

ADVANCED TOPICS

DATA STRUCTURES IN JAVA

Sercan Külcü | Data Structures In Java | 10.05.2023

PAGE 1

Contents

Persistent Data Structures ...2

External Memory Data Structures ... 5

Multi-dimensional Data Structures ...7

Randomized Data Structures .. 9

Distributed Data Structures .. 11

PAGE 2

Persistent Data Structures

In computing, a persistent data structure or not ephemeral data

structure is a data structure that always preserves the previous version

of itself when it is modified. Such data structures are effectively

immutable, as their operations do not (visibly) update the structure in-

place, but instead always yield a new updated structure. The term was

introduced in Driscoll, Sarnak, Sleator, and Tarjans' 1986 article.

A data structure is partially persistent if all versions can be accessed but

only the newest version can be modified. The data structure is fully

persistent if every version can be both accessed and modified. If there is

also a meld or merge operation that can create a new version from two

previous versions, the data structure is called confluently persistent.

Structures that are not persistent are called ephemeral. These types of

data structures are particularly common in logical and functional

programming, as languages in those paradigms discourage (or fully

forbid) the use of mutable data.

Types of Persistent Data Structures

There are many different types of persistent data structures, but some

of the most common include:

 Linked lists

 Binary search trees

 Hash tables

 Skip lists

 Treaps

Advantages of Persistent Data Structures

There are several advantages to using persistent data structures,

including:

 Efficiency

PAGE 3

 Correctness

 Readability

 Maintainability

Disadvantages of Persistent Data Structures

There are also some disadvantages to using persistent data structures,

including:

 Complexity

 Space overhead

 Performance

Applications of Persistent Data Structures

Persistent data structures are used in a variety of applications, including:

 Databases

 Compilers

 Operating systems

 Web applications

 Functional programming languages

Implementation of Persistent Data Structures in Java

There are several ways to implement persistent data structures in Java.

One common approach is to use the functional programming library,

Scalaz. Scalaz provides a number of persistent data structures, including

linked lists, binary search trees, and hash tables.

Another approach to implementing persistent data structures in Java is

to use the immutable collections library, Google Guava. Google Guava

provides a number of immutable collections, including lists, sets, and

maps.

Conclusion

Persistent data structures are a powerful tool that can be used to

improve the efficiency, correctness, readability, and maintainability of

PAGE 4

your code. If you are working on a project that requires these qualities,

then you should consider using persistent data structures.

PAGE 5

External Memory Data Structures

In computing, external memory data structures are data structures that

are designed to be used in external memory, such as a hard drive or tape

drive. External memory data structures are typically used to store very

large datasets that cannot fit in main memory.

There are many different types of external memory data structures, but

some of the most common include:

 B-trees

 B+ trees

 R-trees

 Skip lists

 Treaps

Each of these data structures has its own advantages and disadvantages.

B-trees and B+ trees are very efficient for accessing data in sorted order.

R-trees are very efficient for accessing data in spatial order. Skip lists

and treaps are very efficient for accessing data in a variety of orders.

External memory data structures can be implemented in any

programming language, but they are often implemented in Java. Java

provides a number of libraries that can be used to implement external

memory data structures, including the Java Collections Framework and

the Apache Hadoop library.

Implementation of External Memory Data Structures in Java

There are several ways to implement external memory data structures

in Java. One common approach is to use the Java Collections Framework.

The Java Collections Framework provides a number of data structures

that can be used to store data in external memory, including the TreeSet

and the SortedMap classes.

Another approach to implementing external memory data structures in

Java is to use the Apache Hadoop library. The Apache Hadoop library

PAGE 6

provides a number of tools that can be used to store and process data in

external memory, including the HDFS file system and the MapReduce

programming model.

Conclusion

External memory data structures are a powerful tool that can be used to

store and process very large datasets. If you are working on a project

that requires you to store or process very large datasets, then you should

consider using external memory data structures.

PAGE 7

Multi-dimensional Data Structures

In computing, a multi-dimensional data structure is a data structure

that can store data in multiple dimensions. Multi-dimensional data

structures are typically used to store data that is naturally organized in

multiple dimensions, such as images, video, and spatial data.

There are many different types of multi-dimensional data structures,

but some of the most common include:

 Arrays

 Matrices

 Hash tables

 Skip lists

 Treaps

Each of these data structures has its own advantages and disadvantages.

Arrays are very efficient for storing data in a contiguous block of

memory. Matrices are very efficient for storing data that is organized in

a rectangular grid. Hash tables are very efficient for storing data that can

be accessed by a key. Skip lists and treaps are very efficient for storing

data in a variety of orders.

Multi-dimensional data structures can be implemented in any

programming language, but they are often implemented in Java. Java

provides a number of libraries that can be used to implement multi-

dimensional data structures, including the Java Collections Framework

and the Apache Hadoop library.

Implementation of Multi-dimensional Data Structures in Java

There are several ways to implement multi-dimensional data structures

in Java. One common approach is to use the Java Collections Framework.

The Java Collections Framework provides a number of data structures

that can be used to store data in multiple dimensions, including the List

and the Map classes.

PAGE 8

Another approach to implementing multi-dimensional data structures

in Java is to use the Apache Hadoop library. The Apache Hadoop library

provides a number of tools that can be used to store and process data in

multiple dimensions, including the HDFS file system and the

MapReduce programming model.

Conclusion

Multi-dimensional data structures are a powerful tool that can be used

to store and process data that is naturally organized in multiple

dimensions. If you are working on a project that requires you to store or

process data in multiple dimensions, then you should consider using

multi-dimensional data structures.

Here are some examples of how multi-dimensional data structures can

be used:

 Storing images: An image can be stored as a 2D array, where each

element in the array represents a pixel in the image.

 Storing video: A video can be stored as a 3D array, where each

element in the array represents a frame in the video.

 Storing spatial data: Spatial data, such as the location of cities or

the boundaries of countries, can be stored as a 2D or 3D array,

where each element in the array represents a point in space.

Multi-dimensional data structures can be used to solve a variety of

problems, such as image processing, video processing, and spatial

analysis.

PAGE 9

Randomized Data Structures

In computing, a randomized data structure is a data structure that uses

randomness to improve its efficiency or correctness. Randomized data

structures are often used to solve problems that are difficult or

impossible to solve with deterministic data structures.

There are many different types of randomized data structures, but some

of the most common include:

 Randomized quicksort

 Randomized selection

 Randomized hashing

 Randomized binary search

 Randomized graph algorithms

Each of these data structures has its own advantages and disadvantages.

Randomized quicksort is very efficient for sorting large datasets.

Randomized selection can be used to find the kth smallest element in a

large dataset. Randomized hashing can be used to store data in a hash

table with very good performance. Randomized binary search can be

used to search for an element in a sorted array with very good

performance. Randomized graph algorithms can be used to solve a

variety of graph problems, such as finding the shortest path between

two nodes or finding the maximum flow in a network.

Randomized data structures can be implemented in any programming

language, but they are often implemented in Java. Java provides a

number of libraries that can be used to implement randomized data

structures, including the Java Collections Framework and the Apache

Hadoop library.

Implementation of Randomized Data Structures in Java

There are several ways to implement randomized data structures in Java.

One common approach is to use the Java Collections Framework. The

PAGE 10

Java Collections Framework provides a number of data structures that

can be used to implement randomized data structures, including the

Random class and the Collections.shuffle() method.

Another approach to implementing randomized data structures in Java

is to use the Apache Hadoop library. The Apache Hadoop library

provides a number of tools that can be used to implement randomized

data structures, including the Random class and the Hadoop.shuffle()

method.

Conclusion

Randomized data structures are a powerful tool that can be used to solve

a variety of problems. If you are working on a project that requires you

to solve a problem that is difficult or impossible to solve with

deterministic data structures, then you should consider using

randomized data structures.

Here are some examples of how randomized data structures can be

used:

 Sorting: Randomized quicksort can be used to sort large datasets

very efficiently.

 Searching: Randomized binary search can be used to search for an

element in a sorted array very efficiently.

 Hashing: Randomized hashing can be used to store data in a hash

table with very good performance.

 Graph algorithms: Randomized graph algorithms can be used to

solve a variety of graph problems, such as finding the shortest path

between two nodes or finding the maximum flow in a network.

Randomized data structures can be used to solve a variety of problems,

such as sorting, searching, hashing, and graph algorithms.

PAGE 11

Distributed Data Structures

In computing, a distributed data structure is a data structure that is

stored and accessed across multiple nodes in a computer network.

Distributed data structures are used to solve problems that require

access to large amounts of data that cannot be stored on a single node.

There are many different types of distributed data structures, but some

of the most common include:

 Distributed hash tables

 Distributed trees

 Distributed graphs

 Distributed databases

Each of these data structures has its own advantages and disadvantages.

Distributed hash tables are very efficient for storing and retrieving data

that can be accessed by a key. Distributed trees are very efficient for

storing and retrieving data that is organized in a hierarchical order.

Distributed graphs are very efficient for storing and retrieving data that

is connected in a network. Distributed databases are very efficient for

storing and retrieving large amounts of data.

Distributed data structures can be implemented in any programming

language, but they are often implemented in Java. Java provides a

number of libraries that can be used to implement distributed data

structures, including the Java Collections Framework and the Apache

Hadoop library.

Implementation of Distributed Data Structures in Java

There are several ways to implement distributed data structures in Java.

One common approach is to use the Java Collections Framework. The

Java Collections Framework provides a number of data structures that

can be used to implement distributed data structures, including the

ConcurrentHashMap class and the ConcurrentSkipListSet class.

PAGE 12

Another approach to implementing distributed data structures in Java

is to use the Apache Hadoop library. The Apache Hadoop library

provides a number of tools that can be used to implement distributed

data structures, including the HDFS file system and the MapReduce

programming model.

Conclusion

Distributed data structures are a powerful tool that can be used to solve

a variety of problems. If you are working on a project that requires you

to store or process large amounts of data that cannot be stored on a

single node, then you should consider using distributed data structures.

Here are some examples of how distributed data structures can be used:

 Storing large amounts of data: Distributed data structures can be

used to store large amounts of data that cannot be stored on a

single node. For example, a distributed hash table can be used to

store a large file system.

 Processing large amounts of data: Distributed data structures can

be used to process large amounts of data that cannot be processed

on a single node. For example, a distributed graph can be used to

find the shortest path between two nodes in a large network.

 Providing fault tolerance: Distributed data structures can be used

to provide fault tolerance. For example, a distributed database can

be used to store data in a way that is resilient to failures of

individual nodes.

Distributed data structures can be used to solve a variety of problems,

such as storing, processing, and providing fault tolerance for large

amounts of data.

