ADVANCED TOPICS

DATA STRUCTURES IN JAVA

Sercan Kiilcii | Data Structures In Java | 10.05.2023

Contents

Persistent Data StrUCLUTESccoiiiiiiiiiiiiiiiiiieeeeee e 2
External Memory Data Structures..........oceeveerierieeiieenienieeeesee e 5
Multi-dimensional Data Structures..........ccocveeeeeveeeeciieeeecreee e 7
Randomized Data StrucCtures..........cceceveeeiueeecieecieeeeiee e e 9
Distributed Data StIUCLUTES.......cccuveieeciiieeeiiee et 1

PAGE 1

Persistent Data Structures

In computing, a persistent data structure or not ephemeral data
structure is a data structure that always preserves the previous version
of itself when it is modified. Such data structures are effectively
immutable, as their operations do not (visibly) update the structure in-
place, but instead always yield a new updated structure. The term was
introduced in Driscoll, Sarnak, Sleator, and Tarjans' 1986 article.

A data structure is partially persistent if all versions can be accessed but
only the newest version can be modified. The data structure is fully
persistent if every version can be both accessed and modified. If there is
also a meld or merge operation that can create a new version from two
previous versions, the data structure is called confluently persistent.
Structures that are not persistent are called ephemeral. These types of
data structures are particularly common in logical and functional
programming, as languages in those paradigms discourage (or fully
forbid) the use of mutable data.

Types of Persistent Data Structures

There are many different types of persistent data structures, but some
of the most common include:

e Linked lists

e Binary search trees
e Hash tables

e Skip lists

e Treaps

Advantages of Persistent Data Structures

There are several advantages to using persistent data structures,
including:

e Efficiency

PAGE 2

e C(Correctness
e Readability
e Maintainability

Disadvantages of Persistent Data Structures

There are also some disadvantages to using persistent data structures,
including:

o Complexity
e Space overhead
e Performance

Applications of Persistent Data Structures
Persistent data structures are used in a variety of applications, including:

e Databases

e Compilers

e (perating systems

e Web applications

e Functional programming languages

Implementation of Persistent Data Structures in Java

There are several ways to implement persistent data structures in Java.
One common approach is to use the functional programming library,
Scalaz. Scalaz provides a number of persistent data structures, including
linked lists, binary search trees, and hash tables.

Another approach to implementing persistent data structures in Java is
to use the immutable collections library, Google Guava. Google Guava
provides a number of immutable collections, including lists, sets, and
maps.

Conclusion

Persistent data structures are a powerful tool that can be used to
improve the efficiency, correctness, readability, and maintainability of

PAGE 3

your code. If you are working on a project that requires these qualities,
then you should consider using persistent data structures.

PAGE 4

External Memory Data Structures

In computing, external memory data structures are data structures that
are designed to be used in external memory, such as a hard drive or tape
drive. External memory data structures are typically used to store very
large datasets that cannot fit in main memory.

There are many different types of external memory data structures, but
some of the most common include:

e B-trees

e B+ trees
e R-trees

e Skip lists
e Treaps

Each of these data structures has its own advantages and disadvantages.
B-trees and B+ trees are very efficient for accessing data in sorted order.
R-trees are very efficient for accessing data in spatial order. Skip lists
and treaps are very efficient for accessing data in a variety of orders.

External memory data structures can be implemented in any
programming language, but they are often implemented in Java. Java
provides a number of libraries that can be used to implement external
memory data structures, including the Java Collections Framework and
the Apache Hadoop library.

Implementation of External Memory Data Structures in Java

There are several ways to implement external memory data structures
in Java. One common approach is to use the Java Collections Framework.
The Java Collections Framework provides a number of data structures
that can be used to store data in external memory, including the TreeSet
and the SortedMap classes.

Another approach to implementing external memory data structures in
Java is to use the Apache Hadoop library. The Apache Hadoop library

PAGE 5

provides a number of tools that can be used to store and process data in
external memory, including the HDFS file system and the MapReduce
programming model.

Conclusion

External memory data structures are a powerful tool that can be used to
store and process very large datasets. If you are working on a project
that requires you to store or process very large datasets, then you should
consider using external memory data structures.

PAGE 6

Multi-dimensional Data Structures

In computing, a multi-dimensional data structure is a data structure
that can store data in multiple dimensions. Multi-dimensional data
structures are typically used to store data that is naturally organized in
multiple dimensions, such as images, video, and spatial data.

There are many different types of multi-dimensional data structures,
but some of the most common include:

e Arrays

e Matrices

e Hash tables
e Skip lists

e Treaps

Each of these data structures has its own advantages and disadvantages.
Arrays are very efficient for storing data in a contiguous block of
memory. Matrices are very efficient for storing data that is organized in
arectangular grid. Hash tables are very efficient for storing data that can
be accessed by a key. Skip lists and treaps are very efficient for storing
data in a variety of orders.

Multi-dimensional data structures can be implemented in any
programming language, but they are often implemented in Java. Java
provides a number of libraries that can be used to implement multi-
dimensional data structures, including the Java Collections Framework
and the Apache Hadoop library.

Implementation of Multi-dimensional Data Structures in Java

There are several ways to implement multi-dimensional data structures
in Java. One common approach is to use the Java Collections Framework.
The Java Collections Framework provides a number of data structures
that can be used to store data in multiple dimensions, including the List
and the Map classes.

PAGE 7

Another approach to implementing multi-dimensional data structures
in Java is to use the Apache Hadoop library. The Apache Hadoop library
provides a number of tools that can be used to store and process data in
multiple dimensions, including the HDFS file system and the
MapReduce programming model.

Conclusion

Multi-dimensional data structures are a powerful tool that can be used
to store and process data that is naturally organized in multiple
dimensions. If you are working on a project that requires you to store or
process data in multiple dimensions, then you should consider using
multi-dimensional data structures.

Here are some examples of how multi-dimensional data structures can
be used:

e Storing images: An image can be stored as a 2D array, where each
element in the array represents a pixel in the image.

e Storing video: A video can be stored as a 3D array, where each
element in the array represents a frame in the video.

e Storing spatial data: Spatial data, such as the location of cities or
the boundaries of countries, can be stored as a 2D or 3D array,
where each element in the array represents a point in space.

Multi-dimensional data structures can be used to solve a variety of
problems, such as image processing, video processing, and spatial
analysis.

PAGE 8

Randomized Data Structures

In computing, a randomized data structure is a data structure that uses
randomness to improve its efficiency or correctness. Randomized data
structures are often used to solve problems that are difficult or
impossible to solve with deterministic data structures.

There are many different types of randomized data structures, but some
of the most common include:

e Randomized quicksort

e Randomized selection

¢ Randomized hashing

¢ Randomized binary search

¢ Randomized graph algorithms

Each of these data structures has its own advantages and disadvantages.
Randomized quicksort is very efficient for sorting large datasets.
Randomized selection can be used to find the kth smallest element in a
large dataset. Randomized hashing can be used to store data in a hash
table with very good performance. Randomized binary search can be
used to search for an element in a sorted array with very good
performance. Randomized graph algorithms can be used to solve a
variety of graph problems, such as finding the shortest path between
two nodes or finding the maximum flow in a network.

Randomized data structures can be implemented in any programming
language, but they are often implemented in Java. Java provides a
number of libraries that can be used to implement randomized data
structures, including the Java Collections Framework and the Apache
Hadoop library.

Implementation of Randomized Data Structures in Java

There are several ways to implement randomized data structures in Java.
One common approach is to use the Java Collections Framework. The

PAGE 9

Java Collections Framework provides a number of data structures that
can be used to implement randomized data structures, including the
Random class and the Collections.shuffle() method.

Another approach to implementing randomized data structures in Java
is to use the Apache Hadoop library. The Apache Hadoop library
provides a number of tools that can be used to implement randomized
data structures, including the Random class and the Hadoop.shuffle()
method.

Conclusion

Randomized data structures are a powerful tool that can be used to solve
a variety of problems. If you are working on a project that requires you
to solve a problem that is difficult or impossible to solve with
deterministic data structures, then you should consider using
randomized data structures.

Here are some examples of how randomized data structures can be
used:

e Sorting: Randomized quicksort can be used to sort large datasets
very efficiently.

e Searching: Randomized binary search can be used to search for an
element in a sorted array very efficiently.

¢ Hashing: Randomized hashing can be used to store data in a hash
table with very good performance.

e Graph algorithms: Randomized graph algorithms can be used to
solve a variety of graph problems, such as finding the shortest path
between two nodes or finding the maximum flow in a network.

Randomized data structures can be used to solve a variety of problems,
such as sorting, searching, hashing, and graph algorithms.

PAGE 10

Distributed Data Structures

In computing, a distributed data structure is a data structure that is
stored and accessed across multiple nodes in a computer network.
Distributed data structures are used to solve problems that require
access to large amounts of data that cannot be stored on a single node.

There are many different types of distributed data structures, but some
of the most common include:

e Distributed hash tables
e Distributed trees

e Distributed graphs

e Distributed databases

Each of these data structures has its own advantages and disadvantages.
Distributed hash tables are very efficient for storing and retrieving data
that can be accessed by a key. Distributed trees are very efficient for
storing and retrieving data that is organized in a hierarchical order.
Distributed graphs are very efficient for storing and retrieving data that
is connected in a network. Distributed databases are very efficient for
storing and retrieving large amounts of data.

Distributed data structures can be implemented in any programming
language, but they are often implemented in Java. Java provides a
number of libraries that can be used to implement distributed data
structures, including the Java Collections Framework and the Apache
Hadoop library.

Implementation of Distributed Data Structures in Java

There are several ways to implement distributed data structures in Java.
One common approach is to use the Java Collections Framework. The
Java Collections Framework provides a number of data structures that
can be used to implement distributed data structures, including the
ConcurrentHashMap class and the ConcurrentSkipListSet class.

PAGE 1

Another approach to implementing distributed data structures in Java
is to use the Apache Hadoop library. The Apache Hadoop library
provides a number of tools that can be used to implement distributed
data structures, including the HDFS file system and the MapReduce
programming model.

Conclusion

Distributed data structures are a powerful tool that can be used to solve
a variety of problems. If you are working on a project that requires you
to store or process large amounts of data that cannot be stored on a
single node, then you should consider using distributed data structures.

Here are some examples of how distributed data structures can be used:

e Storing large amounts of data: Distributed data structures can be
used to store large amounts of data that cannot be stored on a
single node. For example, a distributed hash table can be used to
store a large file system.

e Processing large amounts of data: Distributed data structures can
be used to process large amounts of data that cannot be processed
on a single node. For example, a distributed graph can be used to
find the shortest path between two nodes in a large network.

¢ Providing fault tolerance: Distributed data structures can be used
to provide fault tolerance. For example, a distributed database can
be used to store data in a way that is resilient to failures of
individual nodes.

Distributed data structures can be used to solve a variety of problems,
such as storing, processing, and providing fault tolerance for large
amounts of data.

PAGE 12

