
 

REFACTORING AND CODE 

OPTIMIZATION TECHNIQUES 

 

OBJECT ORIENTED PROGRAMMING I 

 

Sercan Külcü | Object Oriented Programming I | 10.01.2023  



PAGE 1 

Contents 

Introduction ................................................................................................2 

Refactoring Techniques .............................................................................. 3 

Code Optimization Techniques ................................................................ 4 

Conclusion .................................................................................................. 5 

 



PAGE 2 

Introduction 

As software applications grow and evolve, it is common for the code to 

become complex and difficult to maintain. Refactoring is the process of 

improving the design and structure of existing code without changing 

its behavior. Code optimization, on the other hand, is the process of 

improving the performance of existing code. In this chapter, we will 

explore some of the most effective refactoring and code optimization 

techniques for advanced Java programming. 

 

  



PAGE 3 

Refactoring Techniques 

Refactoring can improve the quality of code and make it easier to 

maintain. The following are some of the most effective refactoring 

techniques for Java: 

 

Extract Method: Extracting a method from a larger method can 

improve the readability and maintainability of the code. It can also make 

the code more reusable by creating a new method that can be called 

from multiple places in the code. 

 

Extract Class: Extracting a class from an existing class can help to 

organize the code better and make it more maintainable. It can also help 

to reduce the size and complexity of the existing class. 

 

Replace Conditional with Polymorphism: Replacing a long and 

complex conditional statement with a polymorphic solution can 

improve the readability and maintainability of the code. It can also make 

it easier to add new functionality to the code in the future. 

 

Move Method: Moving a method from one class to another can help to 

organize the code better and make it more maintainable. It can also help 

to reduce the complexity of the existing class. 

 

  



PAGE 4 

Code Optimization Techniques 

Code optimization can improve the performance of code and make it 

more efficient. The following are some of the most effective code 

optimization techniques for Java: 

 

Use Final Keyword: Using the final keyword for variables and methods 

can improve the performance of the code by allowing the compiler to 

make certain optimizations. 

 

Use StringBuilder Instead of String Concatenation: String 

concatenation can be slow, especially when used in a loop. Using a 

StringBuilder can improve the performance of the code. 

 

Use ArrayList Instead of Arrays: ArrayList can be faster than arrays 

for certain operations, such as adding or removing elements. 

 

Use Enhanced For Loop: Using the enhanced for loop can improve the 

readability and performance of code that iterates over collections. 

 

  



PAGE 5 

Conclusion 

Refactoring and code optimization are essential skills for advanced Java 

programming. Refactoring can improve the quality and maintainability 

of code, while code optimization can improve its performance and 

efficiency. By applying these techniques in your code, you can make 

your software applications more robust, efficient, and scalable. 

Remember to always test your code after making changes to ensure that 

it still works as expected. With practice and experience, you can become 

a proficient Java developer who can write high-quality, maintainable, 

and performant code. 


