

TIPS AND TRICKS FOR
DEBUGGING AND

TROUBLESHOOTING

OBJECT ORIENTED PROGRAMMING I

Sercan Külcü | Object Oriented Programming I | 10.01.2023

PAGE 1

Contents

Introduction ..2

Logging .. 3

Debugging Tools .. 4

Best Practices .. 5

Conclusion ... 6

PAGE 2

Introduction

Debugging is an important skill for any software developer, and Java

developers are no exception. Even with the best planning and design,

bugs can still find their way into our code. In this chapter, we will

explore debugging techniques and best practices for troubleshooting

Java code.

PAGE 3

Logging

Logging is the process of collecting and storing information about a

program's execution. Logging is a useful technique for debugging

because it allows developers to review what the program was doing

leading up to a crash or bug. Java has a built-in logging API,

java.util.logging, that allows developers to log information at different

levels of severity, from fine-grained debug information to severe error

messages.

PAGE 4

Debugging Tools

Java provides several debugging tools that can be used to help

troubleshoot issues in our code. The most commonly used tool is the

Java Debugger (jdb), which is a command-line tool that allows

developers to interactively debug their code. Jdb provides several

commands, including the ability to set breakpoints, inspect variables,

and step through code line by line.

Another useful debugging tool is the Eclipse Integrated Development

Environment (IDE). Eclipse provides a graphical user interface for

debugging, allowing developers to set breakpoints and inspect variables

using a point-and-click interface.

PAGE 5

Best Practices

Effective debugging requires more than just knowledge of debugging

tools and techniques. It also requires a structured approach to

troubleshooting issues in our code. Here are some best practices to

follow when debugging Java code:

Reproduce the problem: Before you start debugging, try to reproduce

the problem. Reproducing the problem will help you identify the cause

of the issue and confirm that any fixes you make have resolved the issue.

Isolate the issue: Once you've reproduced the problem, try to isolate the

issue by narrowing down the area of code where the problem is

occurring. This can be done by setting breakpoints or adding logging

statements to the code.

Use the right debugging tool: Choose the right debugging tool for the

job. Command-line tools like jdb are useful for simple debugging tasks,

but an IDE like Eclipse is more powerful and provides a more user-

friendly interface for debugging.

Analyze the data: When troubleshooting an issue, analyze the data

involved in the issue. This includes the input data, output data, and any

intermediate data structures used by the code. Understanding the data

involved in an issue can help identify the cause of the issue.

Test your fixes: Once you've identified the issue and made changes to

your code, test your fixes to confirm that the issue has been resolved.

PAGE 6

Conclusion

Debugging and troubleshooting are important skills for Java developers.

By using the right tools and following best practices, developers can

quickly identify and resolve issues in their code. Effective debugging

requires a structured approach, including reproducing the problem,

isolating the issue, analyzing the data, and testing the fixes. With these

skills and techniques, Java developers can quickly identify and fix issues

in their code, leading to more stable and reliable software.

