

ADVANCED TESTING AND
CONTINUOUS INTEGRATION

OBJECT ORIENTED PROGRAMMING I

Sercan Külcü | Object Oriented Programming I | 10.01.2023

PAGE 1

Contents

Introduction ..2

Unit Testing .. 3

Integration Testing ... 5

Continuous Integration ..7

Conclusion ... 8

PAGE 2

Introduction

As software projects grow in complexity, the need for comprehensive

testing becomes increasingly important. Testing helps to ensure that

code is functioning as expected and can help catch potential bugs before

they become larger issues. Continuous integration (CI) is a development

practice that helps ensure code quality by automating the building,

testing, and deployment processes. In this chapter, we'll cover testing

and CI best practices and tools in the context of advanced Java

programming.

PAGE 3

Unit Testing

Unit testing is a testing technique that focuses on testing individual

units of code, such as methods or functions, in isolation from the rest of

the application. Unit tests are automated tests that developers write to

ensure that code behaves as expected.

JUnit is a popular Java testing framework used for unit testing. It

provides a set of annotations and asserts that simplify writing and

running tests.

Here is an example of a simple JUnit test:

import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class MyMathTest {

 @Test

 public void testAddition() {

 MyMath math = new MyMath();

 assertEquals(4, math.add(2, 2));

 }

}

PAGE 4

In this example, we are testing the add method of the MyMath class. We

create an instance of MyMath, call the add method with arguments 2

and 2, and assert that the result is 4.

PAGE 5

Integration Testing

Integration testing is a testing technique that focuses on testing how

different parts of the system work together. Integration tests typically

involve multiple components, such as databases, web services, or

external APIs.

In Java, integration testing is often done using a testing framework like

TestNG or JUnit. The main difference between integration testing and

unit testing is that integration testing typically requires more setup and

teardown code.

Here is an example of an integration test using TestNG:

import org.testng.annotations.Test;

public class MyServiceTest {

 @Test

 public void testServiceIntegration() {

 MyService service = new MyService();

 service.initialize();

 String result =

service.callExternalApi("https://api.example.com/data");

 service.shutdown();

PAGE 6

 // Assert that the result is what we expect

 assert(result.contains("expected data"));

 }

}

In this example, we are testing the MyService class, which calls an

external API. We initialize the service, make a call to the API, and then

shut down the service. Finally, we assert that the result contains the

expected data.

PAGE 7

Continuous Integration

Continuous integration is a practice of automatically building, testing,

and deploying code changes. By automating these processes, developers

can catch issues early and ensure that the codebase is always in a

working state.

There are many CI tools available, including Jenkins, Travis CI, and

CircleCI. These tools can be used to automate the build process, run

tests, and deploy changes to a staging or production environment.

To use a CI tool, developers typically set up a pipeline that defines the

stages of the process. The pipeline can include steps such as compiling

code, running unit tests, running integration tests, and deploying

changes to a server.

PAGE 8

Conclusion

Testing and continuous integration are essential practices for ensuring

code quality and catching bugs early in the development process. By

writing comprehensive tests and automating the build process,

developers can ensure that code changes are always of high quality and

are ready for deployment.

