

WORKING WITH
ANNOTATIONS AND THE

REFLECTION API

OBJECT ORIENTED PROGRAMMING I

Sercan Külcü | Object Oriented Programming I | 10.01.2023

PAGE 1

Contents

Introduction ..2

Annotations ... 3

Reflection API .. 4

Working with Annotations and Reflection ... 5

Conclusion ..7

PAGE 2

Introduction

Annotations are a powerful feature in Java that allow you to add

metadata to your code. They can be used to provide information about

classes, methods, fields, and other elements of your code. Annotations

can be used for a variety of purposes, including documentation, code

generation, and runtime configuration.

PAGE 3

Annotations

Annotations are defined using the @ symbol followed by the name of

the annotation. Annotations can include parameters, which are

specified using parentheses after the annotation name. For example:

@MyAnnotation(parameter1 = "value1", parameter2 = 123)

public void myMethod() {

 // ...

}

To use annotations, you can either use the pre-defined annotations

provided by Java, or you can define your own custom annotations.

Custom annotations are defined using the @interface keyword.

Annotations can be processed at compile time or at runtime. To process

annotations at compile time, you can use the Java Compiler API or an

annotation processing tool like the Annotation Processing Tool (APT).

To process annotations at runtime, you can use the Reflection API.

PAGE 4

Reflection API

The Reflection API is a powerful feature in Java that allows you to

inspect and manipulate objects at runtime. With the Reflection API, you

can access information about classes, methods, fields, and other

elements of your code.

To use the Reflection API, you need to obtain a Class object that

represents the class you want to inspect. You can obtain a Class object

using the class literal syntax, for example:

Class<MyClass> myClass = MyClass.class;

Once you have a Class object, you can use it to access information about

the class, such as its methods and fields. You can also use the Reflection

API to instantiate objects, invoke methods, and access fields.

PAGE 5

Working with Annotations and Reflection

Annotations and the Reflection API can be used together to provide

powerful runtime configuration options. For example, you can define

custom annotations that specify the configuration of a class or method,

and then use the Reflection API to process those annotations and apply

the configuration at runtime.

To process annotations using the Reflection API, you can use the

getAnnotations() method to obtain an array of annotations applied to a

class or method. You can then use the annotation values to perform any

required configuration.

For example, consider the following custom annotation:

@Retention(RetentionPolicy.RUNTIME)

@Target(ElementType.METHOD)

public @interface MyAnnotation {

 String value();

}

You can apply this annotation to a method in your code, like this:

@MyAnnotation("myValue")

public void myMethod() {

 // ...

PAGE 6

}

To process this annotation at runtime, you can use the Reflection API

to obtain the MyAnnotation object and extract its value:

Method method = MyClass.class.getMethod("myMethod");

MyAnnotation annotation =

method.getAnnotation(MyAnnotation.class);

String value = annotation.value();

PAGE 7

Conclusion

Annotations and the Reflection API are powerful features in Java that

allow you to add metadata to your code and manipulate objects at

runtime. By mastering these features, you can create more flexible and

configurable applications. However, it's important to use these features

judiciously and carefully, as they can add complexity and overhead to

your code.

