

OBJECT ORIENTED

PROGRAMMING

OBJECT ORIENTED PROGRAMMING I

Sercan Külcü | Object Oriented Programming I | 10.01.2023

PAGE 1

Contents

Introduction ..2

Classes and Objects .. 3

Encapsulation ... 4

Inheritance .. 5

Polymorphism .. 6

Abstraction ..7

Conclusion ... 8

PAGE 2

Introduction

Object-oriented programming (OOP) is a popular programming

paradigm that enables developers to design complex software systems

by creating objects that interact with each other. Java is a widely used

programming language that has gained immense popularity due to its

excellent support for object-oriented programming. In this chapter, we

will delve into the fundamental concepts of object-oriented

programming in Java and how to apply them to develop robust software

solutions.

PAGE 3

Classes and Objects

In Java, everything is an object. A class is a blueprint for creating objects.

It defines the properties and behaviors of objects. To create an object,

you must first define its class. For example, if you want to create an

object of a car, you must define its class that includes its properties like

model, make, and color, and its behaviors like accelerate, brake, and

turn.

PAGE 4

Encapsulation

Encapsulation is the mechanism of hiding the implementation details

of an object from the outside world. In Java, encapsulation is achieved

using access modifiers such as private, public, and protected. Private

members can only be accessed within the class, whereas public

members can be accessed from any class. Protected members can be

accessed within the same package and its subclasses.

PAGE 5

Inheritance

Inheritance is a mechanism by which a class can inherit the properties

and behaviors of another class. The class that inherits the properties and

behaviors is called a subclass or derived class, and the class from which

it inherits is called the superclass or base class. In Java, inheritance is

implemented using the keyword extends. A subclass can inherit all the

properties and behaviors of its superclass and can also add new

properties and behaviors of its own.

PAGE 6

Polymorphism

Polymorphism is the ability of an object to take on many forms. In Java,

polymorphism is implemented using method overloading and method

overriding. Method overloading allows a class to have two or more

methods with the same name but different parameters. Method

overriding allows a subclass to provide its own implementation of a

method that is already defined in its superclass.

PAGE 7

Abstraction

Abstraction is the process of hiding complex implementation details

and exposing only the essential features of an object. In Java, abstraction

is implemented using abstract classes and interfaces. An abstract class

is a class that cannot be instantiated but can be inherited. An interface

is a collection of abstract methods that a class can implement.

PAGE 8

Conclusion

Java's support for object-oriented programming makes it an ideal

language for developing large-scale software systems. In this chapter, we

have covered the fundamental concepts of object-oriented

programming in Java, including classes and objects, encapsulation,

inheritance, polymorphism, and abstraction. Understanding these

concepts is crucial for developing robust software solutions.

