

ADVANCED CONCURRENCY

AND MULTITHREADING

TECHNIQUES

OBJECT ORIENTED PROGRAMMING I

Sercan Külcü | Object Oriented Programming I | 10.01.2023

PAGE 1

Contents

Introduction ..2

Synchronization .. 3

Thread Pools .. 4

Atomic Variables ... 5

Locks ... 6

Semaphores ...7

Futures .. 8

Conclusion ... 9

PAGE 2

Introduction

Concurrency and multithreading are essential concepts in modern

software development, as they allow programs to execute multiple tasks

simultaneously and efficiently. In this chapter, we will explore some of

the advanced concurrency and multithreading techniques in Java.

PAGE 3

Synchronization

Synchronization is a fundamental technique for managing concurrent

access to shared resources in multithreaded applications. In Java,

synchronization is implemented using the synchronized keyword,

which can be applied to methods or blocks of code. Synchronization

ensures that only one thread can access a shared resource at a time,

preventing race conditions and other synchronization issues.

PAGE 4

Thread Pools

Thread pools are a useful technique for managing multiple threads in a

multithreaded application. A thread pool is a collection of pre-allocated

threads that are managed by a thread pool executor. The executor

assigns tasks to the threads in the pool, and when a thread completes a

task, it is returned to the pool for reuse. Thread pools can improve the

performance of multithreaded applications by reducing the overhead of

creating and destroying threads.

PAGE 5

Atomic Variables

Atomic variables are a special type of variable that can be accessed and

modified atomically, without the need for synchronization. In Java, the

atomic variable classes include AtomicInteger, AtomicLong, and

AtomicReference. Atomic variables are useful in multithreaded

applications where multiple threads need to access and modify the same

variable without synchronization overhead.

PAGE 6

Locks

Locks are an alternative to synchronization for managing concurrent

access to shared resources. In Java, locks are implemented using the

Lock interface and its concrete implementations, such as ReentrantLock.

Locks provide more fine-grained control over thread synchronization

than synchronization, and they can be used to implement more complex

synchronization patterns.

PAGE 7

Semaphores

Semaphores are a synchronization technique that allows a limited

number of threads to access a shared resource at the same time. In Java,

semaphores are implemented using the Semaphore class. Semaphores

are useful in multithreaded applications where a shared resource has

limited capacity and needs to be managed carefully to avoid

synchronization issues.

PAGE 8

Futures

Futures are a concurrency technique that allows a thread to execute a

task asynchronously and retrieve the result when it is available. In Java,

futures are implemented using the Future interface and its concrete

implementations, such as CompletableFuture. Futures are useful in

multithreaded applications where a long-running task needs to be

executed without blocking the main thread.

PAGE 9

Conclusion

Concurrency and multithreading are essential concepts in modern

software development, and Java provides a powerful set of tools for

working with them. By understanding and using the advanced

concurrency and multithreading techniques covered in this chapter, you

can create software applications that are efficient, responsive, and

scalable. Remember to carefully consider the specific requirements and

needs of your project when selecting and using these techniques. With

practice and experience, you can become a proficient Java developer

who can effectively manage concurrency and multithreading in your

applications.

