

Question & Answers
FROM OSTEP

Sercan Külcü | Operating Systems | 10.01.2023

PAGE 1

Contents

HOW TO VIRTUALIZE RESOURCES .. 4

HOW TO BUILD CORRECT CONCURRENT PROGRAMS ... 5

HOW TO STORE DATA PERSISTENTLY ...6

HOW TO PROVIDE THE ILLUSION OF MANY CPUS? .. 7

HOW TO CREATE AND CONTROL PROCESSES .. 8

HOW TO EFFICIENTLY VIRTUALIZE THE CPU WITH CONTROL9

HOW TO PERFORM RESTRICTED OPERATIONS .. 10

WHY SYSTEM CALLS LOOK LIKE PROCEDURE CALLS ... 11

BE WARY OF USER INPUTS IN SECURE SYSTEMS ... 12

HOW TO REGAIN CONTROL OF THE CPU .. 13

HOW TO GAIN CONTROL WITHOUT COOPERATION ... 14

DEALING WITH APPLICATION MISBEHAVIOR ... 15

HOW LONG CONTEXT SWITCHES TAKE .. 16

HOW TO DEVELOP SCHEDULING POLICY .. 17

HOW TO SCHEDULE WITHOUT PERFECT KNOWLEDGE? .. 18

LEARN FROM HISTORY .. 19

HOW TO SHARE THE CPU PROPORTIONALLY .. 20

USE EFFICIENT DATA STRUCTURES WHEN APPROPRIATE .. 21

HOW TO SCHEDULE JOBS ON MULTIPLE CPUS .. 22

HOW TO DEAL WITH LOAD IMBALANCE .. 23

HOW TO VIRTUALIZE MEMORY .. 24

THE PRINCIPLE OF ISOLATION .. 25

HOW TO ALLOCATE AND MANAGE MEMORY .. 26

WHY NO MEMORY IS LEAKED ONCE YOUR PROCESS EXITS .. 27

HOW TO EFFICIENTLY AND FLEXIBLY VIRTUALIZE MEMORY 28

HOW TO SUPPORT A LARGE ADDRESS SPACE .. 29

THE SEGMENTATION FAULT .. 30

HOW TO MANAGE FREE SPACE .. 31

HOW TO VIRTUALIZE MEMORY WITH PAGES .. 32

PAGE 2

DATA STRUCTURE - THE PAGE TABLE .. 33

HOW TO SPEED UP ADDRESS TRANSLATION ... 34

RISC VS. CISC.. 35

HOW TO MANAGE TLB CONTENTS ON A CONTEXT SWITCH 36

HOW TO DESIGN TLB REPLACEMENT POLICY .. 37

HOW TO MAKE PAGE TABLES SMALLER? ... 38

UNDERSTAND TIME-SPACE TRADE-OFFS .. 39

HOW TO GO BEYOND PHYSICAL MEMORY ...40

HOW TO DECIDE WHICH PAGE TO EVICT .. 41

HOW TO IMPLEMENT AN LRU REPLACEMENT POLICY... 42

HOW TO BUILD A COMPLETE VM SYSTEM .. 43

WHY NULL POINTER ACCESSES CAUSE SEG FAULTS ... 44

HOW TO SUPPORT SYNCHRONIZATION ... 45

HOW TO CREATE AND CONTROL THREADS ...46

HOW TO AVOID SPINNING ... 47

HOW TO ADD LOCKS TO DATA STRUCTURES ..48

HOW TO WAIT FOR A CONDITION .. 49

HOW TO USE SEMAPHORES ... 50

HOW TO HANDLE COMMON CONCURRENCY BUGS .. 51

HOW TO DEAL WITH DEADLOCK ... 52

HOW TO BUILD CONCURRENT SERVERS WITHOUT THREADS 53

BLOCKING VS. NON-BLOCKING INTERFACES .. 54

HOW TO INTEGRATE I/O INTO SYSTEMS... 55

HOW TO AVOID THE COSTS OF POLLING ... 56

HOW TO LOWER PIO OVERHEADS ... 57

HOW TO BUILD A DEVICE-NEUTRAL OS .. 58

HOW TO STORE AND ACCESS DATA ON DISK .. 59

HOW TO ACCOUNT FOR DISK ROTATION COSTS .. 60

HOW TO MAKE A LARGE, FAST, RELIABLE DISK ... 61

HOW TO MANAGE A PERSISTENT DEVICE ... 62

HOW TO IMPLEMENT A SIMPLE FILE SYSTEM .. 63

PAGE 3

HOW TO REDUCE FILE SYSTEM I/O COSTS..64

HOW TO ORGANIZE ON-DISK DATA TO IMPROVE PERFORMANCE 65

HOW TO UPDATE THE DISK DESPITE CRASHES .. 66

HOW TO MAKE ALL WRITES SEQUENTIAL WRITES? ... 67

HOW TO BUILD A FLASH-BASED SSD .. 68

HOW TO ENSURE DATA INTEGRITY .. 69

HOW TO HANDLE LATENT SECTOR ERRORS .. 70

HOW TO PRESERVE DATA INTEGRITY DESPITE CORRUPTION 71

HOW TO HANDLE MISDIRECTED WRITES ... 72

HOW TO HANDLE LOST WRITES ... 73

HOW TO BUILD SYSTEMS THAT WORK WHEN COMPONENTS FAIL 74

HOW TO BUILD A DISTRIBUTED FILE SYSTEM .. 75

HOW TO DEFINE A STATELESS FILE PROTOCOL .. 76

HOW TO DESIGN A SCALABLE FILE PROTOCOL ... 77

HOW TO SECURE OS RESOURCES ... 78

HOW TO SECURELY IDENTIFY PROCESSES .. 79

HOW TO DETERMINE IF AN ACCESS REQUEST SHOULD BE GRANTED? 80

HOW TO PROTECT INFORMATION OUTSIDE THE OS’S DOMAIN 81

HOW TO PROTECT DISTRIBUTED SYSTEM OPERATIONS ... 82

PAGE 4

HOW TO VIRTUALIZE RESOURCES

How does the operating system virtualize resources? What mechanisms and policies are

implemented by the OS to attain virtualization? How does the OS do so efficiently? What

hardware support is needed?

The operating system (OS) virtualizes resources to allow multiple programs or users to

share the same hardware resources. This can be done in a number of different ways,

depending on the type of resource being virtualized and the needs of the system.

One common way that the OS virtualizes resources is by using virtual memory. In this

model, the OS creates a virtual address space for each process, which is mapped to physical

memory by the hardware. This allows each process to have its own private memory space,

while still being able to access shared memory as needed. The OS uses a combination of

hardware support (such as the memory management unit (MMU) on a CPU) and software

algorithms to manage the virtual memory system efficiently.

Other resources that may be virtualized by the OS include processors, I/O devices, and

network resources. For example, the OS may use time slicing to allow multiple processes to

share a single processor, or it may use device drivers to allow multiple programs to access

the same physical I/O device.

To efficiently virtualize resources, the OS typically implements a variety of mechanisms and

policies. These can include scheduling algorithms to determine which processes should be

given access to resources, resource allocation policies to determine how resources should

be shared between processes, and system call interfaces to allow processes to request access

to resources in a controlled way.

Hardware support is often required for the OS to effectively virtualize resources. For

example, the MMU on a CPU is used to support virtual memory, while some types of I/O

devices may require specialized hardware support to allow multiple programs to access

them concurrently.

PAGE 5

HOW TO BUILD CORRECT CONCURRENT PROGRAMS

When there are many concurrently executing threads within the same memory space, how

can we build a correctly working program? What primitives are needed from the OS? What

mechanisms should be provided by the hardware? How can we use them to solve the

problems of concurrency?

Concurrency in a program can be challenging to implement correctly because it can lead to

race conditions, deadlocks, and other types of synchronization problems. To build a

correctly working concurrent program, you will need to use synchronization primitives

provided by the operating system (OS) and the hardware. These primitives can help you to

coordinate the execution of threads, protect shared resources, and ensure that your

program executes correctly in the presence of concurrency.

Some common synchronization primitives provided by the OS include:

 Mutexes: Mutual exclusion locks that can be used to protect shared resources from

concurrent access.

 Semaphores: A synchronization object that controls access by multiple threads to a

common resource in a parallel programming environment.

 Monitors: A synchronization construct that allows threads to have both mutual

exclusion and the ability to wait for a certain condition to be true.

 Condition variables: A synchronization object that allows a thread to wait for a

particular condition to be true, while allowing other threads to execute.

Hardware-based synchronization primitives can include:

 Atomic instructions: Instructions that can be executed concurrently but will always

complete as a single unit of work, without interference from other threads.

 Memory barriers: Special instructions that can be used to ensure that certain

memory operations happen in a specific order.

By using these primitives correctly, you can build concurrent programs that execute

correctly, even in the presence of race conditions and other synchronization problems. It is

important to carefully design your program to avoid common pitfalls such as deadlocks and

race conditions, and to thoroughly test your program to ensure that it behaves correctly in

the presence of concurrency.

PAGE 6

HOW TO STORE DATA PERSISTENTLY

The file system is the part of the OS in charge of managing persistent data. What techniques

are needed to do so correctly? What mechanisms and policies are required to do so with

high performance? How is reliability achieved, in the face of failures in hardware and

software?

The file system is responsible for managing persistent data on a computer, and it is a critical

part of the operating system (OS). To do so correctly, the file system must use a variety of

techniques to ensure the integrity and consistency of the data it stores.

One important technique used by file systems is the use of a journal, or log, to track changes

made to the file system. The journal records each change as it happens, and if a failure

occurs, the file system can use the journal to restore the file system to a consistent state.

This helps to ensure the reliability of the file system in the face of hardware and software

failures.

Other techniques that may be used by the file system to manage data correctly include:

 Error checking and correction: To detect and correct errors in the data being stored.

 Data compression: To reduce the amount of storage space needed for a given

amount of data.

 Encryption: To protect data from unauthorized access.

To achieve high performance, the file system must use a variety of mechanisms and policies.

These can include:

 Caching: To reduce the number of disk accesses needed to read and write data.

 Prefetching: To anticipate and pre-load data that is likely to be needed in the near

future.

 Disk scheduling algorithms: To determine the order in which disk accesses should

be made to optimize performance.

 File placement policies: To determine where on the disk to store different types of

files to optimize performance.

To ensure the reliability of the file system, the OS may also implement mechanisms such as

redundant array of independent disks (RAID) to protect against disk failures, and backup

and restore systems to allow the file system to be recovered in the event of data loss.

PAGE 7

HOW TO PROVIDE THE ILLUSION OF MANY CPUS?

Although there are only a few physical CPUs available, how can the OS provide the illusion

of a nearly-endless supply of said CPUs?

The operating system (OS) can provide the illusion of a nearly-endless supply of CPUs by

using a technique called CPU scheduling, also known as multitasking. CPU scheduling

allows the OS to divide the available CPU time among multiple processes, giving the

appearance that each process has its own dedicated CPU.

To implement CPU scheduling, the OS maintains a queue of processes that are ready to run.

When a process becomes ready to run, it is added to the queue. The OS then uses a

scheduling algorithm to determine which process should be allocated the CPU next. The

scheduling algorithm takes into account a variety of factors, such as the priority of the

process, the amount of CPU time it has already received, and the type of process (e.g.

interactive vs. batch).

Once the process has been selected by the scheduling algorithm, the OS allocates the CPU

to that process and allows it to execute until it either completes or is blocked (e.g. waiting

for I/O). When the process is no longer able to run, the OS removes it from the queue and

selects the next process to run. This process repeats continuously, giving the illusion of a

nearly-endless supply of CPUs.

Hardware support is required for the OS to effectively implement CPU scheduling. Most

modern CPUs include features such as hardware-supported preemptive multitasking, which

allows the OS to interrupt and reschedule processes as needed.

PAGE 8

HOW TO CREATE AND CONTROL PROCESSES

What interfaces should the OS present for process creation and control? How should these

interfaces be designed to enable powerful functionality, ease of use, and high performance?

The operating system (OS) should present a number of interfaces for process creation and

control to allow programmers to create and manage processes in their programs. These

interfaces should be designed to enable powerful functionality, ease of use, and high

performance.

Some common interfaces that the OS may provide for process creation and control include:

 fork(): A system call that creates a new process by making a copy of the calling

process.

 exec(): A family of system calls that allows a process to replace its current code and

data with a new program.

 wait(): A system call that allows a process to wait for one of its child processes to

terminate.

 exit(): A system call that causes a process to terminate.

To enable powerful functionality, these interfaces should allow a programmer to create and

manage processes in a variety of ways. For example, the exec() family of system calls should

allow a process to execute any program on the system, not just a limited set of programs.

To ensure ease of use, these interfaces should be easy to use and understand, with clear

documentation and well-defined behavior. They should also be consistent with other parts

of the OS and with industry standards, to make it easier for programmers to learn and use

them.

To achieve high performance, these interfaces should be implemented efficiently, with low

overhead and minimal impact on system performance. They should also be scalable, so that

they can handle a large number of processes without degrading performance.

It is also important for the OS to provide sufficient isolation between processes, to ensure

that one process cannot interfere with the execution of another. This can be achieved

through the use of memory protection, process isolation, and other techniques.

PAGE 9

HOW TO EFFICIENTLY VIRTUALIZE THE CPU WITH

CONTROL

The OS must virtualize the CPU in an efficient manner while retaining control over the

system. To do so, both hardware and operating-system support will be required. The OS

will often use a judicious bit of hardware support in order to accomplish its work effectively.

The operating system (OS) must virtualize the CPU in an efficient manner in order to

provide the illusion of multiple CPUs to processes and users. This requires both hardware

and OS support.

The hardware plays an important role in supporting CPU virtualization by providing

features such as hardware-supported multitasking, which allows the OS to preemptively

interrupt and reschedule processes as needed. The hardware may also include features such

as a memory management unit (MMU) to support virtual memory, which allows the OS to

create a virtual address space for each process.

The OS also plays a key role in virtualizing the CPU by implementing a scheduling algorithm

to determine which process should be allocated the CPU at any given time. The scheduling

algorithm takes into account a variety of factors, such as the priority of the process, the

amount of CPU time it has already received, and the type of process (e.g. interactive vs.

batch).

To effectively virtualize the CPU, the OS must also provide sufficient isolation between

processes to ensure that one process cannot interfere with the execution of another. This

can be achieved through the use of memory protection, process isolation, and other

techniques.

Overall, the combination of hardware and OS support is necessary to enable the efficient

virtualization of the CPU, while still allowing the OS to retain control over the system.

PAGE 10

HOW TO PERFORM RESTRICTED OPERATIONS

A process must be able to perform I/O and some other restricted operations, but without

giving the process complete control over the system. How can the OS and hardware work

together to do so?

To allow a process to perform I/O and other restricted operations without giving it complete

control over the system, the operating system (OS) and hardware can work together to

provide mechanisms for controlled access to these operations.

One way this can be achieved is through the use of system calls. System calls are special

functions that a process can use to request access to restricted operations or resources. The

OS can then validate the request and grant or deny access as appropriate. This allows the

OS to retain control over the system, while still allowing processes to perform necessary

operations.

Hardware support can also be used to help control access to restricted operations. For

example, the hardware may include memory protection features such as a memory

management unit (MMU) to prevent processes from accessing memory that they are not

authorized to access. Similarly, hardware-based access controls can be used to restrict

access to I/O devices and other resources.

Overall, the combination of OS and hardware support is necessary to allow processes to

perform restricted operations in a controlled way, while still maintaining the integrity and

security of the system.

PAGE 11

WHY SYSTEM CALLS LOOK LIKE PROCEDURE CALLS

System calls are designed to look like procedure calls so that they can be easily integrated

into a programming language and used by programmers in a natural way. This makes it

easier for programmers to use the functionality provided by the operating system (OS), as

they do not have to learn a separate interface or use special commands to access OS

functionality.

System calls are implemented as procedures in the OS, and they are usually written in a

low-level language such as C or assembly. When a program calls a system call, the OS

intercepts the call and performs the requested operation.

By making system calls look like procedure calls, the OS can provide a consistent and

familiar interface for accessing its functionality. This makes it easier for programmers to use

the OS and can improve the portability of programs, as they do not have to be rewritten to

use different interfaces on different systems.

A trap instruction, also known as a software interrupt or exception, is a type of instruction

that causes the CPU to transfer control to a specific location in memory to execute a

particular piece of code. Trap instructions are often used to invoke system calls or to handle

exceptional conditions such as division by zero or invalid memory access.

Trap instructions are typically implemented in hardware and are triggered by specific

conditions or events. For example, a trap instruction may be triggered by an illegal

instruction, an invalid memory access, or a divide-by-zero error. When a trap instruction is

encountered, the CPU interrupts the current execution of the program and transfers control

to a specific location in memory to execute a handler for the exception.

Trap instructions can be used to implement system calls in an operating system (OS). When

a program makes a system call, it can do so by executing a trap instruction that causes the

CPU to transfer control to the OS to execute the requested system call. This allows the OS

to retain control over the system and to provide a controlled interface for accessing its

functionality.

PAGE 12

BE WARY OF USER INPUTS IN SECURE SYSTEMS

There are many other aspects to consider when implementing a secure operating system,

beyond just protecting the OS during system calls. Handling arguments at the system call

boundary is an important aspect of system call security, as the OS must ensure that

arguments passed by the user are properly specified and do not compromise the security of

the system.

To do so, the OS can implement a variety of checks and safeguards to validate the arguments

passed to system calls. For example, the OS can check the bounds of the arguments to

ensure that they are within the expected range, and it can verify that pointers passed as

arguments point to valid memory locations. The OS can also enforce access controls to

ensure that a user has the necessary permissions to perform a given system call.

In addition to these checks, the OS can also use techniques such as type safety and

sandboxing to further restrict the actions that a user can perform through system calls. This

can help to prevent malicious users from compromising the system or accessing sensitive

information.

Overall, it is important for the OS to carefully validate and sanitize arguments passed to

system calls in order to maintain the security and integrity of the system.

PAGE 13

HOW TO REGAIN CONTROL OF THE CPU

How can the operating system regain control of the CPU so that it can switch between

processes?

The operating system (OS) can regain control of the CPU in order to switch between

processes by using a technique called preemption. Preemption is the act of interrupting and

suspending the execution of a process in order to allow another process to run.

There are a few different ways that the OS can implement preemption:

 Hardware-supported preemption: Most modern CPUs include hardware support for

preemption, which allows the OS to interrupt and reschedule processes as needed.

The OS can use this hardware support to regain control of the CPU and switch

between processes.

 Timer-based preemption: The OS can use a timer to periodically interrupt the

execution of a process and switch to another process. This allows the OS to ensure

that each process gets a fair share of the CPU.

 Priority-based preemption: The OS can use the priority of processes to determine

which process should be preempted. For example, if a high-priority process becomes

ready to run, the OS may preempt a lower-priority process to allow the high-priority

process to run.

By using preemption, the OS can regain control of the CPU and switch between processes

as needed, allowing it to effectively manage the execution of multiple processes on a single

CPU.

PAGE 14

HOW TO GAIN CONTROL WITHOUT COOPERATION

How can the OS gain control of the CPU even if processes are not being cooperative? What

can the OS do to ensure a rogue process does not take over the machine?

If processes are not being cooperative and are not voluntarily relinquishing control of the

CPU, the operating system (OS) may need to use more forceful measures to regain control

of the CPU. One way the OS can do this is by using a technique called forced preemption.

Forced preemption is the act of interrupting the execution of a process and suspending it,

even if the process is not cooperating. This can be done in a variety of ways, depending on

the hardware and OS in use. Some examples include:

 Hardware-supported preemption: Most modern CPUs include hardware support for

preemption, which allows the OS to interrupt and reschedule processes as needed.

The OS can use this hardware support to forcibly preempt a process that is not

cooperating.

 Non-maskable interrupts: Non-maskable interrupts (NMIs) are special types of

interrupts that cannot be ignored by the CPU. The OS can use NMIs to forcibly

preempt a process that is not cooperating.

 Kill signals: The OS can send a kill signal to a process to forcibly terminate it. This

can be used to preempt a rogue process that is not cooperating.

To ensure that a rogue process does not take over the machine, the OS can also implement

security measures such as access controls and privilege levels to limit the actions that a

process can perform. This can help to prevent malicious processes from compromising the

system or accessing sensitive information.

Overall, the OS can use a combination of hardware support, forced preemption, and

security measures to regain control of the CPU and ensure that rogue processes do not take

over the machine.

PAGE 15

DEALING WITH APPLICATION MISBEHAVIOR

When an operating system (OS) encounters a misbehaving process that is attempting to do

something it shouldn't, such as accessing illegal memory or executing illegal instructions,

the OS has a few options for handling the situation. One option is to terminate the offending

process, as you mentioned. This can be a effective way to stop the process from causing

further harm, but it does not address the root cause of the problem and may not be the most

appropriate solution in all cases.

Other options the OS may consider include:

Killing the offending process and creating a new instance of the process: This can be useful

if the process is critical to the operation of the system and cannot simply be terminated. By

creating a new instance of the process, the OS can continue to provide the necessary

functionality while addressing the misbehaving behavior of the original process.

Restarting the system: In severe cases, the operating system (OS) may need to restart the

system in order to restore it to a stable state. This can be useful if the misbehaving process

has caused widespread damage to the system or if the OS is unable to recover from the

problem. Restarting the system can allow the OS to start fresh and potentially resolve any

issues that were causing the misbehaving behavior. However, restarting the system can also

be disruptive, as it requires all processes to be terminated and can result in the loss of any

unsaved work. As such, it should generally be used as a last resort when other options are

not feasible.

Isolating the offending process: To contain the damage caused by a misbehaving process,

the operating system (OS) can use techniques such as sandboxing or containers to isolate

the offending process from the rest of the system. Sandboxing involves running the process

in a restricted environment that limits its access to system resources and prevents it from

interacting with other processes or the underlying operating system. Containers are a more

advanced form of isolation that allow the OS to run multiple isolated processes on the same

system, each with its own virtualized operating environment. Isolating the offending

process can help to prevent it from causing further harm to the system, while still allowing

it to execute and perform its intended functions. This can be a useful alternative to simply

terminating the process, as it allows the OS to continue providing the necessary

functionality while addressing the misbehaving behavior of the process.

PAGE 16

HOW LONG CONTEXT SWITCHES TAKE

The amount of time that a context switch takes can vary depending on a number of factors,

including the hardware and operating system (OS) being used, the complexity of the

processes involved, and the amount of state that needs to be saved and restored during the

context switch.

In general, context switches are relatively fast operations that take a few microseconds to a

few milliseconds to complete. However, in some cases, context switches can take longer,

especially if there is a large amount of state to be saved and restored or if the process being

switched out is doing a lot of I/O or has a lot of dirty pages in its address space.

To minimize the impact of context switches on system performance, the OS can use a

variety of techniques, such as intelligent scheduling and preemption, to minimize the

number of context switches that are required. The hardware can also play a role in reducing

the time required for context switches, by providing features such as hardware-supported

multitasking and fast context switch support.

PAGE 17

HOW TO DEVELOP SCHEDULING POLICY

How should we develop a basic framework for thinking about scheduling policies? What

are the key assumptions? What metrics are important? What basic approaches have been

used in the earliest of computer systems?

A basic framework for thinking about scheduling policies can be developed by considering

the following factors:

Key assumptions: It is important to identify the key assumptions that will guide the

development of the scheduling policy. For example, the policy may be designed to optimize

for throughput, response time, or some other metric. It is also important to consider the

constraints of the system, such as the number of CPUs and the available resources.

Metrics: The metrics that are used to evaluate the performance of the scheduling policy are

an important factor to consider. Some common metrics include throughput, response time,

fairness, and resource utilization.

Basic approaches: There are a variety of basic approaches that have been used in scheduling

policies for computer systems. These include first-come, first-served (FCFS), shortest job

first (SJF), and round-robin (RR). Each of these approaches has its own strengths and

weaknesses, and the appropriate approach will depend on the specific needs of the system.

Overall, it is important to carefully consider the key assumptions, metrics, and basic

approaches when developing a scheduling policy for a computer system. This will help to

ensure that the policy is well-suited to the needs of the system and will allow the system to

operate efficiently and effectively.

PAGE 18

HOW TO SCHEDULE WITHOUT PERFECT KNOWLEDGE?

How can we design a scheduler that both minimizes response time for interactive jobs while

also minimizing turnaround time without a priori knowledge of job length?

One approach to designing a scheduler that minimizes response time for interactive jobs

while also minimizing turnaround time without a priori knowledge of job length is to use a

priority-based scheduling algorithm.

In a priority-based scheduling algorithm, each job is assigned a priority based on its

importance or urgency. Jobs with higher priorities are given preference over lower-priority

jobs and are executed first. This can help to minimize response time for interactive jobs, as

they are typically given higher priorities to ensure that they receive timely service.

To minimize turnaround time without a priori knowledge of job length, the scheduler can

use a dynamic priority assignment algorithm. This type of algorithm adjusts the priorities

of jobs based on their recent CPU usage and other factors, such as the age of the job or the

amount of time it has spent waiting in the queue. This can help to ensure that jobs that have

been waiting for a long time are given higher priorities and are executed more quickly,

reducing turnaround time.

Overall, a priority-based scheduling algorithm with dynamic priority assignment can be an

effective way to design a scheduler that minimizes response time for interactive jobs while

also minimizing turnaround time without a priori knowledge of job length.

PAGE 19

LEARN FROM HISTORY

Multi-level feedback queue (MLFQ) is an example of a system that uses past behavior to

predict future behavior. In an MLFQ scheduler, each job is assigned to a queue based on its

priority, and jobs in higher-priority queues are given preference over lower-priority queues.

The priority of a job can be adjusted based on its past behavior, such as its CPU usage and

response time. This allows the scheduler to learn from the past behavior of a job and predict

how it will behave in the future, allowing it to make more informed decisions about which

jobs to execute first.

However, as you mentioned, it is important to be careful with such techniques, as they can

easily be wrong and lead to suboptimal decision making. This can happen if the assumptions

on which the predictions are based are not accurate or if the behavior of a job changes

significantly over time. To mitigate this risk, it is important to carefully design the

prediction algorithm and to monitor the performance of the system to ensure that it is

making good decisions.

Overall, the use of past behavior to predict future behavior can be a powerful technique for

operating systems and other systems, but it is important to use it carefully and to monitor

the performance of the system to ensure that it is making good decisions.

PAGE 20

HOW TO SHARE THE CPU PROPORTIONALLY

How can we design a scheduler to share the CPU in a proportional manner? What are the

key mechanisms for doing so? How effective are they?

One way to design a scheduler to share the CPU in a proportional manner is to use a

proportional share scheduling algorithm. In a proportional share scheduling algorithm,

each process is assigned a share of the CPU based on its relative importance or priority. The

scheduler then allocates the CPU to each process in proportion to its assigned share.

There are a few key mechanisms that can be used to implement proportional share

scheduling:

 Weighted round-robin: In this approach, each process is assigned a weight that

reflects its relative importance or priority. The scheduler then allocates the CPU to

each process in proportion to its weight, using a round-robin algorithm to rotate

between processes.

 Dynamic time slicing: In this approach, the scheduler allocates a certain amount of

CPU time to each process based on its assigned share. The scheduler then uses a

timer to interrupt the execution of each process and switch to the next process when

its allocated time has been used up.

 Budgeting: In this approach, the scheduler assigns each process a budget of CPU

time that it is allowed to use before being preempted. The scheduler then allocates

the CPU to each process in proportion to its budget, using preemption to enforce

the budget limits.

Overall, these mechanisms can be effective in helping to share the CPU in a proportional

manner. However, their effectiveness can depend on the specific needs of the system and

the characteristics of the processes being scheduled. It is important to carefully consider

the trade-offs and choose the appropriate mechanism for the given system.

PAGE 21

USE EFFICIENT DATA STRUCTURES WHEN APPROPRIATE

Using efficient data structures can help to improve the performance of a system by reducing

the amount of time and resources required to store and access data. There are a wide variety

of data structures available, each with its own strengths and weaknesses, and the

appropriate data structure to use will depend on the specific needs of the system.

Some examples of efficient data structures that may be appropriate to use in certain

situations include:

 Arrays: Arrays are a simple data structure that allows for fast access to elements

using their indices. They are well-suited for situations where the data is a fixed size

and the order of the elements is not important.

 Linked lists: Linked lists are a data structure that allows for the insertion and

deletion of elements at any position in the list. They are well-suited for situations

where the data is not a fixed size and the order of the elements is important.

 Hash tables: Hash tables are a data structure that allows for fast lookup of elements

using a hash function. They are well-suited for situations where the data is large and

the order of the elements is not important.

 Trees: Trees are a data structure that allows for fast insertion, deletion, and search

of elements. They are well-suited for situations where the data is large and the order

of the elements is important.

Overall, it is important to choose the appropriate data structure for the given situation in

order to maximize efficiency and performance.

PAGE 22

HOW TO SCHEDULE JOBS ON MULTIPLE CPUS

How should the OS schedule jobs on multiple CPUs? What new problems arise? Do the

same old techniques work, or are new ideas required?

When scheduling jobs on multiple CPUs, the operating system (OS) has several options for

allocating tasks to the available CPUs. Some common approaches include:

 Load balancing: In this approach, the OS tries to distribute the load evenly across

all available CPUs in order to optimize resource utilization and prevent any one CPU

from becoming overloaded.

 CPU affinity: In this approach, the OS assigns tasks to specific CPUs based on the

characteristics of the tasks and the CPUs. For example, the OS may assign CPU-

intensive tasks to CPUs with higher clock speeds or assign tasks with large memory

footprints to CPUs with more memory.

 Resource allocation: In this approach, the OS assigns tasks to CPUs based on the

resources that the tasks require. For example, if a task requires a lot of memory, the

OS may assign it to a CPU with more memory in order to reduce the risk of thrashing.

New problems can arise when scheduling jobs on multiple CPUs, such as the need to

coordinate access to shared resources and the need to handle contention for resources.

These problems can be addressed using techniques such as lock-based synchronization or

lockless synchronization.

Overall, the same scheduling techniques that are used for single-CPU systems can still be

effective for scheduling jobs on multiple CPUs, but new ideas and techniques may also be

required to address the additional challenges that arise. It is important to carefully consider

the specific needs of the system and choose the appropriate scheduling approach to ensure

efficient and effective resource utilization.

PAGE 23

HOW TO DEAL WITH LOAD IMBALANCE

How should a multi-queue multiprocessor scheduler handle load imbalance, so as to better

achieve its desired scheduling goals?

There are several approaches that a multi-queue multiprocessor scheduler can take to

handle load imbalance in order to better achieve its desired scheduling goals:

 Dynamic queue assignment: In this approach, the scheduler monitors the load on

each CPU and adjusts the assignment of tasks to queues accordingly. If a CPU

becomes overloaded, the scheduler can move tasks from that CPU's queue to

another CPU's queue in order to balance the load.

 Work stealing: In this approach, the scheduler allows idle CPUs to "steal" work from

the queues of other CPUs that are busy. This can help to balance the load across the

CPUs and ensure that all available resources are being utilized effectively.

 Load balancing policies: The scheduler can use load balancing policies to determine

how to distribute tasks across the CPUs. For example, it can use a policy that tries

to balance the load based on the number of tasks in each queue, or it can use a policy

that tries to balance the load based on the CPU utilization of each CPU.

Overall, these approaches can help a multi-queue multiprocessor scheduler to better

achieve its desired scheduling goals by reducing load imbalance and ensuring that all

available resources are being used effectively.

PAGE 24

HOW TO VIRTUALIZE MEMORY

How can the OS build this abstraction of a private, potentially large address space for

multiple running processes (all sharing memory) on top of a single, physical memory?

The operating system (OS) can build an abstraction of a private, potentially large address

space for multiple running processes on top of a single, physical memory using the

technique of virtual memory.

Virtual memory is a mechanism that allows the OS to address more memory than is

physically available in the system by temporarily transferring data from the main memory

to a secondary storage device, such as a hard disk. When a process attempts to access

memory that is not currently available in the main memory, the OS uses the virtual memory

system to swap the data in and out of the main memory as needed. This allows the process

to access a large address space, even if the physical memory is limited.

To implement virtual memory, the OS uses a memory management unit (MMU) in the

hardware to map virtual addresses to physical addresses. The MMU translates the virtual

addresses used by the processes into physical addresses that correspond to the locations in

the main memory or the secondary storage device. This allows the OS to provide each

process with its own private, potentially large address space, even though all the processes

are sharing the same physical memory.

Overall, virtual memory is a powerful technique that allows the OS to build an abstraction

of a private, potentially large address space for multiple running processes on top of a single,

physical memory.

PAGE 25

THE PRINCIPLE OF ISOLATION

isolation is a key principle in building reliable systems, and it is a principle that is often used

by operating systems to improve the reliability of the system. By isolating processes from

one another, the OS can prevent one process from affecting the operation of another process

or the underlying OS. This can help to reduce the risk of failures and can improve the overall

reliability of the system.

Memory isolation is a technique that can be used to further ensure that running programs

cannot affect the operation of the underlying OS. By providing each process with its own

private memory space and using hardware protection mechanisms to enforce the isolation,

the OS can prevent processes from accessing or modifying memory that they are not

authorized to access. This can help to prevent one process from interfering with the

operation of another process or the OS.

Microkernels are a type of OS design that takes the principle of isolation even further by

walling off pieces of the OS from other pieces of the OS. In a microkernel design, the OS is

divided into a small core kernel and a set of user-level servers that run in their own separate

address spaces. This can provide greater isolation between different parts of the OS and can

help to improve the reliability of the system by reducing the risk of failures propagating

from one part of the system to another.

PAGE 26

HOW TO ALLOCATE AND MANAGE MEMORY

In UNIX/C programs, understanding how to allocate and manage memory is critical in

building robust and reliable software. What interfaces are commonly used? What mistakes

should be avoided?

In UNIX/C programs, the malloc() and free() functions are commonly used to allocate and

manage memory. The malloc() function is used to allocate a block of memory of a specified

size, and the free() function is used to deallocate a block of memory that was previously

allocated with malloc().

There are a few common mistakes that should be avoided when using these functions:

 Memory leaks: A memory leak occurs when a program allocates memory with

malloc() but fails to deallocate it with free(). This can lead to a depletion of available

memory over time, which can cause the program to crash or behave unpredictably.

 Dangling pointers: A dangling pointer is a pointer that refers to a block of memory

that has been deallocated with free(), but the pointer itself has not been set to NULL

or otherwise invalidated. Dereferencing a dangling pointer can lead to

unpredictable behavior, including segmentation faults.

 Buffer overflows: A buffer overflow occurs when a program writes data beyond the

bounds of a buffer, which can lead to a corruption of memory and potentially allow

an attacker to inject malicious code into the program.

To avoid these mistakes, it is important to carefully manage memory allocation and

deallocation, and to use appropriate safeguards to prevent buffer overflows. It is also a good

idea to use memory debugging tools, such as valgrind, to detect and fix memory-related

issues.

PAGE 27

WHY NO MEMORY IS LEAKED ONCE YOUR PROCESS EXITS

When you write a short-lived program and allocate space using malloc(), it is generally a

good idea to deallocate the memory with free() before the program exits, even if the

program is short-lived and the memory will not be "lost" in any real sense. This is because

failing to deallocate memory can lead to resource leaks, which can cause problems over time

if the program is run repeatedly or if multiple programs are running concurrently and

allocating large amounts of memory without deallocating it.

However, you are correct that there are really two levels of memory management in the

system: the memory management within the program and the memory management at the

operating system level. When a program calls malloc() to allocate memory, the memory is

actually being allocated by the operating system and managed by the program. When the

program calls free() to deallocate the memory, it is actually returning the memory back to

the operating system for reuse.

Overall, it is generally a good practice to deallocate memory when it is no longer needed,

even if the program is short-lived and the memory will not be "lost" in any real sense, in

order to prevent resource leaks and ensure that the system is running efficiently.

PAGE 28

HOW TO EFFICIENTLY AND FLEXIBLY VIRTUALIZE MEMORY

How can we build an efficient virtualization of memory? How do we provide the flexibility

needed by applications? How do we maintain control over which memory locations an

application can access, and thus ensure that application memory accesses are properly

restricted? How do we do all of this efficiently?

There are several approaches to building an efficient virtualization of memory:

 Hardware-assisted virtualization: In this approach, the hardware provides support

for virtualization, allowing the hypervisor (the software that manages the

virtualization) to directly control the allocation of physical memory to virtual

machines. This approach is generally efficient, but requires specialized hardware

support.

 Paravirtualization: In this approach, the operating system of the virtual machine is

modified to communicate directly with the hypervisor, allowing the hypervisor to

control the allocation of physical memory to the virtual machine. This approach is

generally less efficient than hardware-assisted virtualization, but can be used on any

hardware platform.

 Hardware-enforced memory isolation: In this approach, the hardware enforces

memory access restrictions, preventing a virtual machine from accessing memory

locations that it is not authorized to access. This approach is efficient, but requires

specialized hardware support.

To provide the flexibility needed by applications, virtual memory can be implemented using

a technique called paging, which allows the operating system to map a large virtual address

space onto a smaller physical memory. This allows applications to access more memory than

is physically available, and allows the operating system to control which memory locations

an application can access.

In general, it is important to carefully balance the trade-offs between flexibility, security,

and efficiency when designing a virtualization of memory.

PAGE 29

HOW TO SUPPORT A LARGE ADDRESS SPACE

How do we support a large address space with (potentially) a lot of free space between the

stack and the heap? Note that in our examples, with tiny (pretend) address spaces, the waste

doesn’t seem too bad. Imagine, however, a 32-bit address space (4 GB in size); a typical

program will only use megabytes of memory, but still would demand that the entire address

space be resident in memory.

One way to support a large address space with potentially a lot of free space between the

stack and the heap is to use a technique called paging. With paging, the operating system

can divide the virtual address space into smaller units called pages, and map each page onto

a physical page frame in memory. This allows the operating system to only load the pages

that are actually being used by the program into physical memory, and to swap out pages

that are not being used to secondary storage (e.g., a hard drive).

Another way to support a large address space with potentially a lot of free space is to use a

technique called segmentation. With segmentation, the operating system can divide the

virtual address space into smaller units called segments, and map each segment onto a

physical memory region. This allows the operating system to allocate memory more

efficiently, by only allocating physical memory for the segments that are actually being used

by the program.

Both paging and segmentation allow the operating system to support a large virtual address

space, while still being able to efficiently use physical memory. However, they do have some

differences: paging is generally simpler to implement, but may be less flexible than

segmentation, while segmentation can provide more fine-grained control over memory

allocation, but may be more complex to implement.

PAGE 30

THE SEGMENTATION FAULT

A segmentation fault, also known as a "segfault," occurs when a program tries to access a

memory location that it is not allowed to access, or that does not exist. This can occur for a

variety of reasons, such as trying to read from or write to a null pointer, or trying to execute

code from a data-only section of memory.

On a machine with segmentation, the memory is divided into segments, each of which has

a specific purpose and is protected from access by other segments. A segmentation fault

occurs when a program tries to access a memory segment that it is not allowed to access.

On a machine without segmentation, the memory is still divided into regions, but these

regions are not necessarily protected from access by other programs. In this case, a

segmentation fault can occur if a program tries to access a memory location that does not

exist, or if it tries to perform an illegal operation on a memory location, such as executing

code from a data section of memory.

In either case, a segmentation fault is usually the result of a programming error, and it can

be difficult to track down the cause of the fault. Debugging tools, such as a debugger or a

memory checker, can be helpful in identifying the source of the problem.

PAGE 31

HOW TO MANAGE FREE SPACE

How should free space be managed, when satisfying variable-sized requests? What

strategies can be used to minimize fragmentation? What are the time and space overheads

of alternate approaches?

In operating systems, free space is typically managed using a memory allocator. There are

several approaches to managing free space when satisfying variable-sized requests in an

operating system, including:

 Using a free list or free space map: This involves maintaining a list or map of the free

blocks of memory in the system, allowing the allocator to quickly find a block of

sufficient size to satisfy a request. This approach can have a space overhead, as it

requires additional data structures to be maintained.

 Using a buddy allocator: This involves splitting blocks of memory into smaller

blocks when they are not needed and merging them back together when a request

for a larger block comes in. This can reduce fragmentation, but can have a time

overhead as it requires additional work to split and merge blocks of memory.

 Using a worst-fit allocator: This involves choosing the largest block of free memory

to satisfy a request, which can help to reduce fragmentation by leaving fewer small

blocks of free memory scattered throughout the system.

 Using a first-fit allocator: This involves choosing the first block of free memory that

is large enough to satisfy a request. This approach can be faster than other methods,

but can result in more fragmentation if it leads to a lot of small blocks of free

memory being left over.

It is also possible to use a combination of these approaches to manage free space and

minimize fragmentation in an operating system. The choice of approach will depend on the

specific requirements of the system and the trade-offs between time and space overhead

that are acceptable.

PAGE 32

HOW TO VIRTUALIZE MEMORY WITH PAGES

How can we virtualize memory with pages, so as to avoid the problems of segmentation?

What are the basic techniques? How do we make those techniques work well, with minimal

space and time overheads?

Virtual memory is a technique that allows an operating system to provide a process with

the appearance of a larger, continuous block of memory, even if the physical memory

available to the system is fragmented or smaller than the virtual memory space. This is

achieved by using a memory management unit (MMU) to map virtual memory addresses to

physical memory addresses.

One way to virtualize memory is to use a paging system, in which the virtual memory space

is divided into fixed-sized units called pages, and the physical memory is divided into fixed-

sized units called page frames. The MMU is then used to map pages to page frames on

demand. When a process accesses a virtual memory address, the MMU translates the virtual

address to the corresponding physical address by looking up the mapping in a page table.

To minimize space and time overheads, it is important to design the paging system to

minimize the number of page table entries that need to be accessed and to use fast data

structures to store the page table. It is also important to use an efficient page replacement

algorithm to choose which pages to evict from physical memory when the system runs out

of free page frames.

Other techniques that can be used to improve the performance of a paging system include

using a hierarchical page table structure to reduce the size of the page table, using a

translation lookaside buffer (TLB) to cache recently accessed page table entries, and using

demand paging to only load pages into physical memory when they are accessed.

PAGE 33

DATA STRUCTURE - THE PAGE TABLE

In general, the page table is used by the MMU (memory management unit) to translate

virtual memory addresses to physical memory addresses when a process accesses memory.

The page table stores the mapping between virtual pages and physical page frames, allowing

the MMU to look up the physical address corresponding to a given virtual address.

A page table is a data structure that is used in the memory management subsystem of a

modern operating system to store virtual-to-physical address translations. The properties

of a page table data structure can include:

Size: The size of the page table depends on the size of the virtual memory space and the size

of the pages used by the system. A larger virtual memory space or smaller page size will

result in a larger page table.

Structure: The page table can be structured in different ways, depending on the needs of

the system. For example, it can be a flat array of page table entries, or it can use a

hierarchical structure to reduce the size of the page table.

Entry format: The page table entries typically contain information such as the physical page

frame number that corresponds to the virtual page, and various flags such as read/write

permissions and access protection. The exact format of the page table entries will depend

on the specific requirements of the system.

Access time: The time required to access a page table entry and translate a virtual address

will depend on the data structure used to store the page table and the size of the page table.

Using a fast data structure and minimizing the size of the page table can help to reduce the

access time.

Memory overhead: The page table requires memory to store the page table entries, which

can be a significant overhead for systems with large virtual memory spaces. Techniques such

as using a hierarchical page table structure or a translation lookaside buffer (TLB) can help

to reduce the memory overhead of the page table.

PAGE 34

HOW TO SPEED UP ADDRESS TRANSLATION

How can we speed up address translation, and generally avoid the extra memory reference

that paging seems to require? What hardware support is required? What OS involvement is

needed?

There are several techniques that can be used to speed up address translation and avoid the

extra memory reference required by paging:

Translation lookaside buffer (TLB): A TLB is a cache that stores recently accessed page table

entries, allowing the MMU to quickly look up the physical address corresponding to a

virtual address without having to access the page table in main memory. This can

significantly speed up address translation, as accessing the TLB is typically faster than

accessing main memory. Hardware support is required for the TLB, and the operating

system is responsible for maintaining the TLB and ensuring that it contains the correct page

table entries.

Hierarchical page table structure: A hierarchical page table structure can be used to reduce

the size of the page table and improve the performance of address translation. In this

structure, the page table is organized into multiple levels, with each level containing a

smaller number of entries. This can reduce the number of memory references required to

translate a virtual address, as the upper levels of the hierarchy contain fewer entries and can

be accessed more quickly.

Hardware-managed TLB: Some systems use a hardware-managed TLB, which is

automatically populated by the MMU as virtual addresses are accessed. This can reduce the

burden on the operating system, as it does not have to maintain the TLB. However, this

approach can be less flexible than a software-managed TLB, as the hardware may not have

the ability to invalidate TLB entries or to handle page table updates in real time.

Large pages: Some systems support the use of large pages, which are pages that are larger

than the usual page size. Using large pages can reduce the size of the page table and the

number of memory references required to translate a virtual address. However, large pages

may not be suitable for all workloads, as they can be less flexible than smaller pages and

may result in more internal fragmentation.

PAGE 35

RISC VS. CISC

The debate between CISC (Complex Instruction Set Computing) and RISC (Reduced

Instruction Set Computing) was a significant one in the history of computer architecture.

The main difference between the two approaches is the instruction set of the CPU. CISC

architectures, such as the Intel x86, have a large and complex instruction set, with many

instructions that can perform multiple operations in a single instruction. This can make the

instruction set easier to program, but it can also result in longer and more complex

instructions that are slower to execute.

In contrast, RISC architectures have a smaller and simpler instruction set, with each

instruction performing a single operation. This can make the instructions faster to execute,

but it requires more instructions to perform the same task, which can make the instruction

set more difficult to program.

Both approaches have their pros and cons, and the debate between CISC and RISC

continues to this day. Many modern processors use a hybrid approach, combining elements

of both CISC and RISC to try to get the best of both worlds.

PAGE 36

HOW TO MANAGE TLB CONTENTS ON A CONTEXT SWITCH

When context-switching between processes, the translations in the TLB for the last process

are not meaningful to the about-to-be-run process. What should the hardware or OS do in

order to solve this problem?

When a context switch occurs and the CPU switches from running one process to another,

the TLB (Translation Lookaside Buffer) will contain translations that are not valid for the

new process. This can occur because the virtual address space used by the new process may

be laid out differently and may not use the same virtual-to-physical address translations as

the previous process.

To solve this problem, the operating system must invalidate the entries in the TLB that are

not valid for the new process. This can be done by the hardware by providing a TLB flush

instruction, or it can be done by the operating system by manually invalidating each TLB

entry.

Once the TLB has been invalidated, the operating system can then load the TLB with the

appropriate translations for the new process, allowing it to access its virtual memory

correctly. This process of invalidating the TLB and loading it with the correct translations

is known as TLB management.

PAGE 37

HOW TO DESIGN TLB REPLACEMENT POLICY

Which TLB entry should be replaced when we add a new TLB entry? The goal, of course,

being to minimize the miss rate (or increase hit rate) and thus improve performance.

The goal when adding a new TLB entry is to maximize the likelihood that it will be used in

the future, so as to minimize the miss rate and improve performance. There are several

strategies that can be used to achieve this goal:

 Least Recently Used (LRU): The TLB entry that has been accessed least recently is

replaced with the new entry. This strategy assumes that entries that have not been

accessed recently are less likely to be accessed in the future.

 First In, First Out (FIFO): The TLB entry that was added to the TLB first is replaced

with the new entry. This strategy does not take into account the usage history of

TLB entries.

 Random: A TLB entry is chosen at random to be replaced with the new entry. This

strategy does not take into account the usage history of TLB entries.

Ultimately, the choice of replacement strategy will depend on the specific characteristics of

the workload and the hardware implementation of the TLB. Some TLB designs may provide

support for multiple replacement strategies, allowing the operating system to choose the

most appropriate one for a given workload.

PAGE 38

HOW TO MAKE PAGE TABLES SMALLER?

Simple array-based page tables (usually called linear page tables) are too big, taking up far

too much memory on typical systems. How can we make page tables smaller? What are the

key ideas? What inefficiencies arise as a result of these new data structures?

There are several techniques that can be used to make page tables smaller and more efficient,

including:

 Hierarchical page tables: Instead of using a single, monolithic page table to map the

entire virtual address space of a process, hierarchical page tables use a multi-level

structure to map only the pages that are currently in use. This can greatly reduce

the size of the page table and improve efficiency, but it comes at the cost of increased

complexity and longer access times.

 Inverted page tables: Inverted page tables store a list of valid virtual-to-physical

address translations, rather than a list of invalid ones. This can greatly reduce the

size of the page table, but it requires the operating system to maintain a separate

data structure to track the mapping of physical pages to virtual addresses.

 Page coloring: Page coloring involves partitioning physical memory into "colors" and

associating each virtual page with a particular color. This can reduce the number of

TLB misses by ensuring that pages with the same color are not mapped to the same

physical pages, which would cause conflicts in the TLB.

The main inefficiency that arises as a result of using these techniques is increased access

time, as it takes longer to traverse a multi-level page table or to search an inverted page

table for a particular translation. This can impact the overall performance of the system,

particularly in workloads that make heavy use of virtual memory.

PAGE 39

UNDERSTAND TIME-SPACE TRADE-OFFS

In computer science, the time-space trade-off refers to the idea that optimizing for one

resource (such as time or space) can often come at the expense of the other. In the context

of data structures and operating systems, this trade-off can manifest in a number of ways:

 Memory usage vs. access time: Choosing a data structure with a smaller memory

footprint (e.g. a hash table versus a balanced tree) may result in faster access times,

but it may also require more complex algorithms and additional CPU cycles to

perform lookups.

 Disk usage vs. access time: Storing data on a faster storage medium (e.g. an SSD

versus an HDD) may improve access times, but it may also come at the cost of

increased disk usage.

 Caching vs. coherence: Caching data in memory can improve access times, but it

also requires additional memory and can lead to cache coherence issues if the data

is updated in multiple locations.

In general, it is important to carefully consider the trade-offs between time and space when

designing data structures and algorithms, as they can have significant impacts on the

performance and efficiency of an operating system.

PAGE 40

HOW TO GO BEYOND PHYSICAL MEMORY

How can the OS make use of a larger, slower device to transparently provide the illusion of

a large virtual address space?

One way that an operating system can transparently provide the illusion of a large virtual

address space using a larger, slower device is by using virtual memory. Virtual memory is a

technique that allows a computer to transparently map memory addresses used by a

program onto physical addresses in the computer's memory.

When a program accesses a memory address, the CPU generates a memory access request

that includes the virtual address. The operating system's memory management unit (MMU)

translates the virtual address into a physical address, which is then used to access the actual

memory location.

To provide the illusion of a larger virtual address space, the operating system can use virtual

memory to map some of the program's memory addresses onto a larger, slower device such

as a hard disk. This allows the program to access more memory than is physically present

in the computer's RAM, at the cost of reduced access speed due to the slower access times

of the backing device.

The operating system can use various algorithms and techniques, such as paging and

swapping, to manage the virtual memory and determine which memory pages should be

resident in RAM and which should be stored on the slower backing device. This allows the

operating system to provide the illusion of a large virtual address space while still making

efficient use of the available physical memory.

PAGE 41

HOW TO DECIDE WHICH PAGE TO EVICT

How can the OS decide which page (or pages) to evict from memory? This decision is made

by the replacement policy of the system, which usually follows some general principles

(discussed below) but also includes certain tweaks to avoid corner-case behaviors.

The operating system's page replacement policy determines which pages in memory should

be evicted (i.e. removed from RAM and potentially stored on a slower backing device) when

new pages need to be brought into memory. This decision is an important factor in the

overall performance of the system, as it affects the number of page faults that occur and the

time required to service them.

There are several general principles that can be followed when designing a page

replacement policy:

 Least Recently Used (LRU): This policy evicts the page that has been accessed least

recently. The idea behind this policy is that pages that have not been accessed

recently are less likely to be accessed in the future, so they can be safely evicted.

 First In, First Out (FIFO): This policy evicts the page that has been in memory the

longest. This policy does not take into account the usage history of pages, but it is

simple to implement.

 Adaptive Replacement Cache (ARC): This policy dynamically adjusts the balance

between the number of recently used and long-unused pages in memory, trying to

strike a balance between the benefits of the LRU and FIFO policies.

In addition to these general principles, page replacement policies may also include certain

tweaks to avoid corner-case behaviors, such as thrashing (constant page faulting due to

insufficient memory) or aging (delaying the eviction of recently used pages).

Ultimately, the choice of page replacement policy will depend on the specific characteristics

of the workload and the requirements of the system. Some operating systems may provide

support for multiple page replacement policies, allowing the administrator to choose the

most appropriate one for a given workload.

PAGE 42

HOW TO IMPLEMENT AN LRU REPLACEMENT POLICY

Given that it will be expensive to implement perfect LRU, can we approximate it in some

way, and still obtain the desired behavior?

Least Recently Used (LRU) is a page replacement policy that evicts the page that has been

accessed least recently. While it is possible to implement perfect LRU by keeping a linked

list or queue of all the pages in memory and moving the page to the head of the list each

time it is accessed, this can be expensive in terms of both time and space.

There are several ways to approximate LRU in a more efficient manner:

 Use a counter: Each page in memory is associated with a counter that is incremented

each time the page is accessed. When a new page needs to be brought into memory,

the page with the lowest counter value is evicted. This approach can approximate

LRU, but it may suffer from counter overflow and may not accurately reflect the true

usage history of pages.

 Use a stack: Pages can be treated as a stack, with the most recently accessed page at

the top. When a new page needs to be brought into memory, the page at the bottom

of the stack is evicted. This approach can approximate LRU, but it may not

accurately reflect the true usage history of pages.

 Use a clock algorithm: A circular list of pages is maintained, with a "clock hand"

pointing to the current page. When a page is accessed, its reference bit is set to 1.

When a new page needs to be brought into memory, the clock hand is advanced

until it points to a page with a reference bit of 0, which is then evicted. This approach

can approximate LRU, but it may not accurately reflect the true usage history of

pages.

Ultimately, the choice of how to approximate LRU will depend on the specific requirements

and constraints of the system. No approximation will be perfectly accurate, but some may

be more effective at approximating LRU behavior than others.

PAGE 43

HOW TO BUILD A COMPLETE VM SYSTEM

What features are needed to realize a complete virtual memory system? How do they

improve performance, increase security, or otherwise improve the system?

A complete virtual memory system typically includes the following features:

Paging: Paging is a technique that allows the operating system to transparently divide the

virtual address space of a process into fixed-size blocks called pages. This allows the

operating system to bring pages into memory on demand and store them on a backing

device when they are not in use, improving the utilization of physical memory.

Swapping: Swapping is a technique that allows the operating system to move processes

between main memory and a backing store (such as a hard disk) in order to free up physical

memory for other processes. This allows the operating system to run more processes

concurrently, improving the overall performance of the system.

Memory protection: Virtual memory systems typically include memory protection features

that allow the operating system to set permissions on individual pages of memory,

preventing processes from accessing memory that they are not allowed to access. This helps

to increase security and prevent processes from interfering with each other.

Address translation: Virtual memory systems typically include hardware or software

support for address translation, which allows the operating system to transparently map

virtual addresses used by a process to physical addresses in the computer's memory. This

allows the operating system to provide the illusion of a larger virtual address space while

still making efficient use of the available physical memory.

Demand paging: Demand paging is a technique that allows the operating system to bring

pages into memory only when they are actually accessed by a process. This helps to reduce

the amount of physical memory that is used, as pages that are not being used can remain

on the backing store.

Page replacement: Virtual memory systems typically include a page replacement policy that

determines which pages should be evicted from memory when new pages need to be

brought in. This helps to improve the efficiency of the system by ensuring that the most

useful pages are kept in memory.

Overall, these features work together to improve the performance, security, and efficiency

of the system by allowing processes to use more memory than is physically present in the

computer, while still making efficient use of the available physical memory.

PAGE 44

WHY NULL POINTER ACCESSES CAUSE SEG FAULTS

A null pointer is a pointer that does not point to a valid memory location. Accessing a null

pointer can cause a segmentation fault (also known as a "segfault") because the CPU tries

to dereference the pointer and read or write data at the memory location it points to, but

the memory location is invalid.

Segmentation faults can occur in a number of ways, such as:

 Dereferencing a null pointer: This can occur if a program attempts to read or write

data through a null pointer, which does not point to a valid memory location.

 Dereferencing a pointer that has been freed: This can occur if a program attempts

to use a pointer to access memory that has already been deallocated by the program.

 Dereferencing a pointer that points to an invalid memory location: This can occur if

a program attempts to use a pointer that has been corrupted or that points to an

invalid memory location.

Segmentation faults are typically caused by programming errors, such as attempting to

access an uninitialized pointer or dereferencing a pointer that has been freed. In general, it

is important to ensure that pointers are properly initialized and managed in order to avoid

segfaults.

PAGE 45

HOW TO SUPPORT SYNCHRONIZATION

What support do we need from the hardware in order to build useful synchronization

primitives? What support do we need from the OS? How can we build these primitives

correctly and efficiently? How can programs use them to get the desired results?

In order to build useful synchronization primitives, we need support from both the

hardware and the operating system:

Hardware support: In order to build synchronization primitives, we need hardware support

for atomic operations such as test-and-set, compare-and-swap, and load-link/store-

conditional. These operations allow multiple threads or processes to synchronize their

access to shared data by ensuring that only one thread can update the data at a time.

Operating system support: The operating system can provide support for synchronization

primitives such as semaphores, mutexes, and spinlocks. These primitives can be

implemented using the atomic operations provided by the hardware, and they can be used

by programs to synchronize access to shared data.

To build synchronization primitives correctly and efficiently, it is important to carefully

consider the specific requirements of the system and the workload. Different

synchronization primitives may be more appropriate for different situations, and it is

important to choose the one that is most suitable for the needs of the program.

Programs can use synchronization primitives to ensure that shared data is accessed in a

controlled and predictable manner. For example, a program may use a mutex to ensure that

only one thread can access a shared data structure at a time, or it may use a semaphore to

limit the number of threads that can access the data concurrently. By using synchronization

primitives, programs can ensure that shared data is accessed in a consistent and thread-safe

manner, allowing them to run correctly and efficiently in a multi-threaded environment.

PAGE 46

HOW TO CREATE AND CONTROL THREADS

What interfaces should the OS present for thread creation and control? How should these

interfaces be designed to enable ease of use as well as utility?

The operating system should present interfaces for thread creation and control that are easy

to use and provide a sufficient level of control and flexibility for programs. Some

considerations for the design of these interfaces include:

 Thread creation: The operating system should provide an interface for creating new

threads, such as a function or system call that allows a program to specify the entry

point and arguments for the new thread.

 Thread control: The operating system should provide interfaces for controlling the

execution of threads, such as functions or system calls for starting, suspending, and

terminating threads.

 Thread synchronization: The operating system should provide interfaces for

synchronizing the execution of threads, such as functions or system calls for waiting

for a thread to complete, or for signaling a thread to wake up.

 Thread scheduling: The operating system should provide interfaces for controlling

the scheduling of threads, such as functions or system calls for setting the priority

of a thread or for specifying the CPU affinity of a thread.

In general, these interfaces should be designed to be easy to use, with a clear and consistent

naming and parameter convention, and with a reasonable level of flexibility and control.

They should also be well documented, with clear explanations of the behavior and

limitations of each function or system call. This will help to ensure that programs can make

effective use of the threading capabilities provided by the operating system.

PAGE 47

HOW TO AVOID SPINNING

How can we develop a lock that doesn’t needlessly waste time spinning on the CPU?

Spinning is a technique used by some types of locks, such as spinlocks, to busy-wait for a

lock to be released. While spinning can be an effective way to reduce the overhead of lock

acquisition in certain situations, it can also lead to wasted CPU time if the lock is held for a

long time or if the workload has a high level of contention.

There are several ways to avoid unnecessary spinning when developing a lock:

 Use a different type of lock: Instead of using a spinlock, consider using a lock type

that does not spin, such as a mutex or a semaphore. These lock types can block the

calling thread instead of busy-waiting, which can help to avoid wasting CPU time.

 Use a hybrid lock: A hybrid lock combines spinning with blocking to strike a balance

between the overhead of lock acquisition and the cost of context switches. The lock

will spin for a short time before blocking the calling thread, allowing it to make

progress if the lock is quickly released, but avoiding the waste of CPU time if the

lock is held for a long time.

 Use a backoff algorithm: A backoff algorithm can be used to progressively increase

the amount of time that a lock spins before blocking the calling thread. This can

help to reduce contention and improve the efficiency of the lock, but it may also

increase the overhead of lock acquisition.

Ultimately, the choice of how to avoid unnecessary spinning will depend on the specific

requirements and constraints of the system. It may be necessary to experiment with

different approaches and to carefully tune the lock's parameters based on the characteristics

of the workload.

PAGE 48

HOW TO ADD LOCKS TO DATA STRUCTURES

When given a particular data structure, how should we add locks to it, in order to make it

work correctly? Further, how do we add locks such that the data structure yields high

performance, enabling many threads to access the structure at once, i.e., concurrently?

To add locks to a data structure in order to make it work correctly and support concurrent

access by multiple threads, you should follow these steps:

Identify the critical sections of the data structure: These are the parts of the data structure

that must be protected by a lock in order to ensure the integrity and consistency of the data.

Examples of critical sections might include updating shared data, iterating over the data

structure, or modifying the structure of the data.

Choose an appropriate lock type: Select a lock type that is suitable for the characteristics of

the data structure and the workload. For example, a spinlock might be more appropriate for

a data structure with short critical sections and high contention, while a mutex or

semaphore might be more suitable for a data structure with longer critical sections and

lower contention.

Acquire and release the lock: Use the chosen lock type to protect the critical sections of the

data structure. Be sure to acquire the lock before entering the critical section and to release

the lock when you are finished.

Consider the granularity of the lock: The granularity of the lock refers to how much of the

data structure is protected by the lock. A fine-grained lock might protect only a small part

of the data structure, while a coarse-grained lock might protect a larger portion of the data

structure. Choosing an appropriate granularity can help to improve the performance of the

data structure by minimizing contention and overhead.

By following these steps, you can add locks to a data structure in a way that ensures correct

operation and enables high performance concurrent access.

PAGE 49

HOW TO WAIT FOR A CONDITION

In multi-threaded programs, it is often useful for a thread to wait for some condition to

become true before proceeding. The simple approach, of just spinning until the condition

becomes true, is grossly inefficient and wastes CPU cycles, and in some cases, can be

incorrect. Thus, how should a thread wait for a condition?

To wait for a condition in a multi-threaded program without spinning or wasting CPU cycles,

you can use a condition variable. A condition variable is a synchronization primitive that

allows a thread to block until a particular condition becomes true.

To wait for a condition using a condition variable, you should follow these steps:

 Choose a suitable lock: A condition variable must be used in conjunction with a lock,

in order to ensure that the condition being waited for is protected from concurrent

access. Choose a lock type that is suitable for the characteristics of the data structure

and the workload.

 Acquire the lock: Acquire the lock before accessing the shared data that the

condition variable is protecting.

 Check the condition: Check the condition that the thread is waiting for. If the

condition is already true, you can proceed without waiting.

 Wait on the condition variable: If the condition is not yet true, the thread can call

the wait() function on the condition variable, which will release the lock and block

the thread until the condition becomes true.

 Re-acquire the lock: When the condition variable is signaled, the thread will be

unblocked and will re-acquire the lock. The thread can then check the condition

again to see if it has become true.

By using a condition variable, a thread can wait for a condition without busy-waiting or

wasting CPU cycles, and can be woken up as soon as the condition becomes true. This can

help to improve the efficiency and scalability of the program.

PAGE 50

HOW TO USE SEMAPHORES

How can we use semaphores instead of locks and condition variables? What is the definition

of a semaphore? What is a binary semaphore? Is it straightforward to build a semaphore out

of locks and condition variables? To build locks and condition variables out of semaphores?

Semaphores are a type of synchronization primitive that can be used in place of locks and

condition variables to protect shared data and coordinate the execution of threads.

A semaphore is a value that is shared between threads, and which can be atomically

incremented or decremented. A semaphore can be used to implement mutual exclusion or

to coordinate the execution of threads by specifying a maximum value for the semaphore.

When the value of the semaphore is at or above the maximum value, threads that attempt

to decrement the semaphore will block until the value becomes lower than the maximum.

A binary semaphore is a special type of semaphore that has a maximum value of 1. It can be

used to implement mutual exclusion, as threads that attempt to decrement the semaphore

when its value is already 0 will block until the semaphore is released.

It is straightforward to build a lock or a condition variable out of a semaphore, as the

semaphore can be used to protect the shared data and to coordinate the execution of

threads. To build a lock using a semaphore, you can use the semaphore to implement

mutual exclusion by setting its maximum value to 1 and using it to block threads that

attempt to acquire the lock while it is held. To build a condition variable using a semaphore,

you can use the semaphore to block threads that are waiting for a condition to become true

and to unblock them when the condition becomes true.

Conversely, it is also possible to build a semaphore out of a lock and a condition variable.

To do this, you can use the lock to protect the semaphore value and the condition variable

to block and unblock threads that are waiting on the semaphore.

PAGE 51

HOW TO HANDLE COMMON CONCURRENCY BUGS

Concurrency bugs tend to come in a variety of common patterns. Knowing which ones to

look out for is the first step to writing more robust, correct concurrent code.

Here are some common patterns of concurrency bugs and strategies for handling them:

 Deadlock: Deadlock occurs when two or more threads are waiting for each other to

release a lock, resulting in a standstill. To avoid deadlock, you can follow a set of

rules known as the "Four Horsemen of the Apocalypse" (lock ordering, lock timeouts,

lock polling, and lock starvation avoidance).

 Livelock: Livelock occurs when two or more threads are constantly retrying an

operation because they are unable to make progress due to the actions of the other

threads. To avoid livelock, you can use a backoff algorithm to progressively increase

the delay between retries, or you can use a hybrid lock that combines spinning with

blocking to strike a balance between the overhead of lock acquisition and the cost

of context switches.

 Race condition: A race condition occurs when the outcome of a program depends

on the timing of events, such as the order in which threads acquire locks or access

shared data. To avoid race conditions, you can use locks or other synchronization

primitives to protect shared data and coordinate the execution of threads.

 Starvation: Starvation occurs when a thread is prevented from making progress due

to the actions of other threads. To avoid starvation, you can use a scheduling

algorithm that ensures that all threads are given a fair share of CPU time, or you can

use priority scheduling to give higher priority to threads that need to make progress.

By being aware of these common patterns of concurrency bugs and using the appropriate

strategies to prevent or mitigate them, you can write more robust and correct concurrent

code.

PAGE 52

HOW TO DEAL WITH DEADLOCK

How should we build systems to prevent, avoid, or at least detect and recover from

deadlock? Is this a real problem in systems today?

Deadlock is a situation that can occur in a multi-threaded system when two or more threads

are waiting for each other to release a lock, resulting in a standstill. Deadlock can be a real

problem in systems today, as it can lead to a complete cessation of progress and can be

difficult to detect and recover from.

To prevent, avoid, or at least detect and recover from deadlock, you can follow the "Four

Horsemen of the Apocalypse" strategy:

 Lock ordering: Establish an order in which locks must be acquired, and ensure that

all threads follow this order. This can help to prevent deadlock by ensuring that

there is no circular wait between threads.

 Lock timeouts: Set a timeout for acquiring locks, and have threads release the lock

and retry if the timeout is exceeded. This can help to avoid deadlock by allowing

threads to make progress if a lock is held for a long time.

 Lock polling: Periodically check the status of locks and release them if they are held

for a long time. This can help to avoid deadlock by allowing other threads to make

progress if a lock is held for an extended period.

 Lock starvation avoidance: Use a scheduling algorithm that ensures that all threads

are given a fair share of CPU time, or use priority scheduling to give higher priority

to threads that need to make progress. This can help to avoid deadlock by

preventing a thread from being starved of CPU time due to the actions of other

threads.

By following these strategies, you can build systems that are less prone to deadlock, or that

are able to detect and recover from deadlock when it occurs. It is important to carefully

consider the potential for deadlock in any multi-threaded system and to use appropriate

strategies to prevent or mitigate it.

PAGE 53

HOW TO BUILD CONCURRENT SERVERS WITHOUT

THREADS

How can we build a concurrent server without using threads, and thus retain control over

concurrency as well as avoid some of the problems that seem to plague multi-threaded

applications?

One way to build a concurrent server without using threads is to use an event-driven model,

where the server listens for incoming requests and processes them asynchronously as events.

This can be achieved using an event loop, which is a loop that waits for events to occur and

then dispatches them to the appropriate handlers.

Using an event-driven model has several benefits over using threads for concurrency:

 Control over concurrency: An event-driven model allows you to retain control over

the level of concurrency in your server, as you can choose how many events to

process at a time and how to schedule them. This can help to prevent overloading

the server and to ensure that it performs optimally.

 Simplicity: An event-driven model can be simpler to implement and debug than a

multi-threaded model, as it does not require the use of locks or other

synchronization primitives to protect shared data. This can make it easier to write

and maintain concurrent code.

 Scalability: An event-driven model can scale more effectively than a multi-threaded

model, as it can handle a large number of events with a smaller number of threads

or processes. This can help to reduce the overhead of context switches and to

improve the performance of the server.

By using an event-driven model, you can build a concurrent server without using threads,

and retain control over concurrency while avoiding some of the problems that can plague

multi-threaded applications.

PAGE 54

BLOCKING VS. NON-BLOCKING INTERFACES

Blocking interfaces are a type of interface that do all of their work before returning to the

caller. They are called "blocking" because they block the caller from making progress until

the work is completed. Blocking interfaces are often used for I/O operations, such as reading

from disk or network sockets, as these operations can take a long time to complete and may

require the caller to wait for the results.

On the other hand, non-blocking interfaces are a type of interface that begin some work

but return immediately, allowing the caller to continue making progress while the work is

being done in the background. Non-blocking interfaces are essential in event-based

programming, as a call that blocks will halt all progress in the event loop.

In general, non-blocking interfaces can be used in any style of programming, but they are

particularly useful in event-based programming, where they can help to ensure that the

program remains responsive and can continue to make progress even when long-running

operations are being performed.

PAGE 55

HOW TO INTEGRATE I/O INTO SYSTEMS

How should I/O be integrated into systems? What are the general mechanisms? How can

we make them efficient?

I/O can be integrated into systems using a variety of mechanisms, including:

 Polling: In polling, the system continuously checks the status of I/O devices to see

if they are ready to perform a read or write operation. Polling can be inefficient, as

it requires the system to constantly poll the devices, even when they are not ready.

 Interrupt-driven I/O: In interrupt-driven I/O, the system waits for an interrupt to

be generated by an I/O device when it is ready to perform a read or write operation.

Interrupt-driven I/O can be more efficient than polling, as it allows the system to

sleep until an interrupt is received, rather than constantly checking the status of the

devices.

 Direct memory access (DMA): In DMA, the system can transfer data directly

between an I/O device and memory, without involving the CPU. DMA can be very

efficient, as it allows the CPU to perform other tasks while the data transfer is taking

place.

 Asynchronous I/O: In asynchronous I/O, the system can initiate an I/O operation

and then continue executing other tasks while the operation is being performed in

the background. Asynchronous I/O can be efficient, as it allows the system to

overlap the execution of multiple tasks and to make progress even when I/O

operations are being performed.

To make I/O efficient, it is important to choose an appropriate mechanism that is suited to

the characteristics of the system and the workload. Factors to consider might include the

frequency and size of I/O operations, the number of I/O devices, and the resources available

on the system. By carefully considering these factors and choosing the right I/O mechanism,

you can improve the efficiency of your system and ensure that it performs optimally.

PAGE 56

HOW TO AVOID THE COSTS OF POLLING

How can the OS check device status without frequent polling, and thus lower the CPU

overhead required to manage the device?

There are several ways to avoid the costs of polling and lower the CPU overhead required

to manage a device:

Interrupt-driven I/O: In interrupt-driven I/O, the system waits for an interrupt to be

generated by the device when it is ready to perform a read or write operation. This allows

the system to sleep until an interrupt is received, rather than constantly checking the status

of the device.

Direct memory access (DMA): In DMA, the system can transfer data directly between the

device and memory, without involving the CPU. This allows the CPU to perform other tasks

while the data transfer is taking place, reducing the overhead of polling.

Asynchronous I/O: In asynchronous I/O, the system can initiate an I/O operation and then

continue executing other tasks while the operation is being performed in the background.

This allows the system to overlap the execution of multiple tasks and to make progress even

when I/O operations are being performed, reducing the need for polling.

By using interrupt-driven I/O, DMA, or asynchronous I/O, you can avoid the costs of

frequent polling and lower the CPU overhead required to manage a device. These

techniques can help to improve the efficiency of the system and ensure that it performs

optimally.

PAGE 57

HOW TO LOWER PIO OVERHEADS

With PIO, the CPU spends too much time moving data to and from devices by hand. How

can we offload this work and thus allow the CPU to be more effectively utilized?

There are several ways to lower the overhead of PIO (programmed I/O) and allow the CPU

to be more effectively utilized:

Direct memory access (DMA): In DMA, the system can transfer data directly between the

device and memory, without involving the CPU. This allows the CPU to perform other tasks

while the data transfer is taking place, reducing the overhead of PIO.

Bus mastering: In bus mastering, a device can take control of the system bus and perform

DMA transfers without involving the CPU. This can further reduce the overhead of PIO by

allowing the device to transfer data directly to and from memory.

Asynchronous I/O: In asynchronous I/O, the system can initiate an I/O operation and then

continue executing other tasks while the operation is being performed in the background.

This allows the system to overlap the execution of multiple tasks and to make progress even

when I/O operations are being performed, reducing the need for PIO.

By using DMA, bus mastering, or asynchronous I/O, you can offload the work of moving

data to and from devices and lower the overhead of PIO. These techniques can help to

improve the efficiency of the system and allow the CPU to be more effectively utilized.

PAGE 58

HOW TO BUILD A DEVICE-NEUTRAL OS

How can we keep most of the OS device-neutral, thus hiding the details of device

interactions from major OS subsystems?

To build a device-neutral OS, you can use the following techniques:

 Abstractions: By using abstractions, you can hide the details of device interactions

from major OS subsystems and present a consistent interface to the rest of the

system. For example, you can use an abstract block device interface to hide the

details of how data is stored and retrieved on different types of devices, such as hard

disks and flash drives.

 Device drivers: Device drivers provide a layer of separation between the OS and the

devices it interacts with. By using device drivers, you can keep most of the OS

device-neutral and allow it to interact with devices through a standardized interface.

 Virtualization: Virtualization allows you to create virtual devices that behave like

physical devices, but are actually implemented in software. By using virtualization,

you can build a device-neutral OS that can run on a variety of hardware platforms

without requiring specialized drivers for each type of device.

By using these techniques, you can keep most of the OS device-neutral and hide the details

of device interactions from major OS subsystems, allowing the system to be more flexible

and portable.

PAGE 59

HOW TO STORE AND ACCESS DATA ON DISK

How do modern hard-disk drives store data? What is the interface? How is the data actually

laid out and accessed? How does disk scheduling improve performance?

Modern hard-disk drives store data on spinning disks coated with a magnetic material. The

disks are divided into concentric tracks, and each track is divided into sectors. Each sector

can store a fixed amount of data, typically 512 bytes.

The interface between the hard-disk drive and the rest of the system is typically through a

SATA (Serial ATA) or SCSI (Small Computer System Interface) connection. The hard-disk

drive appears to the system as a linear array of blocks, each of which can be read or written

independently.

To access data on a hard-disk drive, the drive's head must be positioned over the correct

track and sector. This process is known as seek time, and it can take a significant amount

of time for the head to travel to the correct location. In addition, the disks must be spinning

at the correct speed for the head to read or write data, which is known as rotational latency.

To improve performance, modern hard-disk drives use a variety of techniques, including:

 Disk caching: Disk caching involves storing frequently accessed data in a fast

memory buffer, allowing the head to read or write data more quickly.

 Disk scheduling: Disk scheduling algorithms try to minimize the amount of time

the head spends seeking by reordering the requests for data in a way that reduces

seek time. Some common disk scheduling algorithms include First-Come First-

Served (FCFS), Shortest Seek Time First (SSTF), and SCAN.

 Disk striping: Disk striping involves dividing the data across multiple disks, allowing

the system to read or write data in parallel and improving performance.

By using these techniques, modern hard-disk drives can store and access data efficiently,

improving performance and enabling the system to make progress even when working with

large amounts of data.

PAGE 60

HOW TO ACCOUNT FOR DISK ROTATION COSTS

How can we implement an algorithm that more closely approximates SJF by taking both

seek and rotation into account?

One way to implement an algorithm that more closely approximates Shortest Job First (SJF)

by taking both seek and rotation into account is to use the Elevator Algorithm (also known

as the SCAN algorithm). The Elevator Algorithm works by starting at one end of the disk

and moving the head in one direction, servicing requests as it goes. When it reaches the end

of the disk, it reverses direction and repeats the process.

The Elevator Algorithm can more closely approximate SJF by taking both seek and rotation

into account because it minimizes the total seek time by servicing requests in the order that

they appear on the disk. This can help to reduce the time it takes for the head to travel to

the correct location and minimize rotational latency.

To implement the Elevator Algorithm, you can follow these steps:

 Initialize the head position and direction.

 Scan the requests in the current direction, servicing requests as they are

encountered.

 When the end of the disk is reached, reverse the direction and repeat the process.

By following these steps, you can implement an algorithm that more closely approximates

SJF by taking both seek and rotation into account and improving the performance of the

disk.

PAGE 61

HOW TO MAKE A LARGE, FAST, RELIABLE DISK

How can we make a large, fast, and reliable storage system? What are the key techniques?

What are trade-offs between different approaches?

There are several techniques that can be used to make a large, fast, and reliable storage

system:

 Redundancy: Redundancy involves storing multiple copies of data, allowing the

system to continue operating even if one of the copies becomes unavailable. This

can improve reliability, but it can also increase the cost and complexity of the system.

 Striping: Striping involves dividing the data across multiple disks, allowing the

system to read or write data in parallel and improving performance. Striping can

also improve reliability by allowing the system to continue operating even if one of

the disks fails.

 Mirroring: Mirroring involves storing multiple copies of data on separate disks,

allowing the system to continue operating even if one of the disks fails. Mirroring

can improve reliability, but it can also increase the cost and complexity of the system.

 RAID: RAID (Redundant Array of Independent Disks) is a technology that combines

multiple disks into a single logical unit and uses one of several different techniques,

such as striping, mirroring, or parity, to improve performance and reliability.

In general, the trade-offs between different approaches to making a large, fast, and reliable

storage system involve cost, complexity, and performance. By carefully considering these

trade-offs and choosing the right approach for your needs, you can build a storage system

that meets your requirements for size, speed, and reliability.

PAGE 62

HOW TO MANAGE A PERSISTENT DEVICE

How should the OS manage a persistent device? What are the APIs? What are the important

aspects of the implementation?

To manage a persistent device, the OS can provide a set of APIs (application programming

interfaces) that allow programs to read and write data to the device. These APIs can be

designed to abstract away the details of how the data is stored and retrieved, allowing

programs to interact with the device in a consistent and portable way.

Some important aspects of the implementation of these APIs might include:

 Atomicity: The APIs should provide guarantees about the atomicity of operations,

meaning that they either complete in their entirety or have no effect at all. This can

help to ensure the consistency and integrity of the data stored on the device.

 Buffering: The APIs should provide mechanisms for buffering data in memory to

improve performance. This can allow the system to batch multiple read or write

requests together and reduce the number of times the head needs to seek to

different locations on the disk.

 Error handling: The APIs should provide mechanisms for handling errors that may

occur when interacting with the device. This can include detecting and correcting

errors, retrying failed operations, or providing appropriate error codes to the caller.

By carefully designing and implementing these APIs, the OS can manage a persistent device

effectively, providing programs with a reliable and efficient way to store and retrieve data.

PAGE 63

HOW TO IMPLEMENT A SIMPLE FILE SYSTEM

How can we build a simple file system? What structures are needed on the disk? What do

they need to track? How are they accessed?

To implement a simple file system, you can use the following structures on the disk:

 Boot block: The boot block contains the code needed to boot the system and can be

located at a fixed location on the disk.

 Superblock: The superblock contains information about the file system, such as the

total number of blocks, the number of free blocks, and the location of other

important data structures.

 Inode table: The inode table contains a list of inodes, which are data structures that

describe the properties of a file, such as its size, permissions, and location on the

disk.

 Data blocks: Data blocks are the blocks where the actual contents of a file are stored.

To access these structures, you can use a combination of disk read and write operations to

read and write the data from and to the disk.

To track the necessary information, the file system needs to maintain several pieces of

information, including:

 The location of the boot block, superblock, and inode table on the disk.

 The number of blocks in the file system, the number of free blocks, and the location

of the data blocks.

 The inode table, which contains information about each file in the file system, such

as its size, permissions, and location on the disk.

 The data blocks, which contain the actual contents of the files in the file system.

To access these structures, you can use a combination of disk read and write operations to

read and write the data from and to the disk. The file system can use the information in the

superblock and inode table to locate the data blocks associated with a particular file and

read or write the contents of the file.

By implementing these structures and maintaining this information, you can build a simple

file system that allows programs to store and retrieve files on the disk.

PAGE 64

HOW TO REDUCE FILE SYSTEM I/O COSTS

Even the simplest of operations like opening, reading, or writing a file incurs a huge number

of I/O operations, scattered over the disk. What can a file system do to reduce the high costs

of doing so many I/Os?

There are several techniques that a file system can use to reduce the high costs of doing

many I/O operations:

 Caching: The file system can use a cache to store recently accessed data in memory,

allowing it to be accessed more quickly. This can reduce the number of I/O

operations required to access the data and improve performance.

 Buffering: The file system can use buffering to group together multiple read or write

requests and reduce the number of I/O operations required to access the data.

 Pre-fetching: The file system can use pre-fetching to anticipate the data that a

program is likely to need and pre-load it into the cache, reducing the number of I/O

operations required to access the data.

 Sparse files: The file system can use sparse files to store data more efficiently by only

allocating disk space for data that is actually written to the file. This can reduce the

number of I/O operations required to access the data and improve performance.

By using these techniques, a file system can significantly reduce the costs of I/O operations

and improve performance. It is important to carefully evaluate the trade-offs between the

benefits of these techniques and the additional complexity and overhead they may

introduce in order to choose the right approach for your needs.

PAGE 65

HOW TO ORGANIZE ON-DISK DATA TO IMPROVE

PERFORMANCE

How can we organize file system data structures so as to improve performance? What types

of allocation policies do we need on top of those data structures? How do we make the file

system “disk aware”?

There are several techniques that a file system can use to organize on-disk data structures

in order to improve performance:

 Contiguous allocation: Allocating data blocks for a file in a contiguous manner can

improve performance by reducing the number of disk seeks required to access the

file.

 Clustering: Allocating data blocks for a file in a way that maximizes the likelihood

that they will be near each other on the disk can also reduce the number of disk

seeks required to access the file.

 Disk awareness: The file system can use knowledge of the physical layout of the disk

to optimize its data placement and reduce the number of disk seeks required to

access data.

In addition to these techniques, the file system can use various allocation policies to manage

the allocation of data blocks to files. These policies can include:

 First fit: The file system can allocate the first available data blocks that are large

enough to store the file.

 Best fit: The file system can allocate the data blocks that are the best fit for the size

of the file, in order to minimize external fragmentation.

 Worst fit: The file system can allocate the data blocks that are the worst fit for the

size of the file, in order to maximize external fragmentation and potentially improve

performance.

By carefully organizing on-disk data structures and using appropriate allocation policies, a

file system can improve its performance and reduce the number of disk seeks required to

access data.

PAGE 66

HOW TO UPDATE THE DISK DESPITE CRASHES

The system may crash or lose power between any two writes, and thus the on-disk state may

only partially get updated. After the crash, the system boots and wishes to mount the file

system again (in order to access files and such). Given that crashes can occur at arbitrary

points in time, how do we ensure the file system keeps the on-disk image in a reasonable

state?

To ensure that the file system keeps the on-disk image in a reasonable state despite crashes,

it can use the following techniques:

 Journaling: The file system can use a journal to record all updates to the file system

in a structured manner before they are applied to the on-disk image. In the event of

a crash, the journal can be used to recover the file system by replaying the updates

that were not fully applied to the on-disk image.

 Shadowing: The file system can use shadowing to create a copy of the on-disk image

in a separate location, and update the copy instead of the original. This allows the

file system to switch between the original and updated images in a controlled

manner, and avoid corrupting the on-disk image in the event of a crash.

 Checkpointing: The file system can use checkpointing to periodically create a

snapshot of the file system and store it on the disk. In the event of a crash, the file

system can use the most recent checkpoint to recover the file system.

By using these techniques, a file system can ensure that the on-disk image remains in a

reasonable state despite crashes and power failures, and can recover the file system quickly

after a crash.

PAGE 67

HOW TO MAKE ALL WRITES SEQUENTIAL WRITES?

How can a file system transform all writes into sequential writes? For reads, this task is

impossible, as the desired block to be read may be anywhere on disk. For writes, however,

the file system always has a choice, and it is exactly this choice we hope to exploit.

A file system can transform all writes into sequential writes by using a technique called

write-back caching. In write-back caching, the file system stores newly written data in a

cache in memory, rather than writing it directly to the disk. The file system can then group

together multiple writes and write them to the disk in a single sequential write operation,

rather than writing them individually as random writes.

This technique has the benefit of reducing the number of disk writes required, which can

improve performance and extend the life of the disk. However, it also introduces the risk of

data loss in the event of a crash or power failure, as the data in the cache may not have been

written to the disk yet. To mitigate this risk, the file system can use a technique called

journaling to record the updates to the cache in a structured manner before they are applied

to the on-disk image, and use the journal to recover the cache in the event of a crash.

By using write-back caching and journaling, a file system can transform all writes into

sequential writes, which can improve performance and extend the life of the disk. However,

it is important to carefully consider the trade-offs and risks associated with these techniques

in order to choose the right approach for your needs.

PAGE 68

HOW TO BUILD A FLASH-BASED SSD

How can we build a flash-based SSD? How can we handle the expensive nature of erasing?

How can we build a device that lasts a long time, given that repeated overwrite will wear

the device out? Will the march of progress in technology ever cease? Or cease to amaze?

To build a flash-based SSD, the following steps can be taken:

 Choose a flash memory technology: There are several types of flash memory

technologies available, including NAND and NOR flash. The choice of technology

will depend on the performance and cost requirements of the SSD.

 Implement wear leveling: Flash memory has a limited number of write cycles, and

will wear out over time if the same cells are repeatedly written to. To extend the life

of the SSD, a wear leveling algorithm can be implemented to evenly distribute write

operations across all cells in the flash memory.

 Implement error correction: Flash memory is prone to bit errors due to noise and

other factors. To ensure data integrity, an error correction algorithm can be

implemented to detect and correct errors in the data stored on the SSD.

 Implement garbage collection: When a block of cells in the flash memory is no

longer needed, it must be erased before new data can be written to it. However,

erasing a block of cells is a time-consuming operation, and can impact performance.

To mitigate this impact, a garbage collection algorithm can be implemented to

efficiently reclaim blocks of cells that are no longer in use, and prepare them for

reuse.

By following these steps, a flash-based SSD can be built that is able to handle the expensive

nature of erasing, and has a long lifespan even with repeated overwrite. The progress of

technology in the field of storage will likely continue to amaze, with new technologies and

approaches being developed to meet the ever-increasing demand for fast and reliable

storage.

PAGE 69

HOW TO ENSURE DATA INTEGRITY

How should systems ensure that the data written to storage is protected? What techniques

are required? How can such techniques be made efficient, with both low space and time

overheads?

There are several techniques that systems can use to ensure that the data written to storage

is protected and maintains its integrity:

 Checksums: A checksum is a value that is calculated based on the data being written

to storage. The checksum is then stored with the data, and can be used to verify the

integrity of the data when it is read back from storage. If the calculated checksum

does not match the stored checksum, the data may have been corrupted.

 Error correction codes: Error correction codes (ECCs) are algorithms that can detect

and correct errors in data. ECCs can be used to protect data as it is being written to

storage, and can also be used to detect errors when the data is read back from

storage.

 Redundancy: Redundancy techniques such as RAID (redundant array of

independent disks) can be used to protect data by storing multiple copies of the data

on different disks or devices. If one of the copies becomes corrupted, the other

copies can be used to recover the data.

 Encryption: Encrypting data before writing it to storage can protect it from

unauthorized access or tampering. Encrypted data can only be read by someone

with the proper decryption key.

By using these techniques, systems can ensure the integrity of the data being written to

storage, with low space and time overheads. It is important to carefully consider the trade-

offs and risks associated with different techniques in order to choose the right approach for

your needs.

PAGE 70

HOW TO HANDLE LATENT SECTOR ERRORS

How should a storage system handle latent sector errors? How much extra machinery is

needed to handle this form of partial failure?

A latent sector error is a type of error that occurs when data cannot be read or written to a

particular sector on a storage device. Latent sector errors can be caused by a variety of

factors, including physical damage to the storage device, firmware defects, or

environmental conditions.

To handle latent sector errors, a storage system can use the following techniques:

 Remapping: When a latent sector error is detected, the storage system can remap

the affected sector to a spare sector on the device, and use the spare sector to store

the data instead. This allows the storage system to continue operating normally,

while hiding the latent sector error from the rest of the system.

 Error correction: The storage system can use error correction codes (ECCs) or other

error correction techniques to detect and correct errors in data being read from or

written to the storage device. This can help to mitigate the impact of latent sector

errors on the system.

 Monitoring: The storage system can monitor the storage device for latent sector

errors and other failures, and alert the user or administrator if any issues are

detected. This allows the system to proactively address problems before they cause

significant disruptions.

To implement these techniques, a storage system will need to add extra machinery such as

error detection and correction algorithms, spare sectors, and monitoring systems. However,

the exact amount of extra machinery required will depend on the specific needs and

requirements of the system.

PAGE 71

HOW TO PRESERVE DATA INTEGRITY DESPITE CORRUPTION

Given the silent nature of such failures, what can a storage system do to detect when

corruption arises? What techniques are needed? How can one implement them efficiently?

There are several techniques that a storage system can use to detect and mitigate corruption

of data stored on a storage device:

 Checksums: A checksum is a value calculated based on the data being stored. The

checksum is stored with the data, and can be used to verify the integrity of the data

when it is read back from the storage device. If the calculated checksum does not

match the stored checksum, the data may have been corrupted.

 Error correction codes: Error correction codes (ECCs) are algorithms that can detect

and correct errors in data. ECCs can be used to protect data as it is being written to

storage, and can also be used to detect errors when the data is read back from

storage.

 Redundancy: Redundancy techniques such as RAID (redundant array of

independent disks) can be used to protect data by storing multiple copies of the data

on different disks or devices. If one of the copies becomes corrupted, the other

copies can be used to recover the data.

 Monitoring: The storage system can monitor the storage device for corruption and

other failures, and alert the user or administrator if any issues are detected. This

allows the system to proactively address problems before they cause significant

disruptions.

To implement these techniques efficiently, the storage system should carefully consider the

trade-offs and risks associated with different approaches, and choose the techniques that

are most appropriate for its needs.

PAGE 72

HOW TO HANDLE MISDIRECTED WRITES

How should a storage system or disk controller detect misdirected writes? What additional

features are required from the checksum?

A misdirected write is a type of error that occurs when data is written to the wrong location

on a storage device. Misdirected writes can be caused by a variety of factors, including

hardware or software defects, environmental conditions, or operator error.

To detect misdirected writes, a storage system or disk controller can use the following

techniques:

 Address verification: The storage system or disk controller can verify the address of

the data being written, and compare it to the expected address. If the address does

not match the expected address, the write may be misdirected.

 Checksums: A checksum is a value calculated based on the data being written to

storage. The checksum can be used to verify the integrity of the data, and can also

be used to detect misdirected writes. For example, if the calculated checksum does

not match the stored checksum for the expected address, it may indicate that the

data has been written to the wrong location.

 Error correction codes: Error correction codes (ECCs) are algorithms that can detect

and correct errors in data. ECCs can be used to protect data as it is being written to

storage, and can also be used to detect misdirected writes by comparing the

expected and actual ECC values for the data.

To effectively detect misdirected writes, the checksum or ECC used by the storage system

or disk controller should be able to detect errors that are specific to misdirected writes, such

as errors in the address of the data being written. The checksum or ECC should also be able

to detect other types of errors that may occur during data transfer, such as transmission

errors or corruption of the data itself.

PAGE 73

HOW TO HANDLE LOST WRITES

How should a storage system or disk controller detect lost writes? What additional features

are required from the checksum?

A lost write is a type of error that occurs when data that has been written to a storage device

is not properly persisted, and is lost when the device is powered off or reset. Lost writes can

be caused by a variety of factors, including hardware or software defects, environmental

conditions, or operator error.

To detect lost writes, a storage system or disk controller can use the following techniques:

 Write verification: The storage system or disk controller can verify that the data

being written to storage has been properly persisted by reading it back from the

storage device and comparing it to the original data. If the data read back from the

storage device does not match the original data, it may indicate that the write was

lost.

 Checksums: A checksum is a value calculated based on the data being written to

storage. The checksum can be used to verify the integrity of the data, and can also

be used to detect lost writes. For example, if the calculated checksum does not

match the stored checksum for the data, it may indicate that the data has been lost.

 Error correction codes: Error correction codes (ECCs) are algorithms that can detect

and correct errors in data. ECCs can be used to protect data as it is being written to

storage, and can also be used to detect lost writes by comparing the expected and

actual ECC values for the data.

To effectively detect lost writes, the checksum or ECC used by the storage system or disk

controller should be able to detect errors that are specific to lost writes, such as data that

has been partially written to storage but not properly persisted. The checksum or ECC

should also be able to detect other types of errors that may occur during data transfer, such

as transmission errors or corruption of the data itself.

PAGE 74

HOW TO BUILD SYSTEMS THAT WORK WHEN

COMPONENTS FAIL

How can we build a working system out of parts that don’t work correctly all the time? The

basic question should remind you of some of the topics we discussed in RAID storage arrays;

however, the problems here tend to be more complex, as are the solutions.

There are several ways to build systems that can continue to function even when some of

their components fail:

 Redundancy: By adding redundant components to the system, it is possible to

continue to function even if one or more components fail. For example, a RAID

storage array uses redundant disks to provide data protection in case of disk failure.

 Fault tolerance: Fault-tolerant systems are designed to automatically detect and

recover from component failures. This can be achieved through techniques such as

error detection and correction, failover mechanisms, and self-healing algorithms.

 Isolation: By isolating different components of the system from each other, it is

possible to prevent the failure of one component from affecting the rest of the

system. This can be achieved through the use of virtualization or containerization

technologies.

 Monitoring and maintenance: Regular monitoring and maintenance of the system

can help to identify and fix problems before they cause failures. This can include

tasks such as testing, debugging, and updating components.

By implementing these techniques, it is possible to build systems that can continue to

function even when some of their components fail.

PAGE 75

HOW TO BUILD A DISTRIBUTED FILE SYSTEM

How do you build a distributed file system? What are the key aspects to think about? What

is easy to get wrong? What can we learn from existing systems?

A distributed file system is a type of file system that allows users to access and store files on

multiple computers in a network, as if they were all stored on a single machine. Building a

distributed file system involves addressing several key challenges:

 Data consistency: Ensuring that all copies of the same file are kept in sync across the

network, even when multiple users are accessing and modifying the file

simultaneously.

 File access performance: Optimizing the performance of file access and updates,

especially when the file is stored on a remote machine.

 File availability: Ensuring that files are always available, even when some of the

computers in the network are offline or experiencing failures.

 Data security: Protecting the data stored in the file system from unauthorized access

or tampering.

To address these challenges, a distributed file system typically consists of several key

components:

 A distributed storage layer: This component is responsible for storing and

replicating the data across the network.

 A distributed file system layer: This component is responsible for managing file

access, updates, and metadata, and for providing a consistent view of the file system

to users.

 A client library: This component is used by client applications to access and modify

files stored in the distributed file system.

To ensure the reliability and performance of the distributed file system, it is important to

carefully design and implement these components, and to test and debug the system

thoroughly. It is also important to consider the trade-offs between different design choices,

such as the level of data consistency and the performance of file access and updates. By

learning from existing distributed file systems, it is possible to build a distributed file system

that meets the needs of the intended users.

PAGE 76

HOW TO DEFINE A STATELESS FILE PROTOCOL

How can we define the network protocol to enable stateless operation? how do we define

the protocol to both be stateless and support the POSIX file system API?

To define a stateless file protocol, it is necessary to design the protocol such that all

necessary information is included in each request and response, and no additional context

or state needs to be maintained by the server or client between requests. This can be

achieved in several ways:

Include all necessary information in each request: The client should include all necessary

information in each request, such as the desired file or directory, the desired operation (e.g.

read, write, delete), and any necessary parameters (e.g. offset, length).

Use a simple request-response model: The protocol should use a simple request-response

model, where each request is independently processed by the server and a response is

returned. This allows the server to process each request in isolation, without needing to

maintain any state between requests.

Use unique identifiers: To enable stateless operation, it is often necessary to use unique

identifiers for each file or directory. These identifiers can be included in each request,

allowing the server to locate the desired file or directory without needing to maintain any

additional context or state.

Use explicit error codes: To allow the client to handle errors in a stateless manner, the

protocol should use explicit error codes in responses to indicate the cause of any errors.

By following these principles, it is possible to define a stateless file protocol that supports

the POSIX file system API. It is important to carefully design the protocol and consider the

trade-offs between simplicity, efficiency, and functionality.

PAGE 77

HOW TO DESIGN A SCALABLE FILE PROTOCOL

How should one redesign the protocol to minimize the number of server interactions, i.e.,

how could they reduce the number of TestAuth messages? Further, how could they design

the protocol to make these server interactions efficient? By attacking both of these issues, a

new protocol would result in a much more scalable version AFS.

To design a scalable file protocol, it is necessary to minimize the number of server

interactions and make these interactions as efficient as possible. This can be achieved in

several ways:

 Batch multiple requests into a single interaction: By batching multiple requests into

a single interaction, it is possible to reduce the number of server interactions and

improve efficiency. For example, the client could send multiple read or write

requests in a single interaction, or the client could send multiple metadata queries

in a single interaction.

 Use caching: By implementing a cache on the client side, it is possible to reduce the

number of server interactions and improve efficiency. The client can cache data and

metadata locally, and use this cache to fulfill requests without needing to

communicate with the server.

 Use asynchronous communication: By using asynchronous communication, it is

possible to reduce the number of server interactions and improve efficiency. For

example, the client could send a request to the server and continue processing other

tasks while waiting for the response.

 Use compression: By using compression techniques, it is possible to reduce the size

of requests and responses and improve efficiency. This can be especially effective for

large data transfers or metadata queries.

By following these principles, it is possible to design a scalable file protocol that minimizes

the number of server interactions and makes these interactions as efficient as possible. It is

important to carefully design the protocol and consider the trade-offs between scalability,

efficiency, and functionality.

PAGE 78

HOW TO SECURE OS RESOURCES

In the face of multiple possibly concurrent and interacting processes running on the same

machine, how can we ensure that the resources each process is permitted to access are

exactly those it should access, in exactly the ways we desire? What primitives are needed

from the OS? What mechanisms should be provided by the hardware? How can we use

them to solve the problems of security? To secure OS resources, the operating system needs

to provide the following primitives:

 Memory protection: Memory protection primitives, such as segmentation or paging,

are needed to prevent processes from accessing memory that is not assigned to them.

 Access control lists: Access control list primitives are needed to specify the

permissions that are granted to each process for each resource.

 Security policies: The operating system needs to provide primitives for defining and

enforcing security policies that specify the rules for resource access.

 Cryptographic methods: Cryptographic primitives, such as digital signature and

encryption algorithms, are needed to secure data and ensure that only authorized

processes can access it.

In addition to these OS primitives, certain hardware mechanisms can also be used to secure

resources:

 Memory protection hardware: Hardware support for memory protection, such as

the MMU (Memory Management Unit), can be used to enforce the memory

protection primitives implemented by the operating system.

 Access control hardware: Hardware support for access control, such as the MAC

(Mandatory Access Control) unit, can be used to enforce the access control policies

implemented by the operating system.

 Cryptographic hardware: Hardware support for cryptographic operations, such as

hardware accelerators for encryption and digital signature algorithms, can be used

to improve the performance and security of cryptographic methods used to secure

resources.

By using these OS primitives and hardware mechanisms together, it is possible to effectively

secure OS resources and protect against unauthorized access.

PAGE 79

HOW TO SECURELY IDENTIFY PROCESSES

For systems that support processes belonging to multiple principals, how can we be sure

that each process has the correct identity attached? As new processes are created, how can

we be sure the new process has the correct identity? How can we be sure that malicious

entities cannot improperly change the identity of a process?

To securely identify processes, the operating system can use the following methods:

 Access control lists: By using access control lists (ACLs), the operating system can

specify the permissions that are granted to each process based on its identity. This

allows the system to ensure that each process has the correct identity attached to it

and can only access resources that it is authorized to access.

 Digital signatures: Digital signatures can be used to authenticate the identity of a

process. When a process is created, the operating system can sign the process with

a private key, and verify the signature using the corresponding public key. This

ensures that the process has not been tampered with and has the correct identity

attached to it.

 Cryptographic methods: Cryptographic methods, such as encryption and hashing,

can be used to securely store and transmit the identity of a process. For example,

the operating system can encrypt the identity of a process using a secret key, and

decrypt it using the same key when it is needed. This ensures that the identity of the

process cannot be tampered with or forged by malicious entities.

 Hardware support: Some hardware platforms provide support for secure

identification of processes, such as Trusted Platform Modules (TPMs). These

hardware components can store and verify the identity of a process using

cryptographic methods, providing an additional layer of security.

By using these methods, the operating system can securely identify processes and ensure

that only authorized processes can access resources on the system.

PAGE 80

HOW TO DETERMINE IF AN ACCESS REQUEST SHOULD BE

GRANTED?

How can the operating system decide if a particular request made by a particular process

belonging to a particular user at some given moment should or should not be granted?

What information will be used to make this decision? How can we set this information to

encode the security policies we want to enforce for our system?

To determine if an access request should be granted, the operating system can use the

following information:

 Identity of the process: The identity of the process, such as the user or group that

the process belongs to, is used to determine if the process is authorized to access

the requested resource.

 Permissions of the process: The permissions that are granted to the process, such as

read, write, or execute, are used to determine if the process is authorized to perform

the requested action on the resource.

 Type of resource: The type of resource being accessed, such as a file or network

socket, can influence the decision to grant or deny access.

 Access control lists: Access control lists (ACLs) can be used to specify the

permissions that are granted to each process based on its identity and the type of

resource being accessed.

 Security policies: The security policies of the system, such as the confidentiality,

integrity, and availability requirements, are used to determine if the request should

be granted.

By considering these factors, the operating system can make a decision to grant or deny

access to a resource based on the security policies of the system and the permissions of the

requesting process.

PAGE 81

HOW TO PROTECT INFORMATION OUTSIDE THE OS’S

DOMAIN

How can we use cryptography to ensure that, even if others gain access to critical data

outside the control of the operating system, they will be unable to either use or alter it?

What cryptographic technologies are available to assist in this problem? How do we

properly use those technologies? What are the limitations on what we can do with them?

Cryptography is the practice of using mathematical algorithms to encode and decode

information. It can be used to protect information outside the control of the operating

system by encoding the information in such a way that it can only be accessed or altered by

someone with the proper decryption key. Some common cryptographic technologies

include symmetric key algorithms, which use the same key for both encryption and

decryption, and asymmetric key algorithms, which use a pair of keys, a public key and a

private key, for encryption and decryption. To use these technologies effectively, it is

important to choose the appropriate algorithm for the task at hand and to properly manage

and protect the keys. There are also limitations to what can be achieved with cryptography,

such as the possibility of attacks on the algorithms themselves or the risk of losing access

to the decryption keys.

PAGE 82

HOW TO PROTECT DISTRIBUTED SYSTEM OPERATIONS

How can we secure a system spanning more than one machine? What tools are available to

help us protect such systems? How do we use them properly? What are the areas in using

the tools that require us to be careful and thoughtful?

To protect distributed system operations, some common techniques include:

 Encrypting communication channels: Using encryption to secure the

communication channels between different machines in the distributed system can

prevent unauthorized parties from intercepting and reading sensitive data.

 Using secure authentication and authorization methods: Implementing strong

authentication and authorization methods, such as using secure passwords or

implementing two-factor authentication, can prevent unauthorized access to the

system.

 Implementing access control measures: Using access control measures, such as role-

based access control or discretionary access control, can ensure that only authorized

users have access to certain resources in the system.

 Using secure coding practices: Ensuring that the code used in the distributed system

is written securely, using techniques such as input validation and sanitization, can

prevent vulnerabilities that could be exploited by attackers.

 Regularly updating and patching the system: Regularly updating and patching the

system can help fix any vulnerabilities or security issues that may have been

discovered.

It is important to carefully consider the security needs of the distributed system and

implement appropriate measures to protect against threats. It is also important to regularly

review and test the security measures in place to ensure that they are effective.

PAGE 83

END

