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HOW TO VIRTUALIZE RESOURCES 

How does the operating system virtualize resources? What mechanisms and policies are 

implemented by the OS to attain virtualization? How does the OS do so efficiently? What 

hardware support is needed? 

The operating system (OS) virtualizes resources to allow multiple programs or users to 

share the same hardware resources. This can be done in a number of different ways, 

depending on the type of resource being virtualized and the needs of the system. 

One common way that the OS virtualizes resources is by using virtual memory. In this 

model, the OS creates a virtual address space for each process, which is mapped to physical 

memory by the hardware. This allows each process to have its own private memory space, 

while still being able to access shared memory as needed. The OS uses a combination of 

hardware support (such as the memory management unit (MMU) on a CPU) and software 

algorithms to manage the virtual memory system efficiently. 

Other resources that may be virtualized by the OS include processors, I/O devices, and 

network resources. For example, the OS may use time slicing to allow multiple processes to 

share a single processor, or it may use device drivers to allow multiple programs to access 

the same physical I/O device. 

To efficiently virtualize resources, the OS typically implements a variety of mechanisms and 

policies. These can include scheduling algorithms to determine which processes should be 

given access to resources, resource allocation policies to determine how resources should 

be shared between processes, and system call interfaces to allow processes to request access 

to resources in a controlled way. 

Hardware support is often required for the OS to effectively virtualize resources. For 

example, the MMU on a CPU is used to support virtual memory, while some types of I/O 

devices may require specialized hardware support to allow multiple programs to access 

them concurrently. 
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HOW TO BUILD CORRECT CONCURRENT PROGRAMS 

When there are many concurrently executing threads within the same memory space, how 

can we build a correctly working program? What primitives are needed from the OS? What 

mechanisms should be provided by the hardware? How can we use them to solve the 

problems of concurrency? 

Concurrency in a program can be challenging to implement correctly because it can lead to 

race conditions, deadlocks, and other types of synchronization problems. To build a 

correctly working concurrent program, you will need to use synchronization primitives 

provided by the operating system (OS) and the hardware. These primitives can help you to 

coordinate the execution of threads, protect shared resources, and ensure that your 

program executes correctly in the presence of concurrency. 

Some common synchronization primitives provided by the OS include: 

 Mutexes: Mutual exclusion locks that can be used to protect shared resources from 

concurrent access. 

 Semaphores: A synchronization object that controls access by multiple threads to a 

common resource in a parallel programming environment. 

 Monitors: A synchronization construct that allows threads to have both mutual 

exclusion and the ability to wait for a certain condition to be true. 

 Condition variables: A synchronization object that allows a thread to wait for a 

particular condition to be true, while allowing other threads to execute. 

Hardware-based synchronization primitives can include: 

 Atomic instructions: Instructions that can be executed concurrently but will always 

complete as a single unit of work, without interference from other threads. 

 Memory barriers: Special instructions that can be used to ensure that certain 

memory operations happen in a specific order. 

By using these primitives correctly, you can build concurrent programs that execute 

correctly, even in the presence of race conditions and other synchronization problems. It is 

important to carefully design your program to avoid common pitfalls such as deadlocks and 

race conditions, and to thoroughly test your program to ensure that it behaves correctly in 

the presence of concurrency. 
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HOW TO STORE DATA PERSISTENTLY 

The file system is the part of the OS in charge of managing persistent data. What techniques 

are needed to do so correctly? What mechanisms and policies are required to do so with 

high performance? How is reliability achieved, in the face of failures in hardware and 

software? 

The file system is responsible for managing persistent data on a computer, and it is a critical 

part of the operating system (OS). To do so correctly, the file system must use a variety of 

techniques to ensure the integrity and consistency of the data it stores. 

One important technique used by file systems is the use of a journal, or log, to track changes 

made to the file system. The journal records each change as it happens, and if a failure 

occurs, the file system can use the journal to restore the file system to a consistent state. 

This helps to ensure the reliability of the file system in the face of hardware and software 

failures. 

Other techniques that may be used by the file system to manage data correctly include: 

 Error checking and correction: To detect and correct errors in the data being stored. 

 Data compression: To reduce the amount of storage space needed for a given 

amount of data. 

 Encryption: To protect data from unauthorized access. 

To achieve high performance, the file system must use a variety of mechanisms and policies. 

These can include: 

 Caching: To reduce the number of disk accesses needed to read and write data. 

 Prefetching: To anticipate and pre-load data that is likely to be needed in the near 

future. 

 Disk scheduling algorithms: To determine the order in which disk accesses should 

be made to optimize performance. 

 File placement policies: To determine where on the disk to store different types of 

files to optimize performance. 

To ensure the reliability of the file system, the OS may also implement mechanisms such as 

redundant array of independent disks (RAID) to protect against disk failures, and backup 

and restore systems to allow the file system to be recovered in the event of data loss. 
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HOW TO PROVIDE THE ILLUSION OF MANY CPUS? 

Although there are only a few physical CPUs available, how can the OS provide the illusion 

of a nearly-endless supply of said CPUs? 

The operating system (OS) can provide the illusion of a nearly-endless supply of CPUs by 

using a technique called CPU scheduling, also known as multitasking. CPU scheduling 

allows the OS to divide the available CPU time among multiple processes, giving the 

appearance that each process has its own dedicated CPU. 

To implement CPU scheduling, the OS maintains a queue of processes that are ready to run. 

When a process becomes ready to run, it is added to the queue. The OS then uses a 

scheduling algorithm to determine which process should be allocated the CPU next. The 

scheduling algorithm takes into account a variety of factors, such as the priority of the 

process, the amount of CPU time it has already received, and the type of process (e.g. 

interactive vs. batch). 

Once the process has been selected by the scheduling algorithm, the OS allocates the CPU 

to that process and allows it to execute until it either completes or is blocked (e.g. waiting 

for I/O). When the process is no longer able to run, the OS removes it from the queue and 

selects the next process to run. This process repeats continuously, giving the illusion of a 

nearly-endless supply of CPUs. 

Hardware support is required for the OS to effectively implement CPU scheduling. Most 

modern CPUs include features such as hardware-supported preemptive multitasking, which 

allows the OS to interrupt and reschedule processes as needed. 
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HOW TO CREATE AND CONTROL PROCESSES 

What interfaces should the OS present for process creation and control? How should these 

interfaces be designed to enable powerful functionality, ease of use, and high performance? 

The operating system (OS) should present a number of interfaces for process creation and 

control to allow programmers to create and manage processes in their programs. These 

interfaces should be designed to enable powerful functionality, ease of use, and high 

performance. 

Some common interfaces that the OS may provide for process creation and control include: 

 fork(): A system call that creates a new process by making a copy of the calling 

process. 

 exec(): A family of system calls that allows a process to replace its current code and 

data with a new program. 

 wait(): A system call that allows a process to wait for one of its child processes to 

terminate. 

 exit(): A system call that causes a process to terminate. 

To enable powerful functionality, these interfaces should allow a programmer to create and 

manage processes in a variety of ways. For example, the exec() family of system calls should 

allow a process to execute any program on the system, not just a limited set of programs. 

To ensure ease of use, these interfaces should be easy to use and understand, with clear 

documentation and well-defined behavior. They should also be consistent with other parts 

of the OS and with industry standards, to make it easier for programmers to learn and use 

them. 

To achieve high performance, these interfaces should be implemented efficiently, with low 

overhead and minimal impact on system performance. They should also be scalable, so that 

they can handle a large number of processes without degrading performance. 

It is also important for the OS to provide sufficient isolation between processes, to ensure 

that one process cannot interfere with the execution of another. This can be achieved 

through the use of memory protection, process isolation, and other techniques. 
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HOW TO EFFICIENTLY VIRTUALIZE THE CPU WITH 

CONTROL 

The OS must virtualize the CPU in an efficient manner while retaining control over the 

system. To do so, both hardware and operating-system support will be required. The OS 

will often use a judicious bit of hardware support in order to accomplish its work effectively. 

The operating system (OS) must virtualize the CPU in an efficient manner in order to 

provide the illusion of multiple CPUs to processes and users. This requires both hardware 

and OS support. 

The hardware plays an important role in supporting CPU virtualization by providing 

features such as hardware-supported multitasking, which allows the OS to preemptively 

interrupt and reschedule processes as needed. The hardware may also include features such 

as a memory management unit (MMU) to support virtual memory, which allows the OS to 

create a virtual address space for each process. 

The OS also plays a key role in virtualizing the CPU by implementing a scheduling algorithm 

to determine which process should be allocated the CPU at any given time. The scheduling 

algorithm takes into account a variety of factors, such as the priority of the process, the 

amount of CPU time it has already received, and the type of process (e.g. interactive vs. 

batch). 

To effectively virtualize the CPU, the OS must also provide sufficient isolation between 

processes to ensure that one process cannot interfere with the execution of another. This 

can be achieved through the use of memory protection, process isolation, and other 

techniques. 

Overall, the combination of hardware and OS support is necessary to enable the efficient 

virtualization of the CPU, while still allowing the OS to retain control over the system. 
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HOW TO PERFORM RESTRICTED OPERATIONS 

A process must be able to perform I/O and some other restricted operations, but without 

giving the process complete control over the system. How can the OS and hardware work 

together to do so? 

To allow a process to perform I/O and other restricted operations without giving it complete 

control over the system, the operating system (OS) and hardware can work together to 

provide mechanisms for controlled access to these operations. 

One way this can be achieved is through the use of system calls. System calls are special 

functions that a process can use to request access to restricted operations or resources. The 

OS can then validate the request and grant or deny access as appropriate. This allows the 

OS to retain control over the system, while still allowing processes to perform necessary 

operations. 

Hardware support can also be used to help control access to restricted operations. For 

example, the hardware may include memory protection features such as a memory 

management unit (MMU) to prevent processes from accessing memory that they are not 

authorized to access. Similarly, hardware-based access controls can be used to restrict 

access to I/O devices and other resources. 

Overall, the combination of OS and hardware support is necessary to allow processes to 

perform restricted operations in a controlled way, while still maintaining the integrity and 

security of the system. 
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WHY SYSTEM CALLS LOOK LIKE PROCEDURE CALLS 

System calls are designed to look like procedure calls so that they can be easily integrated 

into a programming language and used by programmers in a natural way. This makes it 

easier for programmers to use the functionality provided by the operating system (OS), as 

they do not have to learn a separate interface or use special commands to access OS 

functionality. 

System calls are implemented as procedures in the OS, and they are usually written in a 

low-level language such as C or assembly. When a program calls a system call, the OS 

intercepts the call and performs the requested operation. 

By making system calls look like procedure calls, the OS can provide a consistent and 

familiar interface for accessing its functionality. This makes it easier for programmers to use 

the OS and can improve the portability of programs, as they do not have to be rewritten to 

use different interfaces on different systems. 

A trap instruction, also known as a software interrupt or exception, is a type of instruction 

that causes the CPU to transfer control to a specific location in memory to execute a 

particular piece of code. Trap instructions are often used to invoke system calls or to handle 

exceptional conditions such as division by zero or invalid memory access. 

Trap instructions are typically implemented in hardware and are triggered by specific 

conditions or events. For example, a trap instruction may be triggered by an illegal 

instruction, an invalid memory access, or a divide-by-zero error. When a trap instruction is 

encountered, the CPU interrupts the current execution of the program and transfers control 

to a specific location in memory to execute a handler for the exception. 

Trap instructions can be used to implement system calls in an operating system (OS). When 

a program makes a system call, it can do so by executing a trap instruction that causes the 

CPU to transfer control to the OS to execute the requested system call. This allows the OS 

to retain control over the system and to provide a controlled interface for accessing its 

functionality. 
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BE WARY OF USER INPUTS IN SECURE SYSTEMS 

There are many other aspects to consider when implementing a secure operating system, 

beyond just protecting the OS during system calls. Handling arguments at the system call 

boundary is an important aspect of system call security, as the OS must ensure that 

arguments passed by the user are properly specified and do not compromise the security of 

the system. 

To do so, the OS can implement a variety of checks and safeguards to validate the arguments 

passed to system calls. For example, the OS can check the bounds of the arguments to 

ensure that they are within the expected range, and it can verify that pointers passed as 

arguments point to valid memory locations. The OS can also enforce access controls to 

ensure that a user has the necessary permissions to perform a given system call. 

In addition to these checks, the OS can also use techniques such as type safety and 

sandboxing to further restrict the actions that a user can perform through system calls. This 

can help to prevent malicious users from compromising the system or accessing sensitive 

information. 

Overall, it is important for the OS to carefully validate and sanitize arguments passed to 

system calls in order to maintain the security and integrity of the system. 
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HOW TO REGAIN CONTROL OF THE CPU 

How can the operating system regain control of the CPU so that it can switch between 

processes? 

The operating system (OS) can regain control of the CPU in order to switch between 

processes by using a technique called preemption. Preemption is the act of interrupting and 

suspending the execution of a process in order to allow another process to run. 

There are a few different ways that the OS can implement preemption: 

 Hardware-supported preemption: Most modern CPUs include hardware support for 

preemption, which allows the OS to interrupt and reschedule processes as needed. 

The OS can use this hardware support to regain control of the CPU and switch 

between processes. 

 Timer-based preemption: The OS can use a timer to periodically interrupt the 

execution of a process and switch to another process. This allows the OS to ensure 

that each process gets a fair share of the CPU. 

 Priority-based preemption: The OS can use the priority of processes to determine 

which process should be preempted. For example, if a high-priority process becomes 

ready to run, the OS may preempt a lower-priority process to allow the high-priority 

process to run. 

By using preemption, the OS can regain control of the CPU and switch between processes 

as needed, allowing it to effectively manage the execution of multiple processes on a single 

CPU. 
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HOW TO GAIN CONTROL WITHOUT COOPERATION 

How can the OS gain control of the CPU even if processes are not being cooperative? What 

can the OS do to ensure a rogue process does not take over the machine? 

If processes are not being cooperative and are not voluntarily relinquishing control of the 

CPU, the operating system (OS) may need to use more forceful measures to regain control 

of the CPU. One way the OS can do this is by using a technique called forced preemption. 

Forced preemption is the act of interrupting the execution of a process and suspending it, 

even if the process is not cooperating. This can be done in a variety of ways, depending on 

the hardware and OS in use. Some examples include: 

 Hardware-supported preemption: Most modern CPUs include hardware support for 

preemption, which allows the OS to interrupt and reschedule processes as needed. 

The OS can use this hardware support to forcibly preempt a process that is not 

cooperating. 

 Non-maskable interrupts: Non-maskable interrupts (NMIs) are special types of 

interrupts that cannot be ignored by the CPU. The OS can use NMIs to forcibly 

preempt a process that is not cooperating. 

 Kill signals: The OS can send a kill signal to a process to forcibly terminate it. This 

can be used to preempt a rogue process that is not cooperating. 

To ensure that a rogue process does not take over the machine, the OS can also implement 

security measures such as access controls and privilege levels to limit the actions that a 

process can perform. This can help to prevent malicious processes from compromising the 

system or accessing sensitive information. 

Overall, the OS can use a combination of hardware support, forced preemption, and 

security measures to regain control of the CPU and ensure that rogue processes do not take 

over the machine. 
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DEALING WITH APPLICATION MISBEHAVIOR 

When an operating system (OS) encounters a misbehaving process that is attempting to do 

something it shouldn't, such as accessing illegal memory or executing illegal instructions, 

the OS has a few options for handling the situation. One option is to terminate the offending 

process, as you mentioned. This can be a effective way to stop the process from causing 

further harm, but it does not address the root cause of the problem and may not be the most 

appropriate solution in all cases. 

Other options the OS may consider include: 

Killing the offending process and creating a new instance of the process: This can be useful 

if the process is critical to the operation of the system and cannot simply be terminated. By 

creating a new instance of the process, the OS can continue to provide the necessary 

functionality while addressing the misbehaving behavior of the original process. 

Restarting the system: In severe cases, the operating system (OS) may need to restart the 

system in order to restore it to a stable state. This can be useful if the misbehaving process 

has caused widespread damage to the system or if the OS is unable to recover from the 

problem. Restarting the system can allow the OS to start fresh and potentially resolve any 

issues that were causing the misbehaving behavior. However, restarting the system can also 

be disruptive, as it requires all processes to be terminated and can result in the loss of any 

unsaved work. As such, it should generally be used as a last resort when other options are 

not feasible. 

Isolating the offending process: To contain the damage caused by a misbehaving process, 

the operating system (OS) can use techniques such as sandboxing or containers to isolate 

the offending process from the rest of the system. Sandboxing involves running the process 

in a restricted environment that limits its access to system resources and prevents it from 

interacting with other processes or the underlying operating system. Containers are a more 

advanced form of isolation that allow the OS to run multiple isolated processes on the same 

system, each with its own virtualized operating environment. Isolating the offending 

process can help to prevent it from causing further harm to the system, while still allowing 

it to execute and perform its intended functions. This can be a useful alternative to simply 

terminating the process, as it allows the OS to continue providing the necessary 

functionality while addressing the misbehaving behavior of the process. 
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HOW LONG CONTEXT SWITCHES TAKE 

The amount of time that a context switch takes can vary depending on a number of factors, 

including the hardware and operating system (OS) being used, the complexity of the 

processes involved, and the amount of state that needs to be saved and restored during the 

context switch. 

In general, context switches are relatively fast operations that take a few microseconds to a 

few milliseconds to complete. However, in some cases, context switches can take longer, 

especially if there is a large amount of state to be saved and restored or if the process being 

switched out is doing a lot of I/O or has a lot of dirty pages in its address space. 

To minimize the impact of context switches on system performance, the OS can use a 

variety of techniques, such as intelligent scheduling and preemption, to minimize the 

number of context switches that are required. The hardware can also play a role in reducing 

the time required for context switches, by providing features such as hardware-supported 

multitasking and fast context switch support. 
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HOW TO DEVELOP SCHEDULING POLICY 

How should we develop a basic framework for thinking about scheduling policies? What 

are the key assumptions? What metrics are important? What basic approaches have been 

used in the earliest of computer systems? 

A basic framework for thinking about scheduling policies can be developed by considering 

the following factors: 

Key assumptions: It is important to identify the key assumptions that will guide the 

development of the scheduling policy. For example, the policy may be designed to optimize 

for throughput, response time, or some other metric. It is also important to consider the 

constraints of the system, such as the number of CPUs and the available resources. 

Metrics: The metrics that are used to evaluate the performance of the scheduling policy are 

an important factor to consider. Some common metrics include throughput, response time, 

fairness, and resource utilization. 

Basic approaches: There are a variety of basic approaches that have been used in scheduling 

policies for computer systems. These include first-come, first-served (FCFS), shortest job 

first (SJF), and round-robin (RR). Each of these approaches has its own strengths and 

weaknesses, and the appropriate approach will depend on the specific needs of the system. 

Overall, it is important to carefully consider the key assumptions, metrics, and basic 

approaches when developing a scheduling policy for a computer system. This will help to 

ensure that the policy is well-suited to the needs of the system and will allow the system to 

operate efficiently and effectively. 
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HOW TO SCHEDULE WITHOUT PERFECT KNOWLEDGE? 

How can we design a scheduler that both minimizes response time for interactive jobs while 

also minimizing turnaround time without a priori knowledge of job length? 

One approach to designing a scheduler that minimizes response time for interactive jobs 

while also minimizing turnaround time without a priori knowledge of job length is to use a 

priority-based scheduling algorithm. 

In a priority-based scheduling algorithm, each job is assigned a priority based on its 

importance or urgency. Jobs with higher priorities are given preference over lower-priority 

jobs and are executed first. This can help to minimize response time for interactive jobs, as 

they are typically given higher priorities to ensure that they receive timely service. 

To minimize turnaround time without a priori knowledge of job length, the scheduler can 

use a dynamic priority assignment algorithm. This type of algorithm adjusts the priorities 

of jobs based on their recent CPU usage and other factors, such as the age of the job or the 

amount of time it has spent waiting in the queue. This can help to ensure that jobs that have 

been waiting for a long time are given higher priorities and are executed more quickly, 

reducing turnaround time. 

Overall, a priority-based scheduling algorithm with dynamic priority assignment can be an 

effective way to design a scheduler that minimizes response time for interactive jobs while 

also minimizing turnaround time without a priori knowledge of job length. 
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LEARN FROM HISTORY 

Multi-level feedback queue (MLFQ) is an example of a system that uses past behavior to 

predict future behavior. In an MLFQ scheduler, each job is assigned to a queue based on its 

priority, and jobs in higher-priority queues are given preference over lower-priority queues. 

The priority of a job can be adjusted based on its past behavior, such as its CPU usage and 

response time. This allows the scheduler to learn from the past behavior of a job and predict 

how it will behave in the future, allowing it to make more informed decisions about which 

jobs to execute first. 

However, as you mentioned, it is important to be careful with such techniques, as they can 

easily be wrong and lead to suboptimal decision making. This can happen if the assumptions 

on which the predictions are based are not accurate or if the behavior of a job changes 

significantly over time. To mitigate this risk, it is important to carefully design the 

prediction algorithm and to monitor the performance of the system to ensure that it is 

making good decisions. 

Overall, the use of past behavior to predict future behavior can be a powerful technique for 

operating systems and other systems, but it is important to use it carefully and to monitor 

the performance of the system to ensure that it is making good decisions. 
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HOW TO SHARE THE CPU PROPORTIONALLY 

How can we design a scheduler to share the CPU in a proportional manner? What are the 

key mechanisms for doing so? How effective are they? 

One way to design a scheduler to share the CPU in a proportional manner is to use a 

proportional share scheduling algorithm. In a proportional share scheduling algorithm, 

each process is assigned a share of the CPU based on its relative importance or priority. The 

scheduler then allocates the CPU to each process in proportion to its assigned share. 

There are a few key mechanisms that can be used to implement proportional share 

scheduling: 

 Weighted round-robin: In this approach, each process is assigned a weight that 

reflects its relative importance or priority. The scheduler then allocates the CPU to 

each process in proportion to its weight, using a round-robin algorithm to rotate 

between processes. 

 Dynamic time slicing: In this approach, the scheduler allocates a certain amount of 

CPU time to each process based on its assigned share. The scheduler then uses a 

timer to interrupt the execution of each process and switch to the next process when 

its allocated time has been used up. 

 Budgeting: In this approach, the scheduler assigns each process a budget of CPU 

time that it is allowed to use before being preempted. The scheduler then allocates 

the CPU to each process in proportion to its budget, using preemption to enforce 

the budget limits. 

Overall, these mechanisms can be effective in helping to share the CPU in a proportional 

manner. However, their effectiveness can depend on the specific needs of the system and 

the characteristics of the processes being scheduled. It is important to carefully consider 

the trade-offs and choose the appropriate mechanism for the given system. 
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USE EFFICIENT DATA STRUCTURES WHEN APPROPRIATE 

Using efficient data structures can help to improve the performance of a system by reducing 

the amount of time and resources required to store and access data. There are a wide variety 

of data structures available, each with its own strengths and weaknesses, and the 

appropriate data structure to use will depend on the specific needs of the system. 

Some examples of efficient data structures that may be appropriate to use in certain 

situations include: 

 Arrays: Arrays are a simple data structure that allows for fast access to elements 

using their indices. They are well-suited for situations where the data is a fixed size 

and the order of the elements is not important. 

 Linked lists: Linked lists are a data structure that allows for the insertion and 

deletion of elements at any position in the list. They are well-suited for situations 

where the data is not a fixed size and the order of the elements is important. 

 Hash tables: Hash tables are a data structure that allows for fast lookup of elements 

using a hash function. They are well-suited for situations where the data is large and 

the order of the elements is not important. 

 Trees: Trees are a data structure that allows for fast insertion, deletion, and search 

of elements. They are well-suited for situations where the data is large and the order 

of the elements is important. 

Overall, it is important to choose the appropriate data structure for the given situation in 

order to maximize efficiency and performance. 
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HOW TO SCHEDULE JOBS ON MULTIPLE CPUS 

How should the OS schedule jobs on multiple CPUs? What new problems arise? Do the 

same old techniques work, or are new ideas required? 

When scheduling jobs on multiple CPUs, the operating system (OS) has several options for 

allocating tasks to the available CPUs. Some common approaches include: 

 Load balancing: In this approach, the OS tries to distribute the load evenly across 

all available CPUs in order to optimize resource utilization and prevent any one CPU 

from becoming overloaded. 

 CPU affinity: In this approach, the OS assigns tasks to specific CPUs based on the 

characteristics of the tasks and the CPUs. For example, the OS may assign CPU-

intensive tasks to CPUs with higher clock speeds or assign tasks with large memory 

footprints to CPUs with more memory. 

 Resource allocation: In this approach, the OS assigns tasks to CPUs based on the 

resources that the tasks require. For example, if a task requires a lot of memory, the 

OS may assign it to a CPU with more memory in order to reduce the risk of thrashing. 

New problems can arise when scheduling jobs on multiple CPUs, such as the need to 

coordinate access to shared resources and the need to handle contention for resources. 

These problems can be addressed using techniques such as lock-based synchronization or 

lockless synchronization. 

Overall, the same scheduling techniques that are used for single-CPU systems can still be 

effective for scheduling jobs on multiple CPUs, but new ideas and techniques may also be 

required to address the additional challenges that arise. It is important to carefully consider 

the specific needs of the system and choose the appropriate scheduling approach to ensure 

efficient and effective resource utilization. 
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HOW TO DEAL WITH LOAD IMBALANCE 

How should a multi-queue multiprocessor scheduler handle load imbalance, so as to better 

achieve its desired scheduling goals? 

There are several approaches that a multi-queue multiprocessor scheduler can take to 

handle load imbalance in order to better achieve its desired scheduling goals: 

 Dynamic queue assignment: In this approach, the scheduler monitors the load on 

each CPU and adjusts the assignment of tasks to queues accordingly. If a CPU 

becomes overloaded, the scheduler can move tasks from that CPU's queue to 

another CPU's queue in order to balance the load. 

 Work stealing: In this approach, the scheduler allows idle CPUs to "steal" work from 

the queues of other CPUs that are busy. This can help to balance the load across the 

CPUs and ensure that all available resources are being utilized effectively. 

 Load balancing policies: The scheduler can use load balancing policies to determine 

how to distribute tasks across the CPUs. For example, it can use a policy that tries 

to balance the load based on the number of tasks in each queue, or it can use a policy 

that tries to balance the load based on the CPU utilization of each CPU. 

Overall, these approaches can help a multi-queue multiprocessor scheduler to better 

achieve its desired scheduling goals by reducing load imbalance and ensuring that all 

available resources are being used effectively. 
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HOW TO VIRTUALIZE MEMORY 

How can the OS build this abstraction of a private, potentially large address space for 

multiple running processes (all sharing memory) on top of a single, physical memory? 

The operating system (OS) can build an abstraction of a private, potentially large address 

space for multiple running processes on top of a single, physical memory using the 

technique of virtual memory. 

Virtual memory is a mechanism that allows the OS to address more memory than is 

physically available in the system by temporarily transferring data from the main memory 

to a secondary storage device, such as a hard disk. When a process attempts to access 

memory that is not currently available in the main memory, the OS uses the virtual memory 

system to swap the data in and out of the main memory as needed. This allows the process 

to access a large address space, even if the physical memory is limited. 

To implement virtual memory, the OS uses a memory management unit (MMU) in the 

hardware to map virtual addresses to physical addresses. The MMU translates the virtual 

addresses used by the processes into physical addresses that correspond to the locations in 

the main memory or the secondary storage device. This allows the OS to provide each 

process with its own private, potentially large address space, even though all the processes 

are sharing the same physical memory. 

Overall, virtual memory is a powerful technique that allows the OS to build an abstraction 

of a private, potentially large address space for multiple running processes on top of a single, 

physical memory. 
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THE PRINCIPLE OF ISOLATION 

isolation is a key principle in building reliable systems, and it is a principle that is often used 

by operating systems to improve the reliability of the system. By isolating processes from 

one another, the OS can prevent one process from affecting the operation of another process 

or the underlying OS. This can help to reduce the risk of failures and can improve the overall 

reliability of the system. 

Memory isolation is a technique that can be used to further ensure that running programs 

cannot affect the operation of the underlying OS. By providing each process with its own 

private memory space and using hardware protection mechanisms to enforce the isolation, 

the OS can prevent processes from accessing or modifying memory that they are not 

authorized to access. This can help to prevent one process from interfering with the 

operation of another process or the OS. 

Microkernels are a type of OS design that takes the principle of isolation even further by 

walling off pieces of the OS from other pieces of the OS. In a microkernel design, the OS is 

divided into a small core kernel and a set of user-level servers that run in their own separate 

address spaces. This can provide greater isolation between different parts of the OS and can 

help to improve the reliability of the system by reducing the risk of failures propagating 

from one part of the system to another. 
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HOW TO ALLOCATE AND MANAGE MEMORY 

In UNIX/C programs, understanding how to allocate and manage memory is critical in 

building robust and reliable software. What interfaces are commonly used? What mistakes 

should be avoided? 

In UNIX/C programs, the malloc() and free() functions are commonly used to allocate and 

manage memory. The malloc() function is used to allocate a block of memory of a specified 

size, and the free() function is used to deallocate a block of memory that was previously 

allocated with malloc(). 

There are a few common mistakes that should be avoided when using these functions: 

 Memory leaks: A memory leak occurs when a program allocates memory with 

malloc() but fails to deallocate it with free(). This can lead to a depletion of available 

memory over time, which can cause the program to crash or behave unpredictably. 

 Dangling pointers: A dangling pointer is a pointer that refers to a block of memory 

that has been deallocated with free(), but the pointer itself has not been set to NULL 

or otherwise invalidated. Dereferencing a dangling pointer can lead to 

unpredictable behavior, including segmentation faults. 

 Buffer overflows: A buffer overflow occurs when a program writes data beyond the 

bounds of a buffer, which can lead to a corruption of memory and potentially allow 

an attacker to inject malicious code into the program. 

To avoid these mistakes, it is important to carefully manage memory allocation and 

deallocation, and to use appropriate safeguards to prevent buffer overflows. It is also a good 

idea to use memory debugging tools, such as valgrind, to detect and fix memory-related 

issues. 
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WHY NO MEMORY IS LEAKED ONCE YOUR PROCESS EXITS 

When you write a short-lived program and allocate space using malloc(), it is generally a 

good idea to deallocate the memory with free() before the program exits, even if the 

program is short-lived and the memory will not be "lost" in any real sense. This is because 

failing to deallocate memory can lead to resource leaks, which can cause problems over time 

if the program is run repeatedly or if multiple programs are running concurrently and 

allocating large amounts of memory without deallocating it. 

However, you are correct that there are really two levels of memory management in the 

system: the memory management within the program and the memory management at the 

operating system level. When a program calls malloc() to allocate memory, the memory is 

actually being allocated by the operating system and managed by the program. When the 

program calls free() to deallocate the memory, it is actually returning the memory back to 

the operating system for reuse. 

Overall, it is generally a good practice to deallocate memory when it is no longer needed, 

even if the program is short-lived and the memory will not be "lost" in any real sense, in 

order to prevent resource leaks and ensure that the system is running efficiently. 
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HOW TO EFFICIENTLY AND FLEXIBLY VIRTUALIZE MEMORY 

How can we build an efficient virtualization of memory? How do we provide the flexibility 

needed by applications? How do we maintain control over which memory locations an 

application can access, and thus ensure that application memory accesses are properly 

restricted? How do we do all of this efficiently? 

There are several approaches to building an efficient virtualization of memory: 

 Hardware-assisted virtualization: In this approach, the hardware provides support 

for virtualization, allowing the hypervisor (the software that manages the 

virtualization) to directly control the allocation of physical memory to virtual 

machines. This approach is generally efficient, but requires specialized hardware 

support. 

 Paravirtualization: In this approach, the operating system of the virtual machine is 

modified to communicate directly with the hypervisor, allowing the hypervisor to 

control the allocation of physical memory to the virtual machine. This approach is 

generally less efficient than hardware-assisted virtualization, but can be used on any 

hardware platform. 

 Hardware-enforced memory isolation: In this approach, the hardware enforces 

memory access restrictions, preventing a virtual machine from accessing memory 

locations that it is not authorized to access. This approach is efficient, but requires 

specialized hardware support. 

To provide the flexibility needed by applications, virtual memory can be implemented using 

a technique called paging, which allows the operating system to map a large virtual address 

space onto a smaller physical memory. This allows applications to access more memory than 

is physically available, and allows the operating system to control which memory locations 

an application can access. 

In general, it is important to carefully balance the trade-offs between flexibility, security, 

and efficiency when designing a virtualization of memory. 
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HOW TO SUPPORT A LARGE ADDRESS SPACE 

How do we support a large address space with (potentially) a lot of free space between the 

stack and the heap? Note that in our examples, with tiny (pretend) address spaces, the waste 

doesn’t seem too bad. Imagine, however, a 32-bit address space (4 GB in size); a typical 

program will only use megabytes of memory, but still would demand that the entire address 

space be resident in memory. 

One way to support a large address space with potentially a lot of free space between the 

stack and the heap is to use a technique called paging. With paging, the operating system 

can divide the virtual address space into smaller units called pages, and map each page onto 

a physical page frame in memory. This allows the operating system to only load the pages 

that are actually being used by the program into physical memory, and to swap out pages 

that are not being used to secondary storage (e.g., a hard drive). 

Another way to support a large address space with potentially a lot of free space is to use a 

technique called segmentation. With segmentation, the operating system can divide the 

virtual address space into smaller units called segments, and map each segment onto a 

physical memory region. This allows the operating system to allocate memory more 

efficiently, by only allocating physical memory for the segments that are actually being used 

by the program. 

Both paging and segmentation allow the operating system to support a large virtual address 

space, while still being able to efficiently use physical memory. However, they do have some 

differences: paging is generally simpler to implement, but may be less flexible than 

segmentation, while segmentation can provide more fine-grained control over memory 

allocation, but may be more complex to implement. 
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THE SEGMENTATION FAULT 

A segmentation fault, also known as a "segfault," occurs when a program tries to access a 

memory location that it is not allowed to access, or that does not exist. This can occur for a 

variety of reasons, such as trying to read from or write to a null pointer, or trying to execute 

code from a data-only section of memory. 

On a machine with segmentation, the memory is divided into segments, each of which has 

a specific purpose and is protected from access by other segments. A segmentation fault 

occurs when a program tries to access a memory segment that it is not allowed to access. 

On a machine without segmentation, the memory is still divided into regions, but these 

regions are not necessarily protected from access by other programs. In this case, a 

segmentation fault can occur if a program tries to access a memory location that does not 

exist, or if it tries to perform an illegal operation on a memory location, such as executing 

code from a data section of memory. 

In either case, a segmentation fault is usually the result of a programming error, and it can 

be difficult to track down the cause of the fault. Debugging tools, such as a debugger or a 

memory checker, can be helpful in identifying the source of the problem. 
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HOW TO MANAGE FREE SPACE 

How should free space be managed, when satisfying variable-sized requests? What 

strategies can be used to minimize fragmentation? What are the time and space overheads 

of alternate approaches? 

In operating systems, free space is typically managed using a memory allocator. There are 

several approaches to managing free space when satisfying variable-sized requests in an 

operating system, including: 

 Using a free list or free space map: This involves maintaining a list or map of the free 

blocks of memory in the system, allowing the allocator to quickly find a block of 

sufficient size to satisfy a request. This approach can have a space overhead, as it 

requires additional data structures to be maintained. 

 Using a buddy allocator: This involves splitting blocks of memory into smaller 

blocks when they are not needed and merging them back together when a request 

for a larger block comes in. This can reduce fragmentation, but can have a time 

overhead as it requires additional work to split and merge blocks of memory. 

 Using a worst-fit allocator: This involves choosing the largest block of free memory 

to satisfy a request, which can help to reduce fragmentation by leaving fewer small 

blocks of free memory scattered throughout the system. 

 Using a first-fit allocator: This involves choosing the first block of free memory that 

is large enough to satisfy a request. This approach can be faster than other methods, 

but can result in more fragmentation if it leads to a lot of small blocks of free 

memory being left over. 

It is also possible to use a combination of these approaches to manage free space and 

minimize fragmentation in an operating system. The choice of approach will depend on the 

specific requirements of the system and the trade-offs between time and space overhead 

that are acceptable. 
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HOW TO VIRTUALIZE MEMORY WITH PAGES 

How can we virtualize memory with pages, so as to avoid the problems of segmentation? 

What are the basic techniques? How do we make those techniques work well, with minimal 

space and time overheads? 

Virtual memory is a technique that allows an operating system to provide a process with 

the appearance of a larger, continuous block of memory, even if the physical memory 

available to the system is fragmented or smaller than the virtual memory space. This is 

achieved by using a memory management unit (MMU) to map virtual memory addresses to 

physical memory addresses. 

One way to virtualize memory is to use a paging system, in which the virtual memory space 

is divided into fixed-sized units called pages, and the physical memory is divided into fixed-

sized units called page frames. The MMU is then used to map pages to page frames on 

demand. When a process accesses a virtual memory address, the MMU translates the virtual 

address to the corresponding physical address by looking up the mapping in a page table. 

To minimize space and time overheads, it is important to design the paging system to 

minimize the number of page table entries that need to be accessed and to use fast data 

structures to store the page table. It is also important to use an efficient page replacement 

algorithm to choose which pages to evict from physical memory when the system runs out 

of free page frames. 

Other techniques that can be used to improve the performance of a paging system include 

using a hierarchical page table structure to reduce the size of the page table, using a 

translation lookaside buffer (TLB) to cache recently accessed page table entries, and using 

demand paging to only load pages into physical memory when they are accessed. 
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DATA STRUCTURE - THE PAGE TABLE 

In general, the page table is used by the MMU (memory management unit) to translate 

virtual memory addresses to physical memory addresses when a process accesses memory. 

The page table stores the mapping between virtual pages and physical page frames, allowing 

the MMU to look up the physical address corresponding to a given virtual address. 

A page table is a data structure that is used in the memory management subsystem of a 

modern operating system to store virtual-to-physical address translations. The properties 

of a page table data structure can include: 

Size: The size of the page table depends on the size of the virtual memory space and the size 

of the pages used by the system. A larger virtual memory space or smaller page size will 

result in a larger page table. 

Structure: The page table can be structured in different ways, depending on the needs of 

the system. For example, it can be a flat array of page table entries, or it can use a 

hierarchical structure to reduce the size of the page table. 

Entry format: The page table entries typically contain information such as the physical page 

frame number that corresponds to the virtual page, and various flags such as read/write 

permissions and access protection. The exact format of the page table entries will depend 

on the specific requirements of the system. 

Access time: The time required to access a page table entry and translate a virtual address 

will depend on the data structure used to store the page table and the size of the page table. 

Using a fast data structure and minimizing the size of the page table can help to reduce the 

access time. 

Memory overhead: The page table requires memory to store the page table entries, which 

can be a significant overhead for systems with large virtual memory spaces. Techniques such 

as using a hierarchical page table structure or a translation lookaside buffer (TLB) can help 

to reduce the memory overhead of the page table. 
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HOW TO SPEED UP ADDRESS TRANSLATION 

How can we speed up address translation, and generally avoid the extra memory reference 

that paging seems to require? What hardware support is required? What OS involvement is 

needed? 

There are several techniques that can be used to speed up address translation and avoid the 

extra memory reference required by paging: 

Translation lookaside buffer (TLB): A TLB is a cache that stores recently accessed page table 

entries, allowing the MMU to quickly look up the physical address corresponding to a 

virtual address without having to access the page table in main memory. This can 

significantly speed up address translation, as accessing the TLB is typically faster than 

accessing main memory. Hardware support is required for the TLB, and the operating 

system is responsible for maintaining the TLB and ensuring that it contains the correct page 

table entries. 

Hierarchical page table structure: A hierarchical page table structure can be used to reduce 

the size of the page table and improve the performance of address translation. In this 

structure, the page table is organized into multiple levels, with each level containing a 

smaller number of entries. This can reduce the number of memory references required to 

translate a virtual address, as the upper levels of the hierarchy contain fewer entries and can 

be accessed more quickly. 

Hardware-managed TLB: Some systems use a hardware-managed TLB, which is 

automatically populated by the MMU as virtual addresses are accessed. This can reduce the 

burden on the operating system, as it does not have to maintain the TLB. However, this 

approach can be less flexible than a software-managed TLB, as the hardware may not have 

the ability to invalidate TLB entries or to handle page table updates in real time. 

Large pages: Some systems support the use of large pages, which are pages that are larger 

than the usual page size. Using large pages can reduce the size of the page table and the 

number of memory references required to translate a virtual address. However, large pages 

may not be suitable for all workloads, as they can be less flexible than smaller pages and 

may result in more internal fragmentation. 
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RISC VS. CISC 

The debate between CISC (Complex Instruction Set Computing) and RISC (Reduced 

Instruction Set Computing) was a significant one in the history of computer architecture. 

The main difference between the two approaches is the instruction set of the CPU. CISC 

architectures, such as the Intel x86, have a large and complex instruction set, with many 

instructions that can perform multiple operations in a single instruction. This can make the 

instruction set easier to program, but it can also result in longer and more complex 

instructions that are slower to execute. 

In contrast, RISC architectures have a smaller and simpler instruction set, with each 

instruction performing a single operation. This can make the instructions faster to execute, 

but it requires more instructions to perform the same task, which can make the instruction 

set more difficult to program. 

Both approaches have their pros and cons, and the debate between CISC and RISC 

continues to this day. Many modern processors use a hybrid approach, combining elements 

of both CISC and RISC to try to get the best of both worlds. 
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HOW TO MANAGE TLB CONTENTS ON A CONTEXT SWITCH 

When context-switching between processes, the translations in the TLB for the last process 

are not meaningful to the about-to-be-run process. What should the hardware or OS do in 

order to solve this problem? 

When a context switch occurs and the CPU switches from running one process to another, 

the TLB (Translation Lookaside Buffer) will contain translations that are not valid for the 

new process. This can occur because the virtual address space used by the new process may 

be laid out differently and may not use the same virtual-to-physical address translations as 

the previous process. 

To solve this problem, the operating system must invalidate the entries in the TLB that are 

not valid for the new process. This can be done by the hardware by providing a TLB flush 

instruction, or it can be done by the operating system by manually invalidating each TLB 

entry. 

Once the TLB has been invalidated, the operating system can then load the TLB with the 

appropriate translations for the new process, allowing it to access its virtual memory 

correctly. This process of invalidating the TLB and loading it with the correct translations 

is known as TLB management. 
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HOW TO DESIGN TLB REPLACEMENT POLICY 

Which TLB entry should be replaced when we add a new TLB entry? The goal, of course, 

being to minimize the miss rate (or increase hit rate) and thus improve performance. 

The goal when adding a new TLB entry is to maximize the likelihood that it will be used in 

the future, so as to minimize the miss rate and improve performance. There are several 

strategies that can be used to achieve this goal: 

 Least Recently Used (LRU): The TLB entry that has been accessed least recently is 

replaced with the new entry. This strategy assumes that entries that have not been 

accessed recently are less likely to be accessed in the future. 

 First In, First Out (FIFO): The TLB entry that was added to the TLB first is replaced 

with the new entry. This strategy does not take into account the usage history of 

TLB entries. 

 Random: A TLB entry is chosen at random to be replaced with the new entry. This 

strategy does not take into account the usage history of TLB entries. 

Ultimately, the choice of replacement strategy will depend on the specific characteristics of 

the workload and the hardware implementation of the TLB. Some TLB designs may provide 

support for multiple replacement strategies, allowing the operating system to choose the 

most appropriate one for a given workload. 
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HOW TO MAKE PAGE TABLES SMALLER? 

Simple array-based page tables (usually called linear page tables) are too big, taking up far 

too much memory on typical systems. How can we make page tables smaller? What are the 

key ideas? What inefficiencies arise as a result of these new data structures? 

There are several techniques that can be used to make page tables smaller and more efficient, 

including: 

 Hierarchical page tables: Instead of using a single, monolithic page table to map the 

entire virtual address space of a process, hierarchical page tables use a multi-level 

structure to map only the pages that are currently in use. This can greatly reduce 

the size of the page table and improve efficiency, but it comes at the cost of increased 

complexity and longer access times. 

 Inverted page tables: Inverted page tables store a list of valid virtual-to-physical 

address translations, rather than a list of invalid ones. This can greatly reduce the 

size of the page table, but it requires the operating system to maintain a separate 

data structure to track the mapping of physical pages to virtual addresses. 

 Page coloring: Page coloring involves partitioning physical memory into "colors" and 

associating each virtual page with a particular color. This can reduce the number of 

TLB misses by ensuring that pages with the same color are not mapped to the same 

physical pages, which would cause conflicts in the TLB. 

The main inefficiency that arises as a result of using these techniques is increased access 

time, as it takes longer to traverse a multi-level page table or to search an inverted page 

table for a particular translation. This can impact the overall performance of the system, 

particularly in workloads that make heavy use of virtual memory. 
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UNDERSTAND TIME-SPACE TRADE-OFFS 

In computer science, the time-space trade-off refers to the idea that optimizing for one 

resource (such as time or space) can often come at the expense of the other. In the context 

of data structures and operating systems, this trade-off can manifest in a number of ways: 

 Memory usage vs. access time: Choosing a data structure with a smaller memory 

footprint (e.g. a hash table versus a balanced tree) may result in faster access times, 

but it may also require more complex algorithms and additional CPU cycles to 

perform lookups. 

 Disk usage vs. access time: Storing data on a faster storage medium (e.g. an SSD 

versus an HDD) may improve access times, but it may also come at the cost of 

increased disk usage. 

 Caching vs. coherence: Caching data in memory can improve access times, but it 

also requires additional memory and can lead to cache coherence issues if the data 

is updated in multiple locations. 

In general, it is important to carefully consider the trade-offs between time and space when 

designing data structures and algorithms, as they can have significant impacts on the 

performance and efficiency of an operating system. 
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HOW TO GO BEYOND PHYSICAL MEMORY 

How can the OS make use of a larger, slower device to transparently provide the illusion of 

a large virtual address space? 

One way that an operating system can transparently provide the illusion of a large virtual 

address space using a larger, slower device is by using virtual memory. Virtual memory is a 

technique that allows a computer to transparently map memory addresses used by a 

program onto physical addresses in the computer's memory. 

When a program accesses a memory address, the CPU generates a memory access request 

that includes the virtual address. The operating system's memory management unit (MMU) 

translates the virtual address into a physical address, which is then used to access the actual 

memory location. 

To provide the illusion of a larger virtual address space, the operating system can use virtual 

memory to map some of the program's memory addresses onto a larger, slower device such 

as a hard disk. This allows the program to access more memory than is physically present 

in the computer's RAM, at the cost of reduced access speed due to the slower access times 

of the backing device. 

The operating system can use various algorithms and techniques, such as paging and 

swapping, to manage the virtual memory and determine which memory pages should be 

resident in RAM and which should be stored on the slower backing device. This allows the 

operating system to provide the illusion of a large virtual address space while still making 

efficient use of the available physical memory. 
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HOW TO DECIDE WHICH PAGE TO EVICT 

How can the OS decide which page (or pages) to evict from memory? This decision is made 

by the replacement policy of the system, which usually follows some general principles 

(discussed below) but also includes certain tweaks to avoid corner-case behaviors. 

The operating system's page replacement policy determines which pages in memory should 

be evicted (i.e. removed from RAM and potentially stored on a slower backing device) when 

new pages need to be brought into memory. This decision is an important factor in the 

overall performance of the system, as it affects the number of page faults that occur and the 

time required to service them. 

There are several general principles that can be followed when designing a page 

replacement policy: 

 Least Recently Used (LRU): This policy evicts the page that has been accessed least 

recently. The idea behind this policy is that pages that have not been accessed 

recently are less likely to be accessed in the future, so they can be safely evicted. 

 First In, First Out (FIFO): This policy evicts the page that has been in memory the 

longest. This policy does not take into account the usage history of pages, but it is 

simple to implement. 

 Adaptive Replacement Cache (ARC): This policy dynamically adjusts the balance 

between the number of recently used and long-unused pages in memory, trying to 

strike a balance between the benefits of the LRU and FIFO policies. 

In addition to these general principles, page replacement policies may also include certain 

tweaks to avoid corner-case behaviors, such as thrashing (constant page faulting due to 

insufficient memory) or aging (delaying the eviction of recently used pages). 

Ultimately, the choice of page replacement policy will depend on the specific characteristics 

of the workload and the requirements of the system. Some operating systems may provide 

support for multiple page replacement policies, allowing the administrator to choose the 

most appropriate one for a given workload. 
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HOW TO IMPLEMENT AN LRU REPLACEMENT POLICY 

Given that it will be expensive to implement perfect LRU, can we approximate it in some 

way, and still obtain the desired behavior? 

Least Recently Used (LRU) is a page replacement policy that evicts the page that has been 

accessed least recently. While it is possible to implement perfect LRU by keeping a linked 

list or queue of all the pages in memory and moving the page to the head of the list each 

time it is accessed, this can be expensive in terms of both time and space. 

There are several ways to approximate LRU in a more efficient manner: 

 Use a counter: Each page in memory is associated with a counter that is incremented 

each time the page is accessed. When a new page needs to be brought into memory, 

the page with the lowest counter value is evicted. This approach can approximate 

LRU, but it may suffer from counter overflow and may not accurately reflect the true 

usage history of pages. 

 Use a stack: Pages can be treated as a stack, with the most recently accessed page at 

the top. When a new page needs to be brought into memory, the page at the bottom 

of the stack is evicted. This approach can approximate LRU, but it may not 

accurately reflect the true usage history of pages. 

 Use a clock algorithm: A circular list of pages is maintained, with a "clock hand" 

pointing to the current page. When a page is accessed, its reference bit is set to 1. 

When a new page needs to be brought into memory, the clock hand is advanced 

until it points to a page with a reference bit of 0, which is then evicted. This approach 

can approximate LRU, but it may not accurately reflect the true usage history of 

pages. 

Ultimately, the choice of how to approximate LRU will depend on the specific requirements 

and constraints of the system. No approximation will be perfectly accurate, but some may 

be more effective at approximating LRU behavior than others. 
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HOW TO BUILD A COMPLETE VM SYSTEM 

What features are needed to realize a complete virtual memory system? How do they 

improve performance, increase security, or otherwise improve the system? 

A complete virtual memory system typically includes the following features: 

Paging: Paging is a technique that allows the operating system to transparently divide the 

virtual address space of a process into fixed-size blocks called pages. This allows the 

operating system to bring pages into memory on demand and store them on a backing 

device when they are not in use, improving the utilization of physical memory. 

Swapping: Swapping is a technique that allows the operating system to move processes 

between main memory and a backing store (such as a hard disk) in order to free up physical 

memory for other processes. This allows the operating system to run more processes 

concurrently, improving the overall performance of the system. 

Memory protection: Virtual memory systems typically include memory protection features 

that allow the operating system to set permissions on individual pages of memory, 

preventing processes from accessing memory that they are not allowed to access. This helps 

to increase security and prevent processes from interfering with each other. 

Address translation: Virtual memory systems typically include hardware or software 

support for address translation, which allows the operating system to transparently map 

virtual addresses used by a process to physical addresses in the computer's memory. This 

allows the operating system to provide the illusion of a larger virtual address space while 

still making efficient use of the available physical memory. 

Demand paging: Demand paging is a technique that allows the operating system to bring 

pages into memory only when they are actually accessed by a process. This helps to reduce 

the amount of physical memory that is used, as pages that are not being used can remain 

on the backing store. 

Page replacement: Virtual memory systems typically include a page replacement policy that 

determines which pages should be evicted from memory when new pages need to be 

brought in. This helps to improve the efficiency of the system by ensuring that the most 

useful pages are kept in memory. 

Overall, these features work together to improve the performance, security, and efficiency 

of the system by allowing processes to use more memory than is physically present in the 

computer, while still making efficient use of the available physical memory. 
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WHY NULL POINTER ACCESSES CAUSE SEG FAULTS 

A null pointer is a pointer that does not point to a valid memory location. Accessing a null 

pointer can cause a segmentation fault (also known as a "segfault") because the CPU tries 

to dereference the pointer and read or write data at the memory location it points to, but 

the memory location is invalid. 

Segmentation faults can occur in a number of ways, such as: 

 Dereferencing a null pointer: This can occur if a program attempts to read or write 

data through a null pointer, which does not point to a valid memory location. 

 Dereferencing a pointer that has been freed: This can occur if a program attempts 

to use a pointer to access memory that has already been deallocated by the program. 

 Dereferencing a pointer that points to an invalid memory location: This can occur if 

a program attempts to use a pointer that has been corrupted or that points to an 

invalid memory location. 

Segmentation faults are typically caused by programming errors, such as attempting to 

access an uninitialized pointer or dereferencing a pointer that has been freed. In general, it 

is important to ensure that pointers are properly initialized and managed in order to avoid 

segfaults. 
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HOW TO SUPPORT SYNCHRONIZATION 

What support do we need from the hardware in order to build useful synchronization 

primitives? What support do we need from the OS? How can we build these primitives 

correctly and efficiently? How can programs use them to get the desired results? 

In order to build useful synchronization primitives, we need support from both the 

hardware and the operating system: 

Hardware support: In order to build synchronization primitives, we need hardware support 

for atomic operations such as test-and-set, compare-and-swap, and load-link/store-

conditional. These operations allow multiple threads or processes to synchronize their 

access to shared data by ensuring that only one thread can update the data at a time. 

Operating system support: The operating system can provide support for synchronization 

primitives such as semaphores, mutexes, and spinlocks. These primitives can be 

implemented using the atomic operations provided by the hardware, and they can be used 

by programs to synchronize access to shared data. 

To build synchronization primitives correctly and efficiently, it is important to carefully 

consider the specific requirements of the system and the workload. Different 

synchronization primitives may be more appropriate for different situations, and it is 

important to choose the one that is most suitable for the needs of the program. 

Programs can use synchronization primitives to ensure that shared data is accessed in a 

controlled and predictable manner. For example, a program may use a mutex to ensure that 

only one thread can access a shared data structure at a time, or it may use a semaphore to 

limit the number of threads that can access the data concurrently. By using synchronization 

primitives, programs can ensure that shared data is accessed in a consistent and thread-safe 

manner, allowing them to run correctly and efficiently in a multi-threaded environment. 
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HOW TO CREATE AND CONTROL THREADS 

What interfaces should the OS present for thread creation and control? How should these 

interfaces be designed to enable ease of use as well as utility? 

The operating system should present interfaces for thread creation and control that are easy 

to use and provide a sufficient level of control and flexibility for programs. Some 

considerations for the design of these interfaces include: 

 Thread creation: The operating system should provide an interface for creating new 

threads, such as a function or system call that allows a program to specify the entry 

point and arguments for the new thread. 

 Thread control: The operating system should provide interfaces for controlling the 

execution of threads, such as functions or system calls for starting, suspending, and 

terminating threads. 

 Thread synchronization: The operating system should provide interfaces for 

synchronizing the execution of threads, such as functions or system calls for waiting 

for a thread to complete, or for signaling a thread to wake up. 

 Thread scheduling: The operating system should provide interfaces for controlling 

the scheduling of threads, such as functions or system calls for setting the priority 

of a thread or for specifying the CPU affinity of a thread. 

In general, these interfaces should be designed to be easy to use, with a clear and consistent 

naming and parameter convention, and with a reasonable level of flexibility and control. 

They should also be well documented, with clear explanations of the behavior and 

limitations of each function or system call. This will help to ensure that programs can make 

effective use of the threading capabilities provided by the operating system. 
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HOW TO AVOID SPINNING 

How can we develop a lock that doesn’t needlessly waste time spinning on the CPU? 

Spinning is a technique used by some types of locks, such as spinlocks, to busy-wait for a 

lock to be released. While spinning can be an effective way to reduce the overhead of lock 

acquisition in certain situations, it can also lead to wasted CPU time if the lock is held for a 

long time or if the workload has a high level of contention. 

There are several ways to avoid unnecessary spinning when developing a lock: 

 Use a different type of lock: Instead of using a spinlock, consider using a lock type 

that does not spin, such as a mutex or a semaphore. These lock types can block the 

calling thread instead of busy-waiting, which can help to avoid wasting CPU time. 

 Use a hybrid lock: A hybrid lock combines spinning with blocking to strike a balance 

between the overhead of lock acquisition and the cost of context switches. The lock 

will spin for a short time before blocking the calling thread, allowing it to make 

progress if the lock is quickly released, but avoiding the waste of CPU time if the 

lock is held for a long time. 

 Use a backoff algorithm: A backoff algorithm can be used to progressively increase 

the amount of time that a lock spins before blocking the calling thread. This can 

help to reduce contention and improve the efficiency of the lock, but it may also 

increase the overhead of lock acquisition. 

Ultimately, the choice of how to avoid unnecessary spinning will depend on the specific 

requirements and constraints of the system. It may be necessary to experiment with 

different approaches and to carefully tune the lock's parameters based on the characteristics 

of the workload. 
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HOW TO ADD LOCKS TO DATA STRUCTURES 

When given a particular data structure, how should we add locks to it, in order to make it 

work correctly? Further, how do we add locks such that the data structure yields high 

performance, enabling many threads to access the structure at once, i.e., concurrently? 

To add locks to a data structure in order to make it work correctly and support concurrent 

access by multiple threads, you should follow these steps: 

Identify the critical sections of the data structure: These are the parts of the data structure 

that must be protected by a lock in order to ensure the integrity and consistency of the data. 

Examples of critical sections might include updating shared data, iterating over the data 

structure, or modifying the structure of the data. 

Choose an appropriate lock type: Select a lock type that is suitable for the characteristics of 

the data structure and the workload. For example, a spinlock might be more appropriate for 

a data structure with short critical sections and high contention, while a mutex or 

semaphore might be more suitable for a data structure with longer critical sections and 

lower contention. 

Acquire and release the lock: Use the chosen lock type to protect the critical sections of the 

data structure. Be sure to acquire the lock before entering the critical section and to release 

the lock when you are finished. 

Consider the granularity of the lock: The granularity of the lock refers to how much of the 

data structure is protected by the lock. A fine-grained lock might protect only a small part 

of the data structure, while a coarse-grained lock might protect a larger portion of the data 

structure. Choosing an appropriate granularity can help to improve the performance of the 

data structure by minimizing contention and overhead. 

By following these steps, you can add locks to a data structure in a way that ensures correct 

operation and enables high performance concurrent access. 
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HOW TO WAIT FOR A CONDITION 

In multi-threaded programs, it is often useful for a thread to wait for some condition to 

become true before proceeding. The simple approach, of just spinning until the condition 

becomes true, is grossly inefficient and wastes CPU cycles, and in some cases, can be 

incorrect. Thus, how should a thread wait for a condition? 

To wait for a condition in a multi-threaded program without spinning or wasting CPU cycles, 

you can use a condition variable. A condition variable is a synchronization primitive that 

allows a thread to block until a particular condition becomes true. 

To wait for a condition using a condition variable, you should follow these steps: 

 Choose a suitable lock: A condition variable must be used in conjunction with a lock, 

in order to ensure that the condition being waited for is protected from concurrent 

access. Choose a lock type that is suitable for the characteristics of the data structure 

and the workload. 

 Acquire the lock: Acquire the lock before accessing the shared data that the 

condition variable is protecting. 

 Check the condition: Check the condition that the thread is waiting for. If the 

condition is already true, you can proceed without waiting. 

 Wait on the condition variable: If the condition is not yet true, the thread can call 

the wait() function on the condition variable, which will release the lock and block 

the thread until the condition becomes true. 

 Re-acquire the lock: When the condition variable is signaled, the thread will be 

unblocked and will re-acquire the lock. The thread can then check the condition 

again to see if it has become true. 

By using a condition variable, a thread can wait for a condition without busy-waiting or 

wasting CPU cycles, and can be woken up as soon as the condition becomes true. This can 

help to improve the efficiency and scalability of the program. 
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HOW TO USE SEMAPHORES 

How can we use semaphores instead of locks and condition variables? What is the definition 

of a semaphore? What is a binary semaphore? Is it straightforward to build a semaphore out 

of locks and condition variables? To build locks and condition variables out of semaphores? 

Semaphores are a type of synchronization primitive that can be used in place of locks and 

condition variables to protect shared data and coordinate the execution of threads. 

A semaphore is a value that is shared between threads, and which can be atomically 

incremented or decremented. A semaphore can be used to implement mutual exclusion or 

to coordinate the execution of threads by specifying a maximum value for the semaphore. 

When the value of the semaphore is at or above the maximum value, threads that attempt 

to decrement the semaphore will block until the value becomes lower than the maximum. 

A binary semaphore is a special type of semaphore that has a maximum value of 1. It can be 

used to implement mutual exclusion, as threads that attempt to decrement the semaphore 

when its value is already 0 will block until the semaphore is released. 

It is straightforward to build a lock or a condition variable out of a semaphore, as the 

semaphore can be used to protect the shared data and to coordinate the execution of 

threads. To build a lock using a semaphore, you can use the semaphore to implement 

mutual exclusion by setting its maximum value to 1 and using it to block threads that 

attempt to acquire the lock while it is held. To build a condition variable using a semaphore, 

you can use the semaphore to block threads that are waiting for a condition to become true 

and to unblock them when the condition becomes true. 

Conversely, it is also possible to build a semaphore out of a lock and a condition variable. 

To do this, you can use the lock to protect the semaphore value and the condition variable 

to block and unblock threads that are waiting on the semaphore. 
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HOW TO HANDLE COMMON CONCURRENCY BUGS 

Concurrency bugs tend to come in a variety of common patterns. Knowing which ones to 

look out for is the first step to writing more robust, correct concurrent code. 

Here are some common patterns of concurrency bugs and strategies for handling them: 

 Deadlock: Deadlock occurs when two or more threads are waiting for each other to 

release a lock, resulting in a standstill. To avoid deadlock, you can follow a set of 

rules known as the "Four Horsemen of the Apocalypse" (lock ordering, lock timeouts, 

lock polling, and lock starvation avoidance). 

 Livelock: Livelock occurs when two or more threads are constantly retrying an 

operation because they are unable to make progress due to the actions of the other 

threads. To avoid livelock, you can use a backoff algorithm to progressively increase 

the delay between retries, or you can use a hybrid lock that combines spinning with 

blocking to strike a balance between the overhead of lock acquisition and the cost 

of context switches. 

 Race condition: A race condition occurs when the outcome of a program depends 

on the timing of events, such as the order in which threads acquire locks or access 

shared data. To avoid race conditions, you can use locks or other synchronization 

primitives to protect shared data and coordinate the execution of threads. 

 Starvation: Starvation occurs when a thread is prevented from making progress due 

to the actions of other threads. To avoid starvation, you can use a scheduling 

algorithm that ensures that all threads are given a fair share of CPU time, or you can 

use priority scheduling to give higher priority to threads that need to make progress. 

By being aware of these common patterns of concurrency bugs and using the appropriate 

strategies to prevent or mitigate them, you can write more robust and correct concurrent 

code. 
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HOW TO DEAL WITH DEADLOCK 

How should we build systems to prevent, avoid, or at least detect and recover from 

deadlock? Is this a real problem in systems today? 

Deadlock is a situation that can occur in a multi-threaded system when two or more threads 

are waiting for each other to release a lock, resulting in a standstill. Deadlock can be a real 

problem in systems today, as it can lead to a complete cessation of progress and can be 

difficult to detect and recover from. 

To prevent, avoid, or at least detect and recover from deadlock, you can follow the "Four 

Horsemen of the Apocalypse" strategy: 

 Lock ordering: Establish an order in which locks must be acquired, and ensure that 

all threads follow this order. This can help to prevent deadlock by ensuring that 

there is no circular wait between threads. 

 Lock timeouts: Set a timeout for acquiring locks, and have threads release the lock 

and retry if the timeout is exceeded. This can help to avoid deadlock by allowing 

threads to make progress if a lock is held for a long time. 

 Lock polling: Periodically check the status of locks and release them if they are held 

for a long time. This can help to avoid deadlock by allowing other threads to make 

progress if a lock is held for an extended period. 

 Lock starvation avoidance: Use a scheduling algorithm that ensures that all threads 

are given a fair share of CPU time, or use priority scheduling to give higher priority 

to threads that need to make progress. This can help to avoid deadlock by 

preventing a thread from being starved of CPU time due to the actions of other 

threads. 

By following these strategies, you can build systems that are less prone to deadlock, or that 

are able to detect and recover from deadlock when it occurs. It is important to carefully 

consider the potential for deadlock in any multi-threaded system and to use appropriate 

strategies to prevent or mitigate it. 
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HOW TO BUILD CONCURRENT SERVERS WITHOUT 

THREADS 

How can we build a concurrent server without using threads, and thus retain control over 

concurrency as well as avoid some of the problems that seem to plague multi-threaded 

applications? 

One way to build a concurrent server without using threads is to use an event-driven model, 

where the server listens for incoming requests and processes them asynchronously as events. 

This can be achieved using an event loop, which is a loop that waits for events to occur and 

then dispatches them to the appropriate handlers. 

Using an event-driven model has several benefits over using threads for concurrency: 

 Control over concurrency: An event-driven model allows you to retain control over 

the level of concurrency in your server, as you can choose how many events to 

process at a time and how to schedule them. This can help to prevent overloading 

the server and to ensure that it performs optimally. 

 Simplicity: An event-driven model can be simpler to implement and debug than a 

multi-threaded model, as it does not require the use of locks or other 

synchronization primitives to protect shared data. This can make it easier to write 

and maintain concurrent code. 

 Scalability: An event-driven model can scale more effectively than a multi-threaded 

model, as it can handle a large number of events with a smaller number of threads 

or processes. This can help to reduce the overhead of context switches and to 

improve the performance of the server. 

By using an event-driven model, you can build a concurrent server without using threads, 

and retain control over concurrency while avoiding some of the problems that can plague 

multi-threaded applications. 
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BLOCKING VS. NON-BLOCKING INTERFACES 

Blocking interfaces are a type of interface that do all of their work before returning to the 

caller. They are called "blocking" because they block the caller from making progress until 

the work is completed. Blocking interfaces are often used for I/O operations, such as reading 

from disk or network sockets, as these operations can take a long time to complete and may 

require the caller to wait for the results. 

On the other hand, non-blocking interfaces are a type of interface that begin some work 

but return immediately, allowing the caller to continue making progress while the work is 

being done in the background. Non-blocking interfaces are essential in event-based 

programming, as a call that blocks will halt all progress in the event loop. 

In general, non-blocking interfaces can be used in any style of programming, but they are 

particularly useful in event-based programming, where they can help to ensure that the 

program remains responsive and can continue to make progress even when long-running 

operations are being performed. 
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HOW TO INTEGRATE I/O INTO SYSTEMS 

How should I/O be integrated into systems? What are the general mechanisms? How can 

we make them efficient? 

I/O can be integrated into systems using a variety of mechanisms, including: 

 Polling: In polling, the system continuously checks the status of I/O devices to see 

if they are ready to perform a read or write operation. Polling can be inefficient, as 

it requires the system to constantly poll the devices, even when they are not ready. 

 Interrupt-driven I/O: In interrupt-driven I/O, the system waits for an interrupt to 

be generated by an I/O device when it is ready to perform a read or write operation. 

Interrupt-driven I/O can be more efficient than polling, as it allows the system to 

sleep until an interrupt is received, rather than constantly checking the status of the 

devices. 

 Direct memory access (DMA): In DMA, the system can transfer data directly 

between an I/O device and memory, without involving the CPU. DMA can be very 

efficient, as it allows the CPU to perform other tasks while the data transfer is taking 

place. 

 Asynchronous I/O: In asynchronous I/O, the system can initiate an I/O operation 

and then continue executing other tasks while the operation is being performed in 

the background. Asynchronous I/O can be efficient, as it allows the system to 

overlap the execution of multiple tasks and to make progress even when I/O 

operations are being performed. 

To make I/O efficient, it is important to choose an appropriate mechanism that is suited to 

the characteristics of the system and the workload. Factors to consider might include the 

frequency and size of I/O operations, the number of I/O devices, and the resources available 

on the system. By carefully considering these factors and choosing the right I/O mechanism, 

you can improve the efficiency of your system and ensure that it performs optimally. 
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HOW TO AVOID THE COSTS OF POLLING 

How can the OS check device status without frequent polling, and thus lower the CPU 

overhead required to manage the device? 

There are several ways to avoid the costs of polling and lower the CPU overhead required 

to manage a device: 

Interrupt-driven I/O: In interrupt-driven I/O, the system waits for an interrupt to be 

generated by the device when it is ready to perform a read or write operation. This allows 

the system to sleep until an interrupt is received, rather than constantly checking the status 

of the device. 

Direct memory access (DMA): In DMA, the system can transfer data directly between the 

device and memory, without involving the CPU. This allows the CPU to perform other tasks 

while the data transfer is taking place, reducing the overhead of polling. 

Asynchronous I/O: In asynchronous I/O, the system can initiate an I/O operation and then 

continue executing other tasks while the operation is being performed in the background. 

This allows the system to overlap the execution of multiple tasks and to make progress even 

when I/O operations are being performed, reducing the need for polling. 

By using interrupt-driven I/O, DMA, or asynchronous I/O, you can avoid the costs of 

frequent polling and lower the CPU overhead required to manage a device. These 

techniques can help to improve the efficiency of the system and ensure that it performs 

optimally. 
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HOW TO LOWER PIO OVERHEADS 

With PIO, the CPU spends too much time moving data to and from devices by hand. How 

can we offload this work and thus allow the CPU to be more effectively utilized? 

There are several ways to lower the overhead of PIO (programmed I/O) and allow the CPU 

to be more effectively utilized: 

Direct memory access (DMA): In DMA, the system can transfer data directly between the 

device and memory, without involving the CPU. This allows the CPU to perform other tasks 

while the data transfer is taking place, reducing the overhead of PIO. 

Bus mastering: In bus mastering, a device can take control of the system bus and perform 

DMA transfers without involving the CPU. This can further reduce the overhead of PIO by 

allowing the device to transfer data directly to and from memory. 

Asynchronous I/O: In asynchronous I/O, the system can initiate an I/O operation and then 

continue executing other tasks while the operation is being performed in the background. 

This allows the system to overlap the execution of multiple tasks and to make progress even 

when I/O operations are being performed, reducing the need for PIO. 

By using DMA, bus mastering, or asynchronous I/O, you can offload the work of moving 

data to and from devices and lower the overhead of PIO. These techniques can help to 

improve the efficiency of the system and allow the CPU to be more effectively utilized. 
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HOW TO BUILD A DEVICE-NEUTRAL OS 

How can we keep most of the OS device-neutral, thus hiding the details of device 

interactions from major OS subsystems? 

To build a device-neutral OS, you can use the following techniques: 

 Abstractions: By using abstractions, you can hide the details of device interactions 

from major OS subsystems and present a consistent interface to the rest of the 

system. For example, you can use an abstract block device interface to hide the 

details of how data is stored and retrieved on different types of devices, such as hard 

disks and flash drives. 

 Device drivers: Device drivers provide a layer of separation between the OS and the 

devices it interacts with. By using device drivers, you can keep most of the OS 

device-neutral and allow it to interact with devices through a standardized interface. 

 Virtualization: Virtualization allows you to create virtual devices that behave like 

physical devices, but are actually implemented in software. By using virtualization, 

you can build a device-neutral OS that can run on a variety of hardware platforms 

without requiring specialized drivers for each type of device. 

By using these techniques, you can keep most of the OS device-neutral and hide the details 

of device interactions from major OS subsystems, allowing the system to be more flexible 

and portable. 
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HOW TO STORE AND ACCESS DATA ON DISK 

How do modern hard-disk drives store data? What is the interface? How is the data actually 

laid out and accessed? How does disk scheduling improve performance? 

Modern hard-disk drives store data on spinning disks coated with a magnetic material. The 

disks are divided into concentric tracks, and each track is divided into sectors. Each sector 

can store a fixed amount of data, typically 512 bytes. 

The interface between the hard-disk drive and the rest of the system is typically through a 

SATA (Serial ATA) or SCSI (Small Computer System Interface) connection. The hard-disk 

drive appears to the system as a linear array of blocks, each of which can be read or written 

independently. 

To access data on a hard-disk drive, the drive's head must be positioned over the correct 

track and sector. This process is known as seek time, and it can take a significant amount 

of time for the head to travel to the correct location. In addition, the disks must be spinning 

at the correct speed for the head to read or write data, which is known as rotational latency. 

To improve performance, modern hard-disk drives use a variety of techniques, including: 

 Disk caching: Disk caching involves storing frequently accessed data in a fast 

memory buffer, allowing the head to read or write data more quickly. 

 Disk scheduling: Disk scheduling algorithms try to minimize the amount of time 

the head spends seeking by reordering the requests for data in a way that reduces 

seek time. Some common disk scheduling algorithms include First-Come First-

Served (FCFS), Shortest Seek Time First (SSTF), and SCAN. 

 Disk striping: Disk striping involves dividing the data across multiple disks, allowing 

the system to read or write data in parallel and improving performance. 

By using these techniques, modern hard-disk drives can store and access data efficiently, 

improving performance and enabling the system to make progress even when working with 

large amounts of data. 
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HOW TO ACCOUNT FOR DISK ROTATION COSTS 

How can we implement an algorithm that more closely approximates SJF by taking both 

seek and rotation into account? 

One way to implement an algorithm that more closely approximates Shortest Job First (SJF) 

by taking both seek and rotation into account is to use the Elevator Algorithm (also known 

as the SCAN algorithm). The Elevator Algorithm works by starting at one end of the disk 

and moving the head in one direction, servicing requests as it goes. When it reaches the end 

of the disk, it reverses direction and repeats the process. 

The Elevator Algorithm can more closely approximate SJF by taking both seek and rotation 

into account because it minimizes the total seek time by servicing requests in the order that 

they appear on the disk. This can help to reduce the time it takes for the head to travel to 

the correct location and minimize rotational latency. 

To implement the Elevator Algorithm, you can follow these steps: 

 Initialize the head position and direction. 

 Scan the requests in the current direction, servicing requests as they are 

encountered. 

 When the end of the disk is reached, reverse the direction and repeat the process. 

By following these steps, you can implement an algorithm that more closely approximates 

SJF by taking both seek and rotation into account and improving the performance of the 

disk. 
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HOW TO MAKE A LARGE, FAST, RELIABLE DISK 

How can we make a large, fast, and reliable storage system? What are the key techniques? 

What are trade-offs between different approaches? 

There are several techniques that can be used to make a large, fast, and reliable storage 

system: 

 Redundancy: Redundancy involves storing multiple copies of data, allowing the 

system to continue operating even if one of the copies becomes unavailable. This 

can improve reliability, but it can also increase the cost and complexity of the system. 

 Striping: Striping involves dividing the data across multiple disks, allowing the 

system to read or write data in parallel and improving performance. Striping can 

also improve reliability by allowing the system to continue operating even if one of 

the disks fails. 

 Mirroring: Mirroring involves storing multiple copies of data on separate disks, 

allowing the system to continue operating even if one of the disks fails. Mirroring 

can improve reliability, but it can also increase the cost and complexity of the system. 

 RAID: RAID (Redundant Array of Independent Disks) is a technology that combines 

multiple disks into a single logical unit and uses one of several different techniques, 

such as striping, mirroring, or parity, to improve performance and reliability. 

In general, the trade-offs between different approaches to making a large, fast, and reliable 

storage system involve cost, complexity, and performance. By carefully considering these 

trade-offs and choosing the right approach for your needs, you can build a storage system 

that meets your requirements for size, speed, and reliability. 
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HOW TO MANAGE A PERSISTENT DEVICE 

How should the OS manage a persistent device? What are the APIs? What are the important 

aspects of the implementation? 

To manage a persistent device, the OS can provide a set of APIs (application programming 

interfaces) that allow programs to read and write data to the device. These APIs can be 

designed to abstract away the details of how the data is stored and retrieved, allowing 

programs to interact with the device in a consistent and portable way. 

Some important aspects of the implementation of these APIs might include: 

 Atomicity: The APIs should provide guarantees about the atomicity of operations, 

meaning that they either complete in their entirety or have no effect at all. This can 

help to ensure the consistency and integrity of the data stored on the device. 

 Buffering: The APIs should provide mechanisms for buffering data in memory to 

improve performance. This can allow the system to batch multiple read or write 

requests together and reduce the number of times the head needs to seek to 

different locations on the disk. 

 Error handling: The APIs should provide mechanisms for handling errors that may 

occur when interacting with the device. This can include detecting and correcting 

errors, retrying failed operations, or providing appropriate error codes to the caller. 

By carefully designing and implementing these APIs, the OS can manage a persistent device 

effectively, providing programs with a reliable and efficient way to store and retrieve data. 
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HOW TO IMPLEMENT A SIMPLE FILE SYSTEM 

How can we build a simple file system? What structures are needed on the disk? What do 

they need to track? How are they accessed? 

To implement a simple file system, you can use the following structures on the disk: 

 Boot block: The boot block contains the code needed to boot the system and can be 

located at a fixed location on the disk. 

 Superblock: The superblock contains information about the file system, such as the 

total number of blocks, the number of free blocks, and the location of other 

important data structures. 

 Inode table: The inode table contains a list of inodes, which are data structures that 

describe the properties of a file, such as its size, permissions, and location on the 

disk. 

 Data blocks: Data blocks are the blocks where the actual contents of a file are stored. 

To access these structures, you can use a combination of disk read and write operations to 

read and write the data from and to the disk. 

To track the necessary information, the file system needs to maintain several pieces of 

information, including: 

 The location of the boot block, superblock, and inode table on the disk. 

 The number of blocks in the file system, the number of free blocks, and the location 

of the data blocks. 

 The inode table, which contains information about each file in the file system, such 

as its size, permissions, and location on the disk. 

 The data blocks, which contain the actual contents of the files in the file system. 

To access these structures, you can use a combination of disk read and write operations to 

read and write the data from and to the disk. The file system can use the information in the 

superblock and inode table to locate the data blocks associated with a particular file and 

read or write the contents of the file. 

By implementing these structures and maintaining this information, you can build a simple 

file system that allows programs to store and retrieve files on the disk. 
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HOW TO REDUCE FILE SYSTEM I/O COSTS 

Even the simplest of operations like opening, reading, or writing a file incurs a huge number 

of I/O operations, scattered over the disk. What can a file system do to reduce the high costs 

of doing so many I/Os? 

There are several techniques that a file system can use to reduce the high costs of doing 

many I/O operations: 

 Caching: The file system can use a cache to store recently accessed data in memory, 

allowing it to be accessed more quickly. This can reduce the number of I/O 

operations required to access the data and improve performance. 

 Buffering: The file system can use buffering to group together multiple read or write 

requests and reduce the number of I/O operations required to access the data. 

 Pre-fetching: The file system can use pre-fetching to anticipate the data that a 

program is likely to need and pre-load it into the cache, reducing the number of I/O 

operations required to access the data. 

 Sparse files: The file system can use sparse files to store data more efficiently by only 

allocating disk space for data that is actually written to the file. This can reduce the 

number of I/O operations required to access the data and improve performance. 

By using these techniques, a file system can significantly reduce the costs of I/O operations 

and improve performance. It is important to carefully evaluate the trade-offs between the 

benefits of these techniques and the additional complexity and overhead they may 

introduce in order to choose the right approach for your needs. 
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HOW TO ORGANIZE ON-DISK DATA TO IMPROVE 

PERFORMANCE 

How can we organize file system data structures so as to improve performance? What types 

of allocation policies do we need on top of those data structures? How do we make the file 

system “disk aware”? 

There are several techniques that a file system can use to organize on-disk data structures 

in order to improve performance: 

 Contiguous allocation: Allocating data blocks for a file in a contiguous manner can 

improve performance by reducing the number of disk seeks required to access the 

file. 

 Clustering: Allocating data blocks for a file in a way that maximizes the likelihood 

that they will be near each other on the disk can also reduce the number of disk 

seeks required to access the file. 

 Disk awareness: The file system can use knowledge of the physical layout of the disk 

to optimize its data placement and reduce the number of disk seeks required to 

access data. 

In addition to these techniques, the file system can use various allocation policies to manage 

the allocation of data blocks to files. These policies can include: 

 First fit: The file system can allocate the first available data blocks that are large 

enough to store the file. 

 Best fit: The file system can allocate the data blocks that are the best fit for the size 

of the file, in order to minimize external fragmentation. 

 Worst fit: The file system can allocate the data blocks that are the worst fit for the 

size of the file, in order to maximize external fragmentation and potentially improve 

performance. 

By carefully organizing on-disk data structures and using appropriate allocation policies, a 

file system can improve its performance and reduce the number of disk seeks required to 

access data. 

 

  



PAGE 66 

HOW TO UPDATE THE DISK DESPITE CRASHES 

The system may crash or lose power between any two writes, and thus the on-disk state may 

only partially get updated. After the crash, the system boots and wishes to mount the file 

system again (in order to access files and such). Given that crashes can occur at arbitrary 

points in time, how do we ensure the file system keeps the on-disk image in a reasonable 

state? 

To ensure that the file system keeps the on-disk image in a reasonable state despite crashes, 

it can use the following techniques: 

 Journaling: The file system can use a journal to record all updates to the file system 

in a structured manner before they are applied to the on-disk image. In the event of 

a crash, the journal can be used to recover the file system by replaying the updates 

that were not fully applied to the on-disk image. 

 Shadowing: The file system can use shadowing to create a copy of the on-disk image 

in a separate location, and update the copy instead of the original. This allows the 

file system to switch between the original and updated images in a controlled 

manner, and avoid corrupting the on-disk image in the event of a crash. 

 Checkpointing: The file system can use checkpointing to periodically create a 

snapshot of the file system and store it on the disk. In the event of a crash, the file 

system can use the most recent checkpoint to recover the file system. 

By using these techniques, a file system can ensure that the on-disk image remains in a 

reasonable state despite crashes and power failures, and can recover the file system quickly 

after a crash. 
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HOW TO MAKE ALL WRITES SEQUENTIAL WRITES? 

How can a file system transform all writes into sequential writes? For reads, this task is 

impossible, as the desired block to be read may be anywhere on disk. For writes, however, 

the file system always has a choice, and it is exactly this choice we hope to exploit. 

A file system can transform all writes into sequential writes by using a technique called 

write-back caching. In write-back caching, the file system stores newly written data in a 

cache in memory, rather than writing it directly to the disk. The file system can then group 

together multiple writes and write them to the disk in a single sequential write operation, 

rather than writing them individually as random writes. 

This technique has the benefit of reducing the number of disk writes required, which can 

improve performance and extend the life of the disk. However, it also introduces the risk of 

data loss in the event of a crash or power failure, as the data in the cache may not have been 

written to the disk yet. To mitigate this risk, the file system can use a technique called 

journaling to record the updates to the cache in a structured manner before they are applied 

to the on-disk image, and use the journal to recover the cache in the event of a crash. 

By using write-back caching and journaling, a file system can transform all writes into 

sequential writes, which can improve performance and extend the life of the disk. However, 

it is important to carefully consider the trade-offs and risks associated with these techniques 

in order to choose the right approach for your needs. 
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HOW TO BUILD A FLASH-BASED SSD 

How can we build a flash-based SSD? How can we handle the expensive nature of erasing? 

How can we build a device that lasts a long time, given that repeated overwrite will wear 

the device out? Will the march of progress in technology ever cease? Or cease to amaze? 

To build a flash-based SSD, the following steps can be taken: 

 Choose a flash memory technology: There are several types of flash memory 

technologies available, including NAND and NOR flash. The choice of technology 

will depend on the performance and cost requirements of the SSD. 

 Implement wear leveling: Flash memory has a limited number of write cycles, and 

will wear out over time if the same cells are repeatedly written to. To extend the life 

of the SSD, a wear leveling algorithm can be implemented to evenly distribute write 

operations across all cells in the flash memory. 

 Implement error correction: Flash memory is prone to bit errors due to noise and 

other factors. To ensure data integrity, an error correction algorithm can be 

implemented to detect and correct errors in the data stored on the SSD. 

 Implement garbage collection: When a block of cells in the flash memory is no 

longer needed, it must be erased before new data can be written to it. However, 

erasing a block of cells is a time-consuming operation, and can impact performance. 

To mitigate this impact, a garbage collection algorithm can be implemented to 

efficiently reclaim blocks of cells that are no longer in use, and prepare them for 

reuse. 

By following these steps, a flash-based SSD can be built that is able to handle the expensive 

nature of erasing, and has a long lifespan even with repeated overwrite. The progress of 

technology in the field of storage will likely continue to amaze, with new technologies and 

approaches being developed to meet the ever-increasing demand for fast and reliable 

storage. 
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HOW TO ENSURE DATA INTEGRITY 

How should systems ensure that the data written to storage is protected? What techniques 

are required? How can such techniques be made efficient, with both low space and time 

overheads? 

There are several techniques that systems can use to ensure that the data written to storage 

is protected and maintains its integrity: 

 Checksums: A checksum is a value that is calculated based on the data being written 

to storage. The checksum is then stored with the data, and can be used to verify the 

integrity of the data when it is read back from storage. If the calculated checksum 

does not match the stored checksum, the data may have been corrupted. 

 Error correction codes: Error correction codes (ECCs) are algorithms that can detect 

and correct errors in data. ECCs can be used to protect data as it is being written to 

storage, and can also be used to detect errors when the data is read back from 

storage. 

 Redundancy: Redundancy techniques such as RAID (redundant array of 

independent disks) can be used to protect data by storing multiple copies of the data 

on different disks or devices. If one of the copies becomes corrupted, the other 

copies can be used to recover the data. 

 Encryption: Encrypting data before writing it to storage can protect it from 

unauthorized access or tampering. Encrypted data can only be read by someone 

with the proper decryption key. 

By using these techniques, systems can ensure the integrity of the data being written to 

storage, with low space and time overheads. It is important to carefully consider the trade-

offs and risks associated with different techniques in order to choose the right approach for 

your needs. 
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HOW TO HANDLE LATENT SECTOR ERRORS 

How should a storage system handle latent sector errors? How much extra machinery is 

needed to handle this form of partial failure? 

A latent sector error is a type of error that occurs when data cannot be read or written to a 

particular sector on a storage device. Latent sector errors can be caused by a variety of 

factors, including physical damage to the storage device, firmware defects, or 

environmental conditions. 

To handle latent sector errors, a storage system can use the following techniques: 

 Remapping: When a latent sector error is detected, the storage system can remap 

the affected sector to a spare sector on the device, and use the spare sector to store 

the data instead. This allows the storage system to continue operating normally, 

while hiding the latent sector error from the rest of the system. 

 Error correction: The storage system can use error correction codes (ECCs) or other 

error correction techniques to detect and correct errors in data being read from or 

written to the storage device. This can help to mitigate the impact of latent sector 

errors on the system. 

 Monitoring: The storage system can monitor the storage device for latent sector 

errors and other failures, and alert the user or administrator if any issues are 

detected. This allows the system to proactively address problems before they cause 

significant disruptions. 

To implement these techniques, a storage system will need to add extra machinery such as 

error detection and correction algorithms, spare sectors, and monitoring systems. However, 

the exact amount of extra machinery required will depend on the specific needs and 

requirements of the system. 
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HOW TO PRESERVE DATA INTEGRITY DESPITE CORRUPTION 

Given the silent nature of such failures, what can a storage system do to detect when 

corruption arises? What techniques are needed? How can one implement them efficiently? 

There are several techniques that a storage system can use to detect and mitigate corruption 

of data stored on a storage device: 

 Checksums: A checksum is a value calculated based on the data being stored. The 

checksum is stored with the data, and can be used to verify the integrity of the data 

when it is read back from the storage device. If the calculated checksum does not 

match the stored checksum, the data may have been corrupted. 

 Error correction codes: Error correction codes (ECCs) are algorithms that can detect 

and correct errors in data. ECCs can be used to protect data as it is being written to 

storage, and can also be used to detect errors when the data is read back from 

storage. 

 Redundancy: Redundancy techniques such as RAID (redundant array of 

independent disks) can be used to protect data by storing multiple copies of the data 

on different disks or devices. If one of the copies becomes corrupted, the other 

copies can be used to recover the data. 

 Monitoring: The storage system can monitor the storage device for corruption and 

other failures, and alert the user or administrator if any issues are detected. This 

allows the system to proactively address problems before they cause significant 

disruptions. 

To implement these techniques efficiently, the storage system should carefully consider the 

trade-offs and risks associated with different approaches, and choose the techniques that 

are most appropriate for its needs. 
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HOW TO HANDLE MISDIRECTED WRITES 

How should a storage system or disk controller detect misdirected writes? What additional 

features are required from the checksum? 

A misdirected write is a type of error that occurs when data is written to the wrong location 

on a storage device. Misdirected writes can be caused by a variety of factors, including 

hardware or software defects, environmental conditions, or operator error. 

To detect misdirected writes, a storage system or disk controller can use the following 

techniques: 

 Address verification: The storage system or disk controller can verify the address of 

the data being written, and compare it to the expected address. If the address does 

not match the expected address, the write may be misdirected. 

 Checksums: A checksum is a value calculated based on the data being written to 

storage. The checksum can be used to verify the integrity of the data, and can also 

be used to detect misdirected writes. For example, if the calculated checksum does 

not match the stored checksum for the expected address, it may indicate that the 

data has been written to the wrong location. 

 Error correction codes: Error correction codes (ECCs) are algorithms that can detect 

and correct errors in data. ECCs can be used to protect data as it is being written to 

storage, and can also be used to detect misdirected writes by comparing the 

expected and actual ECC values for the data. 

To effectively detect misdirected writes, the checksum or ECC used by the storage system 

or disk controller should be able to detect errors that are specific to misdirected writes, such 

as errors in the address of the data being written. The checksum or ECC should also be able 

to detect other types of errors that may occur during data transfer, such as transmission 

errors or corruption of the data itself. 
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HOW TO HANDLE LOST WRITES 

How should a storage system or disk controller detect lost writes? What additional features 

are required from the checksum? 

A lost write is a type of error that occurs when data that has been written to a storage device 

is not properly persisted, and is lost when the device is powered off or reset. Lost writes can 

be caused by a variety of factors, including hardware or software defects, environmental 

conditions, or operator error. 

To detect lost writes, a storage system or disk controller can use the following techniques: 

 Write verification: The storage system or disk controller can verify that the data 

being written to storage has been properly persisted by reading it back from the 

storage device and comparing it to the original data. If the data read back from the 

storage device does not match the original data, it may indicate that the write was 

lost. 

 Checksums: A checksum is a value calculated based on the data being written to 

storage. The checksum can be used to verify the integrity of the data, and can also 

be used to detect lost writes. For example, if the calculated checksum does not 

match the stored checksum for the data, it may indicate that the data has been lost. 

 Error correction codes: Error correction codes (ECCs) are algorithms that can detect 

and correct errors in data. ECCs can be used to protect data as it is being written to 

storage, and can also be used to detect lost writes by comparing the expected and 

actual ECC values for the data. 

To effectively detect lost writes, the checksum or ECC used by the storage system or disk 

controller should be able to detect errors that are specific to lost writes, such as data that 

has been partially written to storage but not properly persisted. The checksum or ECC 

should also be able to detect other types of errors that may occur during data transfer, such 

as transmission errors or corruption of the data itself. 
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HOW TO BUILD SYSTEMS THAT WORK WHEN 

COMPONENTS FAIL 

How can we build a working system out of parts that don’t work correctly all the time? The 

basic question should remind you of some of the topics we discussed in RAID storage arrays; 

however, the problems here tend to be more complex, as are the solutions. 

There are several ways to build systems that can continue to function even when some of 

their components fail: 

 Redundancy: By adding redundant components to the system, it is possible to 

continue to function even if one or more components fail. For example, a RAID 

storage array uses redundant disks to provide data protection in case of disk failure. 

 Fault tolerance: Fault-tolerant systems are designed to automatically detect and 

recover from component failures. This can be achieved through techniques such as 

error detection and correction, failover mechanisms, and self-healing algorithms. 

 Isolation: By isolating different components of the system from each other, it is 

possible to prevent the failure of one component from affecting the rest of the 

system. This can be achieved through the use of virtualization or containerization 

technologies. 

 Monitoring and maintenance: Regular monitoring and maintenance of the system 

can help to identify and fix problems before they cause failures. This can include 

tasks such as testing, debugging, and updating components. 

By implementing these techniques, it is possible to build systems that can continue to 

function even when some of their components fail. 
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HOW TO BUILD A DISTRIBUTED FILE SYSTEM 

How do you build a distributed file system? What are the key aspects to think about? What 

is easy to get wrong? What can we learn from existing systems? 

A distributed file system is a type of file system that allows users to access and store files on 

multiple computers in a network, as if they were all stored on a single machine. Building a 

distributed file system involves addressing several key challenges: 

 Data consistency: Ensuring that all copies of the same file are kept in sync across the 

network, even when multiple users are accessing and modifying the file 

simultaneously. 

 File access performance: Optimizing the performance of file access and updates, 

especially when the file is stored on a remote machine. 

 File availability: Ensuring that files are always available, even when some of the 

computers in the network are offline or experiencing failures. 

 Data security: Protecting the data stored in the file system from unauthorized access 

or tampering. 

To address these challenges, a distributed file system typically consists of several key 

components: 

 A distributed storage layer: This component is responsible for storing and 

replicating the data across the network. 

 A distributed file system layer: This component is responsible for managing file 

access, updates, and metadata, and for providing a consistent view of the file system 

to users. 

 A client library: This component is used by client applications to access and modify 

files stored in the distributed file system. 

To ensure the reliability and performance of the distributed file system, it is important to 

carefully design and implement these components, and to test and debug the system 

thoroughly. It is also important to consider the trade-offs between different design choices, 

such as the level of data consistency and the performance of file access and updates. By 

learning from existing distributed file systems, it is possible to build a distributed file system 

that meets the needs of the intended users. 
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HOW TO DEFINE A STATELESS FILE PROTOCOL 

How can we define the network protocol to enable stateless operation? how do we define 

the protocol to both be stateless and support the POSIX file system API? 

To define a stateless file protocol, it is necessary to design the protocol such that all 

necessary information is included in each request and response, and no additional context 

or state needs to be maintained by the server or client between requests. This can be 

achieved in several ways: 

Include all necessary information in each request: The client should include all necessary 

information in each request, such as the desired file or directory, the desired operation (e.g. 

read, write, delete), and any necessary parameters (e.g. offset, length). 

Use a simple request-response model: The protocol should use a simple request-response 

model, where each request is independently processed by the server and a response is 

returned. This allows the server to process each request in isolation, without needing to 

maintain any state between requests. 

Use unique identifiers: To enable stateless operation, it is often necessary to use unique 

identifiers for each file or directory. These identifiers can be included in each request, 

allowing the server to locate the desired file or directory without needing to maintain any 

additional context or state. 

Use explicit error codes: To allow the client to handle errors in a stateless manner, the 

protocol should use explicit error codes in responses to indicate the cause of any errors. 

By following these principles, it is possible to define a stateless file protocol that supports 

the POSIX file system API. It is important to carefully design the protocol and consider the 

trade-offs between simplicity, efficiency, and functionality. 
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HOW TO DESIGN A SCALABLE FILE PROTOCOL 

How should one redesign the protocol to minimize the number of server interactions, i.e., 

how could they reduce the number of TestAuth messages? Further, how could they design 

the protocol to make these server interactions efficient? By attacking both of these issues, a 

new protocol would result in a much more scalable version AFS. 

To design a scalable file protocol, it is necessary to minimize the number of server 

interactions and make these interactions as efficient as possible. This can be achieved in 

several ways: 

 Batch multiple requests into a single interaction: By batching multiple requests into 

a single interaction, it is possible to reduce the number of server interactions and 

improve efficiency. For example, the client could send multiple read or write 

requests in a single interaction, or the client could send multiple metadata queries 

in a single interaction. 

 Use caching: By implementing a cache on the client side, it is possible to reduce the 

number of server interactions and improve efficiency. The client can cache data and 

metadata locally, and use this cache to fulfill requests without needing to 

communicate with the server. 

 Use asynchronous communication: By using asynchronous communication, it is 

possible to reduce the number of server interactions and improve efficiency. For 

example, the client could send a request to the server and continue processing other 

tasks while waiting for the response. 

 Use compression: By using compression techniques, it is possible to reduce the size 

of requests and responses and improve efficiency. This can be especially effective for 

large data transfers or metadata queries. 

By following these principles, it is possible to design a scalable file protocol that minimizes 

the number of server interactions and makes these interactions as efficient as possible. It is 

important to carefully design the protocol and consider the trade-offs between scalability, 

efficiency, and functionality. 
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HOW TO SECURE OS RESOURCES 

In the face of multiple possibly concurrent and interacting processes running on the same 

machine, how can we ensure that the resources each process is permitted to access are 

exactly those it should access, in exactly the ways we desire? What primitives are needed 

from the OS? What mechanisms should be provided by the hardware? How can we use 

them to solve the problems of security? To secure OS resources, the operating system needs 

to provide the following primitives: 

 Memory protection: Memory protection primitives, such as segmentation or paging, 

are needed to prevent processes from accessing memory that is not assigned to them. 

 Access control lists: Access control list primitives are needed to specify the 

permissions that are granted to each process for each resource. 

 Security policies: The operating system needs to provide primitives for defining and 

enforcing security policies that specify the rules for resource access. 

 Cryptographic methods: Cryptographic primitives, such as digital signature and 

encryption algorithms, are needed to secure data and ensure that only authorized 

processes can access it. 

In addition to these OS primitives, certain hardware mechanisms can also be used to secure 

resources: 

 Memory protection hardware: Hardware support for memory protection, such as 

the MMU (Memory Management Unit), can be used to enforce the memory 

protection primitives implemented by the operating system. 

 Access control hardware: Hardware support for access control, such as the MAC 

(Mandatory Access Control) unit, can be used to enforce the access control policies 

implemented by the operating system. 

 Cryptographic hardware: Hardware support for cryptographic operations, such as 

hardware accelerators for encryption and digital signature algorithms, can be used 

to improve the performance and security of cryptographic methods used to secure 

resources. 

By using these OS primitives and hardware mechanisms together, it is possible to effectively 

secure OS resources and protect against unauthorized access. 
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HOW TO SECURELY IDENTIFY PROCESSES 

For systems that support processes belonging to multiple principals, how can we be sure 

that each process has the correct identity attached? As new processes are created, how can 

we be sure the new process has the correct identity? How can we be sure that malicious 

entities cannot improperly change the identity of a process? 

To securely identify processes, the operating system can use the following methods: 

 Access control lists: By using access control lists (ACLs), the operating system can 

specify the permissions that are granted to each process based on its identity. This 

allows the system to ensure that each process has the correct identity attached to it 

and can only access resources that it is authorized to access. 

 Digital signatures: Digital signatures can be used to authenticate the identity of a 

process. When a process is created, the operating system can sign the process with 

a private key, and verify the signature using the corresponding public key. This 

ensures that the process has not been tampered with and has the correct identity 

attached to it. 

 Cryptographic methods: Cryptographic methods, such as encryption and hashing, 

can be used to securely store and transmit the identity of a process. For example, 

the operating system can encrypt the identity of a process using a secret key, and 

decrypt it using the same key when it is needed. This ensures that the identity of the 

process cannot be tampered with or forged by malicious entities. 

 Hardware support: Some hardware platforms provide support for secure 

identification of processes, such as Trusted Platform Modules (TPMs). These 

hardware components can store and verify the identity of a process using 

cryptographic methods, providing an additional layer of security. 

By using these methods, the operating system can securely identify processes and ensure 

that only authorized processes can access resources on the system. 
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HOW TO DETERMINE IF AN ACCESS REQUEST SHOULD BE 

GRANTED? 

How can the operating system decide if a particular request made by a particular process 

belonging to a particular user at some given moment should or should not be granted? 

What information will be used to make this decision? How can we set this information to 

encode the security policies we want to enforce for our system? 

To determine if an access request should be granted, the operating system can use the 

following information: 

 Identity of the process: The identity of the process, such as the user or group that 

the process belongs to, is used to determine if the process is authorized to access 

the requested resource. 

 Permissions of the process: The permissions that are granted to the process, such as 

read, write, or execute, are used to determine if the process is authorized to perform 

the requested action on the resource. 

 Type of resource: The type of resource being accessed, such as a file or network 

socket, can influence the decision to grant or deny access. 

 Access control lists: Access control lists (ACLs) can be used to specify the 

permissions that are granted to each process based on its identity and the type of 

resource being accessed. 

 Security policies: The security policies of the system, such as the confidentiality, 

integrity, and availability requirements, are used to determine if the request should 

be granted. 

By considering these factors, the operating system can make a decision to grant or deny 

access to a resource based on the security policies of the system and the permissions of the 

requesting process. 
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HOW TO PROTECT INFORMATION OUTSIDE THE OS’S 

DOMAIN 

How can we use cryptography to ensure that, even if others gain access to critical data 

outside the control of the operating system, they will be unable to either use or alter it? 

What cryptographic technologies are available to assist in this problem? How do we 

properly use those technologies? What are the limitations on what we can do with them? 

Cryptography is the practice of using mathematical algorithms to encode and decode 

information. It can be used to protect information outside the control of the operating 

system by encoding the information in such a way that it can only be accessed or altered by 

someone with the proper decryption key. Some common cryptographic technologies 

include symmetric key algorithms, which use the same key for both encryption and 

decryption, and asymmetric key algorithms, which use a pair of keys, a public key and a 

private key, for encryption and decryption. To use these technologies effectively, it is 

important to choose the appropriate algorithm for the task at hand and to properly manage 

and protect the keys. There are also limitations to what can be achieved with cryptography, 

such as the possibility of attacks on the algorithms themselves or the risk of losing access 

to the decryption keys. 
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HOW TO PROTECT DISTRIBUTED SYSTEM OPERATIONS 

How can we secure a system spanning more than one machine? What tools are available to 

help us protect such systems? How do we use them properly? What are the areas in using 

the tools that require us to be careful and thoughtful? 

To protect distributed system operations, some common techniques include: 

 Encrypting communication channels: Using encryption to secure the 

communication channels between different machines in the distributed system can 

prevent unauthorized parties from intercepting and reading sensitive data. 

 Using secure authentication and authorization methods: Implementing strong 

authentication and authorization methods, such as using secure passwords or 

implementing two-factor authentication, can prevent unauthorized access to the 

system. 

 Implementing access control measures: Using access control measures, such as role-

based access control or discretionary access control, can ensure that only authorized 

users have access to certain resources in the system. 

 Using secure coding practices: Ensuring that the code used in the distributed system 

is written securely, using techniques such as input validation and sanitization, can 

prevent vulnerabilities that could be exploited by attackers. 

 Regularly updating and patching the system: Regularly updating and patching the 

system can help fix any vulnerabilities or security issues that may have been 

discovered. 

It is important to carefully consider the security needs of the distributed system and 

implement appropriate measures to protect against threats. It is also important to regularly 

review and test the security measures in place to ensure that they are effective. 
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