

DESIGN PATTERNS AND

OBJECT ORIENTED DESIGN

PRINCIPLES

OBJECT ORIENTED PROGRAMMING I

Sercan Külcü | Object Oriented Programming I | 10.01.2023

PAGE 1

Contents

Introduction ..2

Object-Oriented Design Principles ... 3

Design Patterns ... 5

Conclusion ... 6

PAGE 2

Introduction

Object-oriented programming (OOP) is a popular programming

paradigm that is widely used in Java development. It allows developers

to create reusable, modular, and maintainable code by using objects,

classes, and other OOP concepts. However, designing and developing

OOP applications can be challenging, especially for large and complex

projects. That's where design patterns and object-oriented design

principles come in. In this chapter, we will explore some of the most

important design patterns and object-oriented design principles for

advanced Java programming.

PAGE 3

Object-Oriented Design Principles

Object-oriented design principles provide guidelines and best practices

for creating effective and efficient OOP applications. The following are

some of the most important object-oriented design principles for Java:

Single Responsibility Principle (SRP): A class should have only one

responsibility or reason to change. This principle promotes the

separation of concerns and helps to create more modular and

maintainable code.

Open-Closed Principle (OCP): A class should be open for extension

but closed for modification. This principle promotes the use of

interfaces, abstract classes, and polymorphism to enable the addition of

new functionality without changing the existing code.

Liskov Substitution Principle (LSP): Subtypes should be substitutable

for their base types. This principle promotes the use of inheritance and

polymorphism to create a hierarchical class structure that can be

extended and customized as needed.

Interface Segregation Principle (ISP): A client should not be forced

to depend on methods it does not use. This principle promotes the use

of interfaces to define only the methods that are relevant to a particular

client or class.

PAGE 4

Dependency Inversion Principle (DIP): High-level modules should

not depend on low-level modules. Both should depend on abstractions.

This principle promotes the use of interfaces and abstractions to

decouple the code and promote reusability.

PAGE 5

Design Patterns

Design patterns are reusable solutions to common programming

problems. They provide templates for creating code that is flexible,

modular, and maintainable. The following are some of the most

important design patterns for Java:

Creational Patterns: Creational patterns are used to create objects in

a flexible and efficient way. Examples include Singleton, Factory Method,

and Abstract Factory.

Structural Patterns: Structural patterns are used to organize objects

into larger structures while keeping the code flexible and easy to

maintain. Examples include Adapter, Decorator, and Facade.

Behavioral Patterns: Behavioral patterns are used to manage the

communication and interaction between objects in a flexible and

efficient way. Examples include Observer, Command, and Strategy.

PAGE 6

Conclusion

Design patterns and object-oriented design principles are essential skills

for advanced Java programming. By applying these principles and

patterns in your code, you can create software applications that are

flexible, modular, and maintainable. Remember to always consider the

specific needs and requirements of your project when selecting and

using design patterns and object-oriented design principles. With

practice and experience, you can become a proficient Java developer

who can design and develop effective and efficient OOP applications.

