

manages interrupt requests from devices.

Overall, the kernel I/O structure is a complex component of any

operating system that is responsible for managing all I/O operations. It

provides a set of abstractions that allow applications to perform I/O

operations in a device-independent manner and communicates with

device drivers to handle device-specific operations. Understanding the

kernel I/O structure is essential for anyone working on operating system

development or system administration.

3 I/O Device Management

Input/output (IO) operations are fundamental to the functioning of

modern computer systems. IO involves the transfer of data between a

computer's central processing unit (CPU) and external devices such as

keyboards, printers, and storage devices. IO operations play a critical

role in the performance and efficiency of computer systems.

The IO system architecture is composed of several layers, including

devices, controllers, and drivers. IO operations can be implemented

using different techniques such as polling, interrupt-driven, and Direct

Memory Access (DMA). IO channels can be either synchronous or

asynchronous, with different trade-offs between performance and

complexity.

IO device management includes device discovery and configuration,

device drivers, and IO scheduling. The process of discovering and

PAGE 38

configuring devices is known as enumeration, which involves

identifying and initializing devices to ensure proper communication

with the computer system. Device drivers are software programs that

provide a standardized interface between the operating system and the

device, allowing the operating system to communicate with the device.

IO scheduling involves managing the order in which IO requests are

serviced, prioritizing requests based on factors such as priority, fairness,

and real-time requirements.

This chapter will provide an overview of the IO system architecture, IO

operations, and IO device management. We will discuss the different

techniques used for IO operations, the various types of device drivers

and interfaces, and the challenges associated with IO scheduling.

3.1 Device discovery and configuration:

Device discovery and configuration are critical components of any

operating system. Devices provide access to external resources, such as

storage devices, printers, and networks. Without the ability to discover

and configure devices, the operating system would not be able to

provide access to these resources, limiting the capabilities of the system.

There are several methods of device discovery, including:

 Plug and Play: Plug and Play is a technology that allows devices to

be automatically discovered and configured by the operating

system. When a new device is connected to the system, the

operating system detects it and automatically installs the

necessary drivers.

 Manual Configuration: Manual configuration is the process of

manually configuring a device by specifying its properties, such as

its address, driver, and settings.

 Auto-Configuration: Auto-configuration is a process that

automatically configures devices based on their capabilities and

PAGE 39

requirements. This is often used in networks, where devices can

automatically configure themselves based on the network

topology.

There are two main approaches to device configuration: driver-based

configuration and application-based configuration.

 Driver-based Configuration: Driver-based configuration is a

method where the device driver is responsible for configuring the

device. The driver provides an interface to the operating system,

allowing the operating system to communicate with the device.

 Application-based Configuration: Application-based

configuration is a method where the application is responsible for

configuring the device. The application provides an interface to

the operating system, allowing the operating system to

communicate with the device.

Device management is the process of managing devices in an operating

system. This includes tasks such as adding and removing devices,

updating drivers, and configuring device properties.

 Adding and Removing Devices: Adding and removing devices is

the process of adding or removing a device from the system. This

is often done through the use of device manager software, which

allows users to add and remove devices from the system.

 Updating Drivers: Updating drivers is the process of updating the

software that allows the operating system to communicate with

the device. This is often done through the use of device manager

software, which allows users to update drivers for devices.

 Configuring Device Properties: Configuring device properties is

the process of configuring the settings and options for a device.

This is often done through the use of device manager software,

which allows users to configure device properties.

PAGE 40

Device discovery and configuration are critical components of any

operating system. Without the ability to discover and configure devices,

the operating system would not be able to provide access to external

resources, limiting the capabilities of the system. There are several

methods of device discovery, including plug and play, manual

configuration, and auto-configuration. There are also two main

approaches to device configuration: driver-based configuration and

application-based configuration. Device management is the process of

managing devices in an operating system, including tasks such as adding

and removing devices, updating drivers, and configuring device

properties. In the following chapters, we will explore each of these topics

in more detail, including how to discover, configure, and manage

devices in an operating system.

3.2 Device I/O Port Locations

In order to communicate with I/O devices on a PC, the operating system

needs to know the specific port locations where the devices are

connected.

Each I/O device on a PC is assigned a unique I/O port address. These

addresses are used by the operating system to send and receive data

from the device.

The range of available port addresses on a PC is limited, so it is

important that device manufacturers carefully choose the port address

for their device to avoid conflicts with other devices. To prevent

conflicts, the operating system typically reserves specific ranges of port

addresses for specific types of devices.

For example, the first 64 I/O port addresses (0x0000-0x003F) are

reserved for system devices such as the timer, keyboard controller, and

real-time clock. The next 64 I/O port addresses (0x0040-0x007F) are

PAGE 41

reserved for the interrupt controller, which manages the interrupt

requests from devices.

In addition to system devices, other commonly used port address ranges

include the 16-bit color graphics controller (0x3C0-0x3DF), the sound

card (0x220-0x22F), and the serial port (0x3F8-0x3FF).

To find out the port address of a specific device on a PC, you can check

the device's documentation or use diagnostic tools that can display the

device's configuration information.

In conclusion, knowing the device I/O port locations on a PC is essential

for communicating with I/O devices. The operating system uses specific

port address ranges for different types of devices, and device

manufacturers need to carefully choose a unique port address for their

device to avoid conflicts with other devices. By understanding these

concepts, device drivers can be developed to communicate with I/O

devices in a standardized and reliable manner.

3.3 Device drivers:

Device drivers are software programs that provide an interface between

the operating system and hardware devices. The primary function of a

device driver is to translate commands from the operating system into

a language that the hardware device can understand. This translation

enables the hardware device to perform the requested operations.

Device drivers have several essential functions, including:

 Managing Communications: Device drivers manage the

communication between hardware devices and software

applications. They ensure that data is transmitted accurately and

efficiently between the two.

PAGE 42

 Providing Device Access: Device drivers provide the operating

system with access to hardware devices. They allow the operating

system to perform read and write operations on the device.

 Resource Management: Device drivers manage system resources

such as memory and input/output (IO) ports. They ensure that

resources are allocated correctly to prevent conflicts and ensure

efficient system performance.

Device drivers can be broadly classified into three types:

 User-mode Drivers: These drivers run in user mode and are used

for devices that do not require direct access to hardware resources.

Examples of devices that use user-mode drivers include printers

and scanners.

 Kernel-mode Drivers: These drivers run in kernel mode and have

direct access to hardware resources. Examples of devices that use

kernel-mode drivers include network cards and storage devices.

 Virtual Device Drivers: These drivers create virtual devices that

simulate the behavior of physical devices. Virtual device drivers

are commonly used in virtual machine environments.

Device drivers play a critical role in modern operating systems. They are

responsible for managing the communication between hardware

devices and software applications, providing device access, and

managing system resources. There are different types of device drivers,

including user-mode drivers, kernel-mode drivers, and virtual device

drivers, each with its unique functions and capabilities. Understanding

the role of device drivers is essential for building efficient and reliable

operating systems.

PAGE 43

3.4 I/O scheduling:

Input/Output (IO) operations are an essential aspect of modern

operating systems. IO scheduling refers to the process of managing the

order in which IO requests are processed. The objective of IO scheduling

is to optimize the performance and efficiency of IO operations.

IO scheduling has several critical functions, including:

 Prioritization: IO scheduling prioritizes IO requests based on

their importance and urgency. It ensures that high-priority

requests are processed first, minimizing delays and improving

system performance.

 Fairness: IO scheduling ensures that all applications have fair

access to IO resources. It prevents any single application from

monopolizing IO resources, which could lead to system

slowdowns or crashes.

 Optimization: IO scheduling optimizes the order in which IO

requests are processed to minimize disk seeks and improve disk

access times. This optimization reduces IO latency and improves

overall system performance.

There are several types of IO scheduling algorithms, including:

 FIFO (First-In, First-Out): The FIFO algorithm processes IO

requests in the order in which they are received. It is a simple and

efficient algorithm but can lead to poor system performance in

high-load situations.

 SSTF (Shortest Seek Time First): The SSTF algorithm processes IO

requests in the order of the shortest distance to the next request.

It minimizes disk seeks and improves disk access times, making it

a popular algorithm for systems with high IO loads.

 SCAN: The SCAN algorithm processes IO requests in a circular

fashion, moving the disk head from one end of the disk to the

PAGE 44

other. It is an efficient algorithm for systems with moderate IO

loads but can lead to poor performance in high-load situations.

 C-SCAN (Circular SCAN): The C-SCAN algorithm is similar to the

SCAN algorithm but moves the disk head only in one direction.

This algorithm ensures that all IO requests are processed in a

predictable and fair manner, making it a popular algorithm for

enterprise-level systems.

IO scheduling is an essential aspect of modern operating systems. It

manages the order in which IO requests are processed, optimizing

performance, and efficiency. IO scheduling algorithms prioritize

requests, ensure fairness, and optimize IO operations to reduce latency

and improve system performance. Understanding IO scheduling

algorithms and their functions is critical for building efficient and

reliable operating systems.

3.5 I/O Requests

When a process in an operating system needs to perform an I/O

operation, there are several steps that need to be taken. Let's take the

example of reading a file from disk. The following steps are involved:

 Determine the device holding the file: The operating system must

first determine which device holds the file that the process wants

to read. This is done by looking up the file's location on the file

system.

 Translate name to device representation: Once the device holding

the file has been identified, the operating system must translate

the file name into a representation that the device can understand.

This typically involves mapping the file's logical block addresses

to physical block addresses on the device.

PAGE 45

 Physically read data from disk into buffer: After the device

representation has been determined, the operating system can

issue a read request to the device. The device will then physically

read the data from the disk and store it in a buffer in memory.

 Make data available to requesting process: Once the data has been

read from the disk and stored in memory, the operating system

must make it available to the requesting process. This typically

involves copying the data from the buffer into the process's

address space.

 Return control to process: Finally, the operating system must

return control to the process and indicate that the I/O operation

has completed.

These steps are just a simplified example, and the actual process can be

much more complex depending on the specific I/O operation being

performed and the characteristics of the device involved. However, by

breaking down the process into discrete steps, the operating system can

ensure that I/O operations are performed correctly and efficiently,

allowing processes to interact with a wide variety of devices in a uniform

way.

3.6 I/O bus

In modern computer systems, drives are attached to the computer

through an I/O bus, which provides a communication pathway between

the computer and the drive. There are several types of buses used for

connecting drives, including Peripheral Component Interconnect (PCI),

PCI Express (PCIe), Accelerated Graphics Port (AGP), Universal Serial

Bus (USB), Small Computer System Interface (SCSI), Serial Attached

SCSI (SAS), Advanced Technology Attachment (ATA), Serial ATA

(SATA), FireWire (IEEE 1394), Thunderbolt, Fiber Channel (FC),

InfiniBand, Serial Peripheral Interface (SPI), Inter-Integrated Circuit

(I2C), Controller Area Network (CAN), Ethernet, Bluetooth, Near Field

PAGE 46

Communication (NFC), Radio Frequency Identification (RFID), and

Zigbee. Each bus type has its own characteristics and capabilities,

making it suitable for different types of drives and applications.

The host controller in the computer uses the bus to communicate with

the disk controller built into the drive or storage array. The disk

controller manages the read and write operations on the drive and is

responsible for translating logical block addresses to physical disk

locations. The disk controller also manages error correction and fault

tolerance operations, ensuring that data is written and read accurately

and that data is protected against data loss in case of a drive failure.

Each type of bus has different performance characteristics, with some

being faster than others. For example, SATA and SCSI are generally

faster than USB and Firewire, making them more suitable for high-

performance applications such as video editing or gaming. Fibre

Channel is used for high-speed storage area networks (SANs) and is

commonly used in enterprise-level storage systems.

It's worth noting that the performance of a drive is not solely dependent

on the bus used to connect it to the computer. Other factors such as the

rotational speed of the drive, the amount of cache memory, and the data

transfer rate also play a significant role in determining the drive's overall

performance.

In summary, drives are connected to computers through an I/O bus,

with each bus type having its own characteristics and capabilities. The

disk controller built into the drive manages read and write operations,

error correction, and fault tolerance, while the bus provides the

communication pathway between the computer and the drive.

Understanding the characteristics of different bus types and how they

affect drive performance is essential when choosing a drive for a

particular application.

PAGE 47

3.7 Disk management

Disk management is an essential component of any operating system. It

involves two main processes: low-level formatting and logical

formatting. Low-level formatting, also known as physical formatting, is

the process of dividing a disk into sectors that the disk controller can

read and write. Each sector can hold header information, data, and error

correction code (ECC). Typically, sectors are 512 bytes in size, but this

can be adjustable.

After the low-level formatting is done, the disk is ready for use, but the

operating system still needs to record its data structures on the disk to

enable file storage. The process of creating data structures is known as

logical formatting, or “making a file system.” To increase efficiency,

most file systems group blocks into clusters. Disk I/O is done in blocks,

while file I/O is done in clusters.

When a disk is partitioned, it is divided into one or more groups of

cylinders, each treated as a logical disk. This process enables multiple

file systems to reside on a single physical disk. File systems have various

features such as allocating space to files, maintaining metadata, and

keeping track of disk usage.

Disk management also includes disk maintenance tasks such as

defragmentation and disk cleanup. Defragmentation reorganizes the file

system to reduce file fragmentation and improve read and write speeds.

Disk cleanup frees up disk space by removing temporary files and other

unnecessary files.

There are various disk types such as hard disk drives (HDDs), solid-state

drives (SSDs), and hybrid drives. These disks can be connected to a

computer via different I/O buses such as EIDE, ATA, SATA, USB, Fibre

Channel, SCSI, SAS, and Firewire. The host controller in the computer

uses the bus to communicate with the disk controller built into the drive

or storage array.

PAGE 48

In conclusion, disk management is an important aspect of operating

systems. It involves low-level formatting, logical formatting, and

maintenance tasks. File systems have various features such as allocating

space to files, maintaining metadata, and keeping track of disk usage.

With advancements in technology, different disk types and I/O buses

have emerged, providing faster data transfer rates and increased storage

capacity.

3.8 RAID

RAID, or redundant array of inexpensive disks, is a technology used to

increase the reliability and performance of computer storage. By using

multiple disk drives, RAID can provide redundancy, which means that

if one disk fails, the data can still be accessed from another disk. There

are several different RAID levels, each with its own strengths and

weaknesses.

One of the primary benefits of RAID is an increase in the mean time to

failure. This means that the overall system is less likely to fail due to disk

errors, because there are multiple disks that can be used to store the

data. However, this increase in reliability comes at a cost, because RAID

also increases the mean time to repair. This means that if a disk does fail,

it may take longer to replace and repair the disk than it would with a

single disk system.

One way to increase the mean time to repair is to use mirrored disks,

which are essentially two identical disks that mirror each other. If one

disk fails, the other disk can still be used to access the data. However, if

the mirrored disks fail independently, the mean time to data loss can

still be quite long. For example, if two mirrored disks each have a mean

time to failure of 1,300,000 hours and a mean time to repair of 10 hours,

the mean time to data loss can be calculated as 100,000^2 / (2 * 10) = 500

* 10^6 hours, or 57,000 years!

PAGE 49

RAID is often combined with other technologies, such as NVRAM (non-

volatile random-access memory), to improve write performance. Several

improvements in disk-use techniques involve the use of multiple disks

working cooperatively. For example, some systems use a technique

called striping, which divides data across multiple disks so that each

disk only needs to read or write a small portion of the data. Other

systems use a technique called parity checking, which adds extra

information to the data to allow for error detection and correction.

Overall, RAID is a powerful technology that can significantly improve

the reliability and performance of computer storage. However, it is

important to carefully consider the tradeoffs involved, and to choose the

right RAID level for your specific needs.

3.8.1 RAID 0: Striped disk array without fault tolerance

RAID 0, also known as striping, is one of the most basic RAID levels. In

this configuration, data is spread across two or more disks without any

redundancy. The disks are treated as one large drive, and the data is split

into blocks and written to each disk simultaneously, improving

performance.

One of the main benefits of RAID 0 is its speed. Because the data is

written to multiple disks at once, the read and write speeds are faster

than a single disk. This makes it ideal for applications that require high-

performance storage, such as video editing or gaming.

However, RAID 0 offers no fault tolerance. If one disk fails, all the data

on the array is lost. Additionally, the failure of one disk can lead to

reduced performance, as the data on the remaining disks has to be re-

striped.

RAID 0 is typically used in situations where performance is a higher

priority than data redundancy. It is not recommended for critical

systems or systems that store important data. If you decide to use RAID

PAGE 50

0, it is important to have a backup strategy in place to ensure that your

data is protected.

3.8.2 RAID 1: Mirroring and duplexing

RAID 1, also known as disk mirroring, is a RAID level that provides data

redundancy by creating an exact copy, or mirror, of data on two or more

drives. In other words, data is written to both drives simultaneously,

ensuring that if one drive fails, the other drive can still provide all the

necessary data.

This type of RAID is often used in applications where data reliability and

availability are critical. For example, it's common to use RAID 1 in

servers that store important data such as financial records, medical

records, or customer information. The data redundancy provided by

RAID 1 helps protect against data loss in the event of a drive failure.

One of the main advantages of RAID 1 is that it's very simple and

straightforward to implement. All that's required is at least two identical

drives, and the RAID controller will take care of the rest. Additionally,

since the data is mirrored on both drives, read performance can be

improved because the controller can read from both drives

simultaneously.

However, there are also some downsides to RAID 1. The biggest

disadvantage is that it requires at least two drives, which can be

expensive compared to other RAID levels. Additionally, while RAID 1

provides redundancy against drive failure, it doesn't protect against data

loss due to other factors such as software errors or user errors.

Overall, RAID 1 is a reliable and simple solution for data redundancy,

but it may not be the best choice for every situation.

PAGE 51

3.8.3 RAID 2: Hamming-code error correction

RAID 3 is a RAID level that uses byte-level striping with dedicated parity.

In this RAID level, data is broken up into bytes and distributed across

multiple disks in a way that enables high-speed data transfer rates.

One of the unique features of RAID 3 is the use of dedicated parity. In

this setup, a single disk is used to store parity information for all the

data disks in the array. This means that if one of the disks in the array

fails, the data on that disk can be reconstructed using the parity

information stored on the dedicated parity disk.

However, RAID 3 is not without its drawbacks. One of the major issues

with this RAID level is that it is not very efficient when it comes to small

file transfers. This is because small files are spread across multiple disks,

resulting in a lot of overhead and decreased performance. Additionally,

if the dedicated parity disk fails, the entire array can be compromised,

resulting in the loss of all data.

Overall, RAID 3 can be a useful RAID level for certain applications that

require high-speed data transfer rates and can tolerate the potential

risks associated with dedicated parity. However, it may not be the best

choice for all use cases, and it's important to carefully consider the

specific needs of your system before choosing a RAID level.

3.8.4 RAID 3: Bit-level striping with dedicated parity

RAID 3 is a RAID level that uses byte-level striping with dedicated parity.

In this RAID level, data is broken up into bytes and distributed across

multiple disks in a way that enables high-speed data transfer rates.

One of the unique features of RAID 3 is the use of dedicated parity. In

this setup, a single disk is used to store parity information for all the

data disks in the array. This means that if one of the disks in the array

fails, the data on that disk can be reconstructed using the parity

information stored on the dedicated parity disk.

PAGE 52

However, RAID 3 is not without its drawbacks. One of the major issues

with this RAID level is that it is not very efficient when it comes to small

file transfers. This is because small files are spread across multiple disks,

resulting in a lot of overhead and decreased performance. Additionally,

if the dedicated parity disk fails, the entire array can be compromised,

resulting in the loss of all data.

Overall, RAID 3 can be a useful RAID level for certain applications that

require high-speed data transfer rates and can tolerate the potential

risks associated with dedicated parity. However, it may not be the best

choice for all use cases, and it's important to carefully consider the

specific needs of your system before choosing a RAID level.

3.8.5 RAID 4: Block-level striping with dedicated parity

RAID 4 is a level of RAID (redundant array of independent disks) that

uses block-level striping with a dedicated parity disk. It is similar to

RAID 3, except that it uses a dedicated parity disk instead of distributing

parity information across all disks in the array.

In a RAID 4 array, data is divided into fixed-size blocks and distributed

across all disks in the array, except for the dedicated parity disk. The

dedicated parity disk is used to store parity information for the data

blocks, which is used to reconstruct data in the event of a disk failure.

RAID 4 is best suited for applications that involve large sequential reads,

such as video editing or streaming media. It is not well suited for

random I/O workloads, as each write operation requires updating the

parity disk, which can lead to a performance bottleneck.

One advantage of RAID 4 is that it allows for hot swapping of failed disks,

which can be replaced without interrupting system operation. Another

advantage is that it provides fault tolerance, as data can be

reconstructed from the parity information stored on the dedicated

parity disk in the event of a disk failure.

PAGE 53

However, RAID 4 is not commonly used in modern systems, as other

RAID levels such as RAID 5 and RAID 6 provide better performance and

more efficient use of disk space. RAID 4 requires at least three disks,

with one dedicated to parity, which can result in wasted disk space.

Additionally, the dedicated parity disk can become a performance

bottleneck, especially in high-traffic systems.

3.8.6 RAID 5: Block-level striping with distributed parity

RAID 5 is one of the most commonly used RAID levels for storage

systems that require both performance and redundancy. In this chapter,

we will take a closer look at RAID 5 and how it works.

RAID 5 uses a technique known as distributed parity to provide fault

tolerance and data protection. This means that the parity information is

distributed across all the drives in the array, rather than being stored on

a dedicated parity drive like in RAID 4. This improves the overall

performance of the system because the parity information can be

accessed in parallel with the data.

To implement RAID 5, you need at least three drives, but more

commonly, five or more drives are used. The data is split up into blocks,

and each block is striped across all the drives in the array. At the same

time, parity information is calculated and written to a separate block on

each drive. This distributed parity information enables RAID 5 to

recover data even if one of the drives fails.

One of the key advantages of RAID 5 is that it offers a good balance

between performance and redundancy. The data is distributed across

multiple drives, which allows for improved read and write performance.

In addition, RAID 5 provides fault tolerance by allowing the system to

continue functioning even if one of the drives fails.

However, RAID 5 does have some limitations. The most significant

limitation is that it can only tolerate the failure of one drive at a time. If

more than one drive fails, data loss can occur. In addition, the process

PAGE 54

of rebuilding data after a drive failure can put a heavy load on the system,

which can impact performance.

Overall, RAID 5 is a popular choice for applications that require both

performance and redundancy. It provides good performance while

offering fault tolerance, making it a reliable and cost-effective solution

for many storage applications.

3.8.7 RAID 6: Block-level striping with double distributed parity

RAID 6 is an extension of RAID 5 and provides an additional level of

redundancy. In this configuration, data is striped across multiple disks

with two independent parity blocks distributed across all disks in the

array. This means that even if two disks fail simultaneously, the data can

still be recovered.

The key difference between RAID 5 and RAID 6 is that RAID 6 uses two

separate parity calculations instead of just one. This adds an extra layer

of protection, as there is a lower probability of two drives failing

simultaneously, and allows the system to recover data in the event of a

dual-disk failure.

RAID 6 is ideal for applications where data availability is critical, such

as large-scale databases or high-volume file servers. It can also provide

peace of mind for organizations that cannot afford the downtime that

would result from a single disk failure.

However, it's important to note that RAID 6 requires more processing

power than RAID 5 due to the additional parity calculations. This can

impact system performance, especially during high-load situations.

Additionally, RAID 6 requires a minimum of four disks to implement,

which can increase the cost of implementation.

Overall, RAID 6 is an effective solution for organizations that require a

high level of data protection and are willing to invest in the necessary

hardware and processing power to support it.

PAGE 55

3.8.8 RAID 10 (also known as RAID 1+0): Nested RAID levels, combining

mirroring and striping

RAID 10, also known as RAID 1+0, is a nested or hybrid RAID level that

combines the benefits of RAID 1 and RAID 0. RAID 10 uses a minimum

of four disks, with half of the disks used for mirroring and the other half

used for striping.

The data is first mirrored across two sets of disks, and then the mirrored

pairs are striped together. This provides both fault tolerance and

performance benefits. RAID 10 can sustain multiple disk failures as long

as each failed disk is not part of the same mirrored pair.

The main advantages of RAID 10 are its high performance and fault

tolerance. It offers excellent read and write performance since data is

striped across multiple disks, and it can also handle multiple disk

failures. RAID 10 is particularly well-suited for applications that require

high performance and data reliability, such as database servers.

However, RAID 10 has some disadvantages as well. It requires a large

number of disks, and only half of the total capacity is available for use

since the other half is used for mirroring. RAID 10 is also more expensive

than other RAID levels due to the number of disks required.

In summary, RAID 10 is a nested RAID level that provides both high

performance and fault tolerance. While it has some drawbacks, it is an

excellent choice for applications that require high performance and data

reliability.

4 I/O File Systems and Networking

At the heart of any operating system lies the ability to read and write

data from different sources. IO file systems, which include device files

and socket files, provide the mechanisms for doing just that. These files

are responsible for managing input and output operations to and from

PAGE 56

devices and network sockets, respectively. Understanding how they

work is essential for any operating system developer or user.

On the other hand, networking IO involves transmitting and receiving

data over a network. This includes the use of sockets, ports, and

protocols to establish connections and exchange information between

different systems. The most commonly used protocols in networking IO

are TCP/IP, UDP, and NFS. Knowledge of these protocols and their

associated components is critical for building and maintaining

networked applications.

4.1 I/O file systems:

I/O file systems are responsible for managing file I/O operations on

storage devices such as hard disks, solid-state drives, and network

storage. The I/O file system serves as an interface between the operating

system and storage devices, providing a uniform way of accessing and

managing files.

4.1.1 Device Files:

Device files are a fundamental component of IO file systems. They

represent physical or virtual devices such as disks, network interfaces,

and printers. Device files provide a standard interface for accessing and

controlling devices through the IO file system. There are two types of

device files:

4.1.1.1 Block devices:

Block devices allow for random access to data on the device. They are

used for storing files and are accessed through the file system. Examples

of block devices include hard drives and solid-state drives.

Block devices are the I/O devices that operate on blocks of data, which

are of fixed size, typically 512 bytes or larger. Block devices include disk

PAGE 57

drives, flash drives, and CD-ROMs. In contrast to character devices,

block devices provide a file-system interface, allowing the operating

system to read and write files stored on the device.

Commands to read, write, and seek data are sent to block devices. Raw

I/O allows direct access to the device, bypassing the file system. Direct

I/O accesses the device through the file system, but bypasses the

operating system cache. File-system access uses the operating system's

cache to improve performance.

Memory-mapped file access is also possible with block devices. This

technique maps a file to virtual memory and brings clusters of data via

demand paging. By using this method, the operating system can directly

access data stored on a disk without the need to copy the data into the

kernel.

Block devices can also take advantage of DMA (Direct Memory Access)

to transfer data between the device and memory. This bypasses the CPU

and allows for more efficient data transfer.

In summary, block devices provide a file-system interface, support read,

write, and seek commands, can be accessed via raw, direct or file-system

I/O, support memory-mapped file access, and can take advantage of

DMA for efficient data transfer.

4.1.1.2 Character devices:

Character devices allow for the sequential transfer of data to and from

the device. They are used for devices that generate or receive streams of

data, such as network interfaces or printers.

Character devices are those that transfer data character by character.

They are commonly used for I/O devices that communicate with the

user or other devices that operate on a byte stream, such as keyboards,

mice, serial ports, and sound cards. The commands supported by

character devices include get() and put(), which enable the device to

read and write data.

PAGE 58

Libraries are often layered on top of character devices to allow for line

editing, where characters are entered one at a time and can be edited

before being transmitted to the system.

4.1.1.3 Network devices

Network devices represent a distinct class of I/O devices and are

different enough from block and character devices that they require

their own interface. The most commonly used interface for network

devices is the socket interface, which is available on Linux, Unix,

Windows, and many other operating systems.

The socket interface separates the network protocol from the network

operation, allowing the application to interact with the network without

having to understand the underlying details of the protocol being used.

It provides a set of functions that enable the application to create,

connect, send, and receive data over the network.

One particularly useful feature of the socket interface is the select()

function, which allows an application to monitor multiple sockets

simultaneously and respond to incoming data as it arrives. This makes

it possible to write networked applications that can handle many

simultaneous connections efficiently.

There are many different approaches to networking, and the specific

implementation of network devices can vary widely. Some examples

include pipes, FIFOs, streams, queues, and mailboxes. Each of these

approaches has its own advantages and disadvantages, and the

appropriate choice depends on the specific needs of the application

being developed.

In general, network devices are used to transmit and receive data over a

network connection, and they are commonly used for tasks such as file

sharing, email, video streaming, and web browsing. The use of network

devices has become increasingly important in recent years, as more and

more applications have moved to cloud-based environments and as the

demand for high-speed connectivity has grown.

PAGE 59

4.1.1.4 Clocks and timers

Clocks and timers are important components of an operating system

that provide accurate and reliable time information. In addition to

keeping track of the current time, clocks and timers can also provide

information about elapsed time and can be used to trigger events at

specific intervals.

Most operating systems provide a clock that has a normal resolution of

about 1/60 of a second, which is adequate for most purposes. However,

some systems provide higher-resolution timers that can be used for

more precise timing. These timers can be used for various purposes,

such as measuring the performance of an application or scheduling

tasks to run at specific intervals.

One common type of timer is the programmable interval timer (PIT),

which is used to generate periodic interrupts at a specified frequency.

The PIT can be programmed to generate interrupts at a frequency

ranging from a few Hz to several kHz. These interrupts can be used to

schedule tasks, handle I/O events, or perform other time-critical

operations.

In addition to the clock and timer hardware, operating systems also

provide an interface for accessing these devices. On UNIX systems, the

ioctl() system call is used to cover odd aspects of I/O such as clocks and

timers. This interface allows programs to set and query the state of the

clock and timer hardware, as well as perform other operations related

to timekeeping.

Overall, clocks and timers are essential components of an operating

system, providing accurate and reliable time information that is used by

many system components and applications.

4.1.2 Socket Files:

Socket files are a type of device file used for network communication

between applications. They provide an interface for sending and

PAGE 60

receiving data over a network connection. Socket files are used in

conjunction with networking IO to provide a standard interface for

network communication. There are two types of socket files:

 Stream socket files: Stream socket files provide a reliable,

connection-oriented interface for network communication. They

ensure that data is transmitted in the correct order and without

errors.

 Datagram socket files: Datagram socket files provide a

connectionless, unreliable interface for network communication.

They are used for sending and receiving small packets of data

without the overhead of a connection-oriented protocol.

IO file systems are critical for modern operating systems. They provide

a standard interface for accessing and managing files on various storage

devices, enabling applications to interact with the file system in a

uniform manner. IO file systems also play a crucial role in managing the

flow of data between devices and applications, ensuring that data is

transferred reliably and efficiently.

IO file systems are a vital component of modern operating systems.

They provide a standard interface for accessing and managing files on

various storage devices, allowing applications to interact with the file

system in a uniform manner. Socket files and device files provide a

reliable and efficient way of managing network communication and

storage devices, respectively. Understanding the functions and

importance of IO file systems is essential for building efficient and

reliable operating systems.

PAGE 61

4.2 Networking I/O

Networking I/O is the process of sending and receiving data over a

network connection. It is a critical component of modern operating

systems, enabling applications to communicate with other systems and

devices. This chapter will provide an overview of networking I/O,

including sockets, ports, and protocols such as TCP/IP, UDP, and NFS.

4.2.1 Sockets:

Sockets are a fundamental component of networking I/O. They provide

an interface for applications to send and receive data over a network

connection. Sockets can be used for both connection-oriented and

connectionless protocols. Connection-oriented protocols establish a

reliable connection between two endpoints, ensuring that data is

transmitted in the correct order and without errors. Connectionless

protocols do not establish a connection and do not guarantee the

delivery of data.

4.2.2 Ports:

Ports are used to identify specific endpoints on a network connection.

They are 16-bit numbers that identify a specific application or service on

a device. Ports are used in conjunction with sockets to establish

connections between applications and devices. Well-known ports are

reserved for specific services such as HTTP (port 80) and FTP (port 21).

Ports can also be dynamically allocated by applications as needed.

4.2.3 Protocols:

There are several protocols used for networking IO, including TCP/IP,

UDP, and NFS.

PAGE 62

 TCP/IP: Transmission Control Protocol/Internet Protocol

(TCP/IP) is the most commonly used protocol for networking IO.

It provides a reliable, connection-oriented interface for

transmitting data over a network connection. TCP/IP is used for a

wide range of applications, including email, file transfer, and web

browsing.

 UDP: User Datagram Protocol (UDP) is a connectionless protocol

that provides an unreliable, best-effort interface for transmitting

data over a network connection. UDP is used for applications

where speed is more important than reliability, such as video

streaming and online gaming.

 NFS: Network File System (NFS) is a protocol for sharing files over

a network connection. NFS enables multiple devices to access and

modify files on a shared storage device, providing a flexible and

scalable way of managing files across a network.

Networking IO is essential for modern operating systems, enabling

applications to communicate with other devices and systems over a

network connection. It allows for the transfer of data across different

platforms and devices, facilitating collaboration and communication

between users. Networking IO also plays a critical role in managing

network security and performance, ensuring that data is transmitted

efficiently and securely.

Networking IO is a vital component of modern operating systems,

providing a reliable and efficient way of transmitting data over a

network connection. Sockets and ports provide a standard interface for

establishing connections between applications and devices, while

protocols such as TCP/IP, UDP, and NFS enable the transfer of data

across different platforms and devices. Understanding the functions and

importance of networking IO is essential for building efficient and

reliable operating systems.

PAGE 63

4.3 Examples: TCP/IP, UDP, and NFS

In the previous chapter, we discussed Networking IO and its importance

in modern computer systems. In this chapter, we will delve deeper into

three examples of Networking IO: TCP/IP, UDP, and NFS. These

protocols are widely used in computer networking and are critical to the

functioning of many systems. We will explain how they work, their

advantages and disadvantages, and their use cases.

4.3.1 TCP/IP:

TCP/IP is one of the most commonly used networking protocols. It

stands for Transmission Control Protocol/Internet Protocol and is the

backbone of the Internet. TCP provides reliable, ordered, and error-

checked delivery of data between applications. It breaks the data into

packets and reassembles them at the destination, ensuring that all

packets arrive in the correct order. IP is responsible for routing the

packets to their destination. It provides a best-effort delivery service and

does not guarantee the delivery of packets or their order.

TCP/IP has several advantages. It provides a reliable and secure

connection, ensuring that all data is received without corruption or loss.

It also guarantees that data is delivered in the correct order. TCP/IP is

used in a wide range of applications, including web browsing, email, file

transfers, and remote login.

One disadvantage of TCP/IP is its high overhead. TCP requires a three-

way handshake to establish a connection, which can add significant

latency to the communication. It also requires a lot of processing power

and memory, which can be a problem for low-power devices.

4.3.2 UDP:

UDP stands for User Datagram Protocol and is a simple, connectionless

protocol that provides an unreliable and unordered delivery of data. It

PAGE 64

sends the data as a datagram, without establishing a connection first.

UDP is used in applications where speed and low overhead are more

important than reliability, such as real-time video and audio streaming,

online gaming, and DNS.

UDP has several advantages. It is lightweight and has low overhead,

making it ideal for real-time applications. It also allows multicast and

broadcast transmissions, making it useful for sending data to multiple

recipients.

One disadvantage of UDP is its lack of reliability. It does not guarantee

that all data will be received, and packets may arrive out of order.

Applications using UDP must implement their own error checking and

packet ordering mechanisms.

4.3.3 NFS:

NFS stands for Network File System and is a protocol for sharing files

over a network. It allows a computer to access files over a network as if

they were on a local file system. NFS was developed by Sun

Microsystems and is widely used in Unix and Linux environments.

NFS has several advantages. It allows file sharing across different

platforms and operating systems, making it ideal for heterogeneous

networks. It also allows multiple clients to access the same files

simultaneously, providing a shared file system.

One disadvantage of NFS is its lack of security. NFS was designed to

work on trusted networks and does not provide encryption or

authentication mechanisms. It is vulnerable to network attacks, and

data can be intercepted or modified by unauthorized users.

TCP/IP, UDP, and NFS are three examples of Networking IO that are

widely used in computer systems. Each protocol has its own advantages

and disadvantages and is suited for different applications.

PAGE 65

Understanding these protocols is essential for building reliable and

efficient computer networks.

5 I/O Performance and Optimization

At the heart of I/O performance are the metrics used to measure the

speed and efficiency of input and output operations. These metrics

include throughput, latency, and response time, which give us a detailed

understanding of how quickly our system can read and write data. A

deeper understanding of these metrics is essential for any developer or

system administrator looking to optimize I/O performance.

IO buffering is another essential technique used to enhance IO

performance. Read-ahead and write-behind are two buffering

mechanisms that can help us optimize the transfer of data between the

system and IO devices. They enable us to minimize latency and reduce

the number of IO operations required, leading to improved IO

performance.

IO tuning is another critical aspect of IO performance optimization.

Tuning involves adjusting various IO parameters such as block size,

queue depth, and parallelism to achieve optimal performance. These

techniques can help us achieve better utilization of system resources

and increase the efficiency of IO operations.

5.1 I/O performance

Performance is a critical factor in the design and implementation of any

operating system's I/O subsystem. I/O operations are often a major

contributor to system performance, as they require the CPU to execute

device driver and kernel I/O code, which can be time-consuming.

PAGE 66

Context switches due to interrupts can also have a significant impact on

performance, particularly in systems with many I/O operations

occurring simultaneously. Data copying is another factor that can affect

I/O performance. This is because data must often be transferred

between different parts of the system, such as between kernel and user

space, or between the CPU and I/O devices.

Network traffic is one of the most stressful types of I/O operations,

particularly in high-performance computing environments where large

amounts of data must be transferred between multiple nodes. In these

environments, network latency can be a critical factor in system

performance, and efforts are made to optimize network performance

through techniques such as data compression, buffering, and load

balancing.

To improve I/O performance, operating system designers use a variety

of techniques, such as optimizing device drivers to reduce the overhead

of I/O operations, using DMA to transfer data directly between memory

and devices, and using caching to reduce the need for repeated data

transfers.

In addition, many modern operating systems provide support for

asynchronous I/O, which allows applications to initiate I/O operations

and then continue executing while the I/O is being performed. This can

help to reduce the impact of I/O operations on overall system

performance, particularly in applications with high I/O requirements.

Overall, the performance of an operating system's I/O subsystem is a

critical factor in determining the system's overall performance, and

designers must carefully balance the competing demands of I/O

throughput, latency, and CPU utilization to achieve optimal

performance.

PAGE 67

5.2 I/O performance metrics:

In this chapter, we will discuss the various I/O performance metrics

used to measure the performance of input/output operations. The

performance of I/O operations is critical to the overall performance of

the system. Therefore, it is essential to understand the different metrics

used to evaluate I/O performance.

5.2.1 Throughput:

Throughput is one of the most important metrics to measure I/O

performance. It measures the amount of data that can be transferred

between the I/O subsystem and the application per unit of time.

Throughput is usually measured in bytes per second. A higher

throughput indicates better performance.

5.2.2 Latency:

Latency is another important metric to measure IO performance. It

measures the time taken for an IO request to complete. Latency is

usually measured in milliseconds. A lower latency indicates better

performance.

5.2.3 Response Time:

Response time is a metric that measures the time taken for an

application to receive a response to an IO request. Response time

includes the time taken for the IO operation to complete as well as the

time taken for the data to reach the application. Response time is usually

measured in milliseconds. A lower response time indicates better

performance.

PAGE 68

5.2.4 I/O Buffering:

I/O buffering is a technique used to improve I/O performance. It

involves the use of buffers to store data temporarily before it is written

to or read from the I/O device. There are two types of I/O buffering:

read-ahead and write-behind.

5.2.5 Read-Ahead:

Read-ahead is a technique used to improve the performance of

sequential read operations. It involves reading a block of data from the

device before it is requested by the application. This technique reduces

the number of I/O requests required to read the data, thereby improving

performance.

Example: Here's a pseudocode for read-ahead buffering:

initialize buffer_size to a desired value

initialize buffer to an empty buffer of size buffer_size

initialize read_queue to an empty queue

when a read operation is requested:

 if the requested data is already in the buffer:

 return the data from the buffer

 else:

 add the read request to the read_queue

when the buffer is not full and there are read requests waiting:

 remove the first read request from the read_queue

 read the requested data into the buffer, starting from the

requested offset

PAGE 69

 update the buffer offset to the end of the read data

when the program is done reading:

 discard any remaining data in the buffer

In this pseudocode, the buffer is used to hold data that has been read

from the device. When a read operation is requested, the program first

checks if the requested data is already in the buffer. If it is, the program

returns the data from the buffer. If the requested data is not in the buffer,

the read request is added to the read_queue.

When the buffer is not full and there are read requests waiting in the

read_queue, the program removes the first request from the queue and

reads the requested data into the buffer. The program then updates the

buffer offset to the end of the read data.

The read-ahead buffering strategy can help to reduce the number of

read operations from the device, as multiple read requests can be

satisfied with a single read operation. This can help to improve

performance, especially for slow or high-latency devices.

5.2.6 Write-Behind:

Write-behind is a technique used to improve the performance of write

operations. It involves buffering the data to be written in memory and

delaying the actual write operation until the buffer is full or until there

is a lull in IO activity. This technique reduces the number of write

operations required, thereby improving performance.

Example: Here's a pseudocode for write-behind buffering:

initialize buffer_size to a desired value

initialize buffer to an empty buffer of size buffer_size

initialize write_queue to an empty queue

PAGE 70

when a write operation is requested:

 if buffer is not full:

 append the write request to the buffer

 else:

 add the write request to the write_queue

when the buffer is full or a timer expires:

 write the entire buffer to the device

 while write_queue is not empty:

 remove the first write request from the queue

 write it to the device

when the program is done writing:

 write any remaining data in the buffer to the device

In this pseudocode, the buffer is used to hold write requests until it is

full or a timer expires. When the buffer is full or the timer expires, the

contents of the buffer are written to the device. If there are any write

requests waiting in the write_queue, they are processed after the buffer

is written to the device.

The write-behind buffering strategy can help to reduce the number of

write operations to the device, as multiple writes are combined into a

single operation. This can help to improve performance, especially for

slow or high-latency devices.

5.2.7 I/O Tuning:

I/O tuning is the process of adjusting various I/O parameters to improve

performance. The parameters that can be tuned include block size,

queue depth, and parallelism.

PAGE 71

5.2.8 Block Size:

Block size refers to the size of the data block that is transferred between

the IO subsystem and the application. A larger block size can improve

performance as it reduces the number of IO operations required to

transfer a given amount of data.

5.2.9 Queue Depth:

Queue depth refers to the number of IO requests that can be queued by

the IO subsystem. Increasing the queue depth can improve performance

as it allows the IO subsystem to process more IO requests in parallel.

5.2.10 Parallelism:

Parallelism refers to the ability of the IO subsystem to perform multiple

IO operations in parallel. Increasing parallelism can improve

performance as it allows the IO subsystem to process multiple IO

requests simultaneously.

IO performance metrics are essential to measure the performance of

input/output operations. Throughput, latency, and response time are

some of the critical metrics used to evaluate IO performance. IO

buffering and IO tuning are techniques used to improve IO performance.

IO buffering includes read-ahead and write-behind, while IO tuning

involves adjusting parameters such as block size, queue depth, and

parallelism.

5.3 I/O buffering: read-ahead and write-behind

Input/output buffering is the process of temporarily storing data in a

buffer, usually in the memory, to improve I/O performance. Buffering

PAGE 72

allows the I/O operations to proceed asynchronously from the CPU,

reducing the time spent waiting for data to arrive or data to be written

to a device.

There are two types of buffering: read-ahead and write-behind.

 Read-ahead buffering involves loading data into a buffer before it

is needed. This helps to reduce I/O wait times, as data is already

available in the buffer when it is requested by the application. This

technique is commonly used in sequential read operations, where

the application reads data in a predictable pattern.

 Write-behind buffering, on the other hand, involves storing data

in a buffer before it is written to a device. This helps to reduce I/O

wait times, as the application can continue processing without

waiting for the data to be written to the device. This technique is

commonly used in write operations, where the application writes

data in a predictable pattern.

Both read-ahead and write-behind buffering can be implemented at

different levels of the system, from the device driver to the operating

system kernel to the application itself.

Buffering can have a significant impact on I/O performance. The size of

the buffer and the frequency with which data is transferred between the

buffer and the device can greatly affect the performance of an I/O

operation. A larger buffer can reduce the number of I/O operations

required, while more frequent transfers can help to reduce the amount

of time spent waiting for data to be transferred.

However, buffering can also have some drawbacks. It can lead to

increased memory usage, as buffers need to be allocated and managed.

It can also lead to increased complexity in the system, as multiple layers

of buffering may need to be coordinated.

PAGE 73

In general, buffering can be a useful technique for improving I/O

performance, particularly in cases where I/O operations are predictable

and sequential. However, it should be used judiciously, and the size and

frequency of buffer transfers should be carefully tuned to achieve the

desired performance improvements.

Example: Here's a basic pseudocode example for implementing IO

buffering in a read operation:

buffer_size = 4096

buffer = allocate_memory(buffer_size)

open_file("file.txt")

while not end_of_file:

 # check if buffer needs to be refilled

 if buffer_index == buffer_size:

 fill_buffer(buffer, buffer_size, file_pointer)

 buffer_index = 0

 # read data from buffer

 data = buffer[buffer_index]

 buffer_index += 1

 # process data

 process_data(data)

PAGE 74

close_file()

function to fill buffer from file

function fill_buffer(buffer, buffer_size, file_pointer):

 read_size = min(buffer_size, file_size - file_pointer)

 data = read_from_file(read_size, file_pointer)

 buffer[0:read_size] = data

In this example, the buffer is allocated with a predetermined size and

the file is opened. The while loop reads data from the buffer until the

end of the file is reached.

When the buffer is empty, the fill_buffer() function is called to refill the

buffer with more data from the file. The function reads data from the

file and stores it in the buffer, starting from the current buffer index.

The buffer index is incremented with each read operation, and the data

is processed by the process_data() function. Finally, the file is closed

once all the data has been read.

Note that this is a simplified example and doesn't include error handling

or other potential complications.

6 Case Study: I/O in Windows

The Windows I/O architecture is a complex and highly optimized

system that is responsible for managing the transfer of data between the

system and I/O devices. This architecture includes several layers,

including the hardware abstraction layer, device drivers, and the I/O

manager. Understanding how these layers work together is essential for

any developer or system administrator working with Windows.

PAGE 75

In this case study, we will explore the Windows IO architecture in detail,

comparing it with other popular operating systems. We will look at the

strengths and weaknesses of the Windows IO architecture and examine

the impact it has on system performance and reliability. By the end of

this case study, you will have a deep understanding of how Windows

manages IO and how it compares with other operating systems.

Windows IO performance and reliability have a significant impact on

the overall performance of the system. A poorly designed IO

architecture can lead to slow IO operations, decreased system

responsiveness, and even system crashes. That's why it's essential to

understand how the Windows IO architecture works and how to

optimize it for better performance and reliability.

6.1 Overview of Windows I/O architecture

Windows operating system has a highly sophisticated IO architecture

that provides efficient and scalable IO operations. The IO architecture

is designed to handle different types of IO devices, including hard disks,

network adapters, and input/output (IO) ports, among others.

At the core of the Windows IO architecture is the Windows Driver

Model (WDM), which provides a uniform interface for device drivers

across different hardware platforms. WDM is responsible for managing

the device drivers, handling the IO requests, and providing a unified

view of the system to the applications.

The IO requests in Windows are managed by the IO manager, which is

responsible for coordinating the IO operations between the device

drivers and the applications. The IO manager creates an IO request

packet (IRP) for each IO request and forwards it to the appropriate

device driver. The device driver then processes the request and returns

a status code to the IO manager.

PAGE 76

Windows also supports asynchronous IO operations through its IO

completion ports (IOCPs) mechanism. An IOCP is a kernel object that

applications can use to receive notifications when an IO operation

completes. This allows applications to perform other tasks while waiting

for the IO operation to complete, improving the overall system

performance.

Another important feature of the Windows IO architecture is the Plug

and Play (PnP) manager, which is responsible for detecting and

configuring new devices in the system. When a new device is added to

the system, the PnP manager scans the system for compatible device

drivers and installs them automatically.

Overall, the Windows IO architecture is designed to provide a flexible

and efficient mechanism for handling IO operations in a wide range of

hardware and software environments. It provides a powerful set of tools

and APIs for developers to build scalable and reliable IO-intensive

applications.

7 Conclusion

In conclusion, input-output, or IO, is a crucial component of any

modern operating system. Understanding how IO works, and how to

optimize its performance, is essential for any developer or system

administrator working with computers.

Throughout this book, we have explored the various aspects of IO,

including IO file systems, networking IO, and IO performance and

optimization. We have looked at the different metrics used to measure

IO performance, the buffering techniques used to optimize IO transfer,

and the tuning strategies used to achieve optimal IO performance.

We have also explored the IO architecture of Windows, comparing it

with other popular operating systems and examining its impact on

system performance and reliability. By understanding how IO works in

PAGE 77

different operating systems, you can make informed decisions about

which system to use and how to optimize it for optimal performance.

In today's fast-paced world, where speed and efficiency are critical, a

deep understanding of IO is more important than ever. By optimizing

IO performance, we can improve the speed and responsiveness of our

systems, enabling us to work faster and more efficiently.

