

JAVA

GARBAGE

COLLECTORS

INTERVIEW

QUESTIONS

Contents

What is the purpose of garbage collection? ... 3

What does System.gc() and Runtime.gc() methods do? .. 4

When is the finalize() called? .. 6

If an object reference is set to null, will the Garbage Collector immediately free the memory held by

that object? ... 7

What is structure of Java Heap? ... 8

What is the difference between Serial and Throughput Garbage collector? ... 9

When does an Object becomes eligible for Garbage collection in Java? ... 10

Does Garbage collection occur in permanent generation space in JVM? .. 11

What is the purpose of garbage collection?

The purpose of garbage collection is to reclaim memory that is no longer being used by a

program. In a programming language like Java, which uses automatic memory management,

objects are created and stored in memory as the program runs. When an object is no longer

needed, the memory it occupies can be reclaimed and used for other purposes.

Garbage collection is an automated process that runs in the background, searching for objects

that are no longer being used by the program and freeing the memory they occupy. This helps

to prevent memory leaks, which can occur when an object is no longer needed but its memory

is not released, and it helps to ensure that a program has sufficient memory available to run

effectively.

Overall, the purpose of garbage collection is to make it easier for programmers to manage

memory and to improve the performance and reliability of programs by ensuring that memory

is used efficiently and released when it is no longer needed.

What does System.gc() and Runtime.gc() methods do?

The System.gc() method and Runtime.gc() method are both used to request that the Java virtual

machine (JVM) perform garbage collection. When these methods are called, the JVM will

attempt to reclaim memory that is no longer being used by the program by finding and deleting

objects that are no longer needed.

The main difference between the two methods is that System.gc() is a static method that is

called on the System class, while Runtime.gc() is an instance method that is called on a Runtime

object. The Runtime class represents the JVM itself, and you can obtain an instance of it by

calling the getRuntime() method.

Both of these methods are provided as a way for a program to request garbage collection, but

they do not guarantee that garbage collection will actually be performed. The JVM is free to

ignore the request if it determines that it is not necessary or if it would not be beneficial to

perform garbage collection at that time.

It is generally not necessary to call these methods in your code, as the JVM will perform

garbage collection automatically as needed. However, if you are experiencing memory issues

in your program, you may want to consider calling one of these methods to see if it helps to

resolve the problem.

Here is a sample Java program that demonstrates how to use the System.gc() and Runtime.gc()

methods:

public class GarbageCollection {
 public static void main(String[] args) {
 // Create an array of large objects
 Object[] objects = new Object[100];
 for (int i = 0; i < objects.length; i++) {
 objects[i] = new byte[1024 * 1024]; // 1 MB
 }

 // Request garbage collection using System.gc()
 System.out.println("Requesting garbage collection using
System.gc()...");
 System.gc();

 // Request garbage collection using Runtime.gc()
 Runtime runtime = Runtime.getRuntime();
 System.out.println("Requesting garbage collection using
Runtime.gc()...");
 runtime.gc();
 }
}

In this example, we create an array of large objects and then request garbage collection using

both System.gc() and Runtime.gc(). These methods are called after the large objects are no

longer needed, and they will cause the JVM to attempt to reclaim the memory that they occupy.

Keep in mind that calling System.gc() or Runtime.gc() does not guarantee that garbage

collection will actually be performed. The JVM is free to ignore the request if it determines

that it is not necessary or if it would not be beneficial to perform garbage collection at that

time.

When is the finalize() called?

The finalize() method is a special method in Java that is called by the garbage collector just

before an object is garbage collected. It is defined in the Object class, which is the superclass

of all classes in Java, and it can be overridden in a subclass to perform any necessary cleanup

before the object is discarded.

The purpose of finalization is to give an object an opportunity to perform any necessary cleanup

before it is garbage collected. This can be useful if an object has resources that need to be

released, such as file handles or network connections. By overriding the finalize() method, you

can specify code that will be executed just before the object is garbage collected, which can

help to prevent resource leaks.

It is important to note that the finalize() method is not guaranteed to be called. The garbage

collector is free to skip the finalization process if it determines that it is not necessary or if it

would not be beneficial to perform finalization at that time. Therefore, you should not rely on

the finalize() method for critical cleanup tasks. Instead, you should use other techniques, such

as try-with-resources statements or explicit cleanup methods, to ensure that resources are

released in a timely and reliable manner.

public class ReferenceObject
{
 public void finalize()
 {
 System.out.println("object is garbage collected");

 }
}

If an object reference is set to null, will the Garbage Collector immediately free the

memory held by that object?

Setting an object reference to null does not necessarily cause the garbage collector to

immediately reclaim the memory occupied by the object. The garbage collector operates on its

own schedule and is free to reclaim memory as it sees fit, regardless of the state of object

references.

However, setting an object reference to null does make it easier for the garbage collector to

identify and reclaim objects that are no longer needed. When an object is no longer reachable

from any live object references, it is considered to be eligible for garbage collection. By setting

an object reference to null, you can make it more likely that the object will be considered

eligible for garbage collection and that its memory will be reclaimed.

Ultimately, the garbage collector is responsible for deciding when to reclaim the memory

occupied by an object. You cannot directly control when an object is garbage collected, and

you should not rely on the garbage collector to reclaim memory in a specific time frame.

Instead, you should focus on using object references appropriately and releasing resources

when they are no longer needed to ensure that your program uses memory efficiently.

What is structure of Java Heap?

The JVM has a heap that is the runtime data area from which memory for all class instances

and arrays is allocated. It is created at the JVM start-up. Heap memory for objects is reclaimed

by an automatic memory management system which is known as a garbage collector. Heap

memory consists of live and dead objects. Live objects are accessible by the application and

will not be a subject of garbage collection. Dead objects are those which will never be

accessible by the application, but have not been collected by the garbage collector yet. Such

objects occupy the heap memory space until they are eventually collected by the garbage

collector.

The Java heap is the portion of memory that is used by the Java virtual machine (JVM) to store

objects during the execution of a Java program. The heap is divided into two main regions: the

young generation and the old generation.

The young generation is further divided into three subregions: the Eden space and two survivor

spaces. The Eden space is where new objects are initially allocated, and the survivor spaces are

used to store objects that have survived at least one garbage collection.

The old generation is used to store long-lived objects that have survived multiple garbage

collections in the young generation.

The structure of the Java heap is designed to support efficient garbage collection. Objects in

the young generation are subject to frequent garbage collection, while objects in the old

generation are collected less frequently. This helps to ensure that the garbage collector can run

efficiently and that the heap is used efficiently.

The size of the Java heap and the ratio of the young generation to the old generation can be

configured using command-line options when the JVM is started. The specific options and their

meanings depend on the particular JVM implementation that you are using.

What is the difference between Serial and Throughput Garbage collector?

The serial garbage collector and the throughput garbage collector are two different garbage

collection algorithms that are provided by the Java virtual machine (JVM).

The serial garbage collector is designed for use in single-threaded environments, where it can

run in the same thread as the application. It is a simple, stop-the-world garbage collector that

performs a full garbage collection of the entire heap on each collection cycle. It is a good choice

for small heaps and applications with low memory allocation rates.

The throughput garbage collector, on the other hand, is designed for use in multi-threaded

environments, where it can run in parallel with the application. It is a more complex garbage

collector that divides the heap into multiple regions and uses multiple threads to perform

garbage collection concurrently with the application. It is a good choice for larger heaps and

applications with high memory allocation rates.

Overall, the main difference between the serial garbage collector and the throughput garbage

collector is the way they are designed to run and the types of environments they are best suited

for. The serial garbage collector is simple and efficient for small, single-threaded applications,

while the throughput garbage collector is more complex and efficient for large, multi-threaded

applications.

When does an Object becomes eligible for Garbage collection in Java?

In Java, an object becomes eligible for garbage collection when it is no longer reachable from

any live object references. When an object is no longer reachable, it means that there is no way

for the program to access the object or interact with it in any way.

For example, consider the following code:

MyObject obj = new MyObject();
obj = null;

In this code, the MyObject object is created and assigned to a reference obj. Then, the obj

reference is set to null. At this point, the MyObject object is no longer reachable from any live

object references, and it becomes eligible for garbage collection.

It is important to note that just because an object becomes eligible for garbage collection does

not necessarily mean that it will be garbage collected immediately. The garbage collector

operates on its own schedule and is free to reclaim memory as it sees fit.

Overall, the key to making objects eligible for garbage collection is to ensure that they are no

longer needed by the program and to release any object references to them when they are no

longer needed. This will help to ensure that the garbage collector can reclaim the memory

occupied by these objects and that the heap is used efficiently.

Does Garbage collection occur in permanent generation space in JVM?

In the Java virtual machine (JVM), the permanent generation (also known as the permgen) is a

separate area of memory that is used to store class and method objects. It is separate from the

Java heap, which is used to store objects created by the application.

Garbage collection does not occur in the permanent generation. Instead, class and method

objects are permanently stored in the permgen until the JVM is shut down. This is because

these objects are essential to the operation of the JVM and are needed throughout the lifetime

of the application.

The size of the permgen can be configured using command-line options when the JVM is

started. If the permgen is not large enough to store all of the class and method objects that are

needed by the application, an OutOfMemoryError will be thrown.

Overall, the permanent generation is an important part of the JVM, but it is not subject to

garbage collection like the Java heap is. Class and method objects are stored in the permgen

for the lifetime of the JVM and are not reclaimed until the JVM is shut down.

