

WORKING WITH FILES

AND INPUT/OUTPUT
OBJECT ORIENTED PROGRAMMING I

Sercan Külcü | Object Oriented Programming I | 10.01.2023

PAGE 1

Contents

Introduction ..2

What are Files and Input/Output in Java? .. 3

How to Create and Read Files in Java? ... 4

Best Practices Implementing Input/Output Operations 6

Conclusion ..7

PAGE 2

Introduction

Java is a versatile programming language that can handle various types

of input and output operations. In this chapter, we will explore how to

work with files and input/output (I/O) in Java, including what they are,

how to create and read files, and best practices for implementing

input/output operations in your code.

PAGE 3

What are Files and Input/Output in Java?

In Java, files are used to store data permanently on a disk or other

storage devices. The input/output (I/O) operations, on the other hand,

refer to the process of reading data from and writing data to different

sources, including files, databases, network sockets, and standard

input/output devices.

PAGE 4

How to Create and Read Files in Java?

Creating and reading files is a fundamental operation in Java. Here's how

you can create and read files in Java:

Creating a file: To create a file in Java, you can use the File class. First,

create an instance of the File class and pass the file path as a parameter

to the constructor. Then, use the createNewFile() method to create a

new file.

Writing to a file: To write data to a file, you can use the FileWriter class.

First, create an instance of the FileWriter class and pass the file path as

a parameter to the constructor. Then, use the write() method to write

data to the file.

Reading from a file: To read data from a file, you can use the

FileReader class. First, create an instance of the FileReader class and

pass the file path as a parameter to the constructor. Then, use the read()

method to read data from the file.

Here is an example of how to create and read a file in Java:

import java.io.*;

public class FileExample {
 public static void main(String[] args) {
 try {
 File file = new File("example.txt");
 if (file.createNewFile()) {
 System.out.println("File created: " +
file.getName());
 } else {
 System.out.println("File already exists.");
 }
 FileWriter writer = new FileWriter(file);
 writer.write("Hello, world!");

PAGE 5

 writer.close();
 FileReader reader = new FileReader(file);
 int character;
 while ((character = reader.read()) != -1) {
 System.out.print((char) character);
 }
 reader.close();
 } catch (IOException e) {
 System.out.println("An error occurred.");
 e.printStackTrace();
 }
 }

}

PAGE 6

Best Practices Implementing Input/Output Operations

Here are some best practices to keep in mind when implementing

input/output operations in Java:

Always close resources: Always close the input/output streams, file

readers, and writers after you're done using them. This helps in

preventing resource leaks and making sure that the program runs

efficiently.

Use buffered streams: Buffered streams are used to improve the

performance of input/output operations in Java. Always use buffered

streams instead of unbuffered streams to speed up I/O operations.

Use descriptive variable names: Use descriptive variable names when

working with input/output operations in Java. This makes the code

easier to read and understand, reducing the likelihood of errors and

bugs.

Handle exceptions: Always handle exceptions when working with

input/output operations in Java. This helps in making sure that the

program runs smoothly and that the user is informed of any errors that

occur.

PAGE 7

Conclusion

In summary, files and input/output operations are essential features in

Java that enable developers to store data permanently and read and

write data from various sources. By following best practices for

implementing input/output operations, developers can ensure that

their Java programs are efficient, maintainable, and error-free.

