

WORKING WITH DATABASES
AND JDBC

OBJECT ORIENTED PROGRAMMING I

Sercan Külcü | Object Oriented Programming I | 10.01.2023

PAGE 1

Contents

Introduction ..2

Relational Databases .. 3

The JDBC API ... 4

Working with JDBC .. 5

Best Practices for Working with Databases and JDBC 6

Conclusion ..7

PAGE 2

Introduction

Java provides robust support for working with relational databases using

the Java Database Connectivity (JDBC) API. In this chapter, we will

explore the key concepts and techniques for working with databases in

Java.

PAGE 3

Relational Databases

Relational databases are used to store structured data in a tabular

format, with columns representing different data attributes and rows

representing individual records. Common examples of relational

databases include MySQL, PostgreSQL, and Oracle Database.

To interact with a relational database from Java, you need to establish a

connection to the database and then execute SQL statements to retrieve,

update, or delete data. The JDBC API provides a standard way to interact

with relational databases using Java code.

PAGE 4

The JDBC API

The JDBC API provides a set of classes and interfaces for working with

databases in Java. The core JDBC classes include the following:

DriverManager: A class for managing a list of database drivers.

Connection: A class representing a connection to a database.

Statement: A class representing a SQL statement to be executed on a

database.

ResultSet: A class representing a set of results returned from a database

query.

JDBC also includes a range of higher-level APIs and frameworks for

working with databases, such as the Java Persistence API (JPA) and the

Spring Framework.

PAGE 5

Working with JDBC

Working with JDBC typically involves the following steps:

Load the JDBC driver: The first step is to load the JDBC driver for your

database using the Class.forName() method.

Establish a connection: Use the DriverManager.getConnection()

method to establish a connection to the database.

Create a statement: Use the Connection.createStatement() method to

create a Statement object, which can be used to execute SQL statements

on the database.

Execute SQL statements: Use the Statement.executeXXX() methods

to execute SQL statements on the database, such as SELECT, INSERT,

UPDATE, and DELETE statements.

Process results: Use the ResultSet object to retrieve the results of a

SELECT statement, and process the results using the

ResultSet.getXXX() methods.

PAGE 6

Best Practices for Working with Databases and JDBC

When working with databases and JDBC in Java, it's important to follow

best practices to ensure that your code is efficient, secure, and reliable.

Here are some best practices for working with databases and JDBC:

Use connection pooling to reduce the overhead of establishing and

tearing down database connections.

Use prepared statements to reduce the risk of SQL injection attacks.

Use transactions to ensure the atomicity, consistency, isolation, and

durability (ACID) of database operations.

Monitor and tune the performance of your database queries, using tools

such as query profiling and explain plans.

PAGE 7

Conclusion

The JDBC API provides a powerful and flexible way to work with

relational databases in Java. By following best practices and using the

JDBC API judiciously, you can build reliable, secure, and efficient

database-driven applications in Java.

