

ADVANCED DATA
STRUCTURES

DATA STRUCTURES IN JAVA

Sercan Külcü | Data Structures In Java | 10.05.2023

PAGE 1

Contents

Interval Trees ..2

Trie ... 3

Suffix Trees ... 4

Bloom Filters .. 4

Skip Lists .. 6

Treaps ..7

Link-Cut Trees ..7

PAGE 2

Interval Trees

An interval tree is a data structure that can be used to represent a set of

intervals on a line. Each interval is represented by a pair of numbers, its

start and end points. Interval trees can be used to solve a variety of

problems, such as finding the intervals that overlap a given point or

finding the intervals that are completely contained within another

interval.

Interval trees are typically implemented as binary search trees, where

each node in the tree represents an interval. The intervals are sorted by

their start points, and the children of each node represent the intervals

that are completely contained within the interval represented by the

node.

Interval trees can be used to solve a variety of problems, such as:

• Finding the intervals that overlap a given point

• Finding the intervals that are completely contained within

another interval

• Finding the intervals that are adjacent to each other

• Finding the intervals that are in a given range

• Finding the intervals that are sorted by their start points

Interval trees are a powerful data structure that can be used to solve a

variety of problems. They are relatively easy to implement and can be

used to solve problems that would be difficult to solve with other data

structures.

Example: Let's consider an example of how an interval tree can be used

to solve a problem. Suppose we have a set of intervals that represent the

times that a group of people are available to meet. We want to find the

intervals that overlap so that we can schedule a meeting that will work

for everyone.

PAGE 3

We can represent the set of intervals as an interval tree. The start points

of the intervals are sorted, and the children of each node represent the

intervals that are completely contained within the interval represented

by the node.

To find the intervals that overlap, we can start at the root of the tree and

recursively check each node. If the start point of the current node is less

than or equal to the end point of the current node, then the current

node represents an interval that overlaps with the current interval. We

can then add the current node to the list of overlapping intervals.

We continue recursively checking each node until we reach a leaf node.

At this point, we have found all of the intervals that overlap with the

current interval.

Trie

A trie, also known as a prefix tree, is a tree data structure that is used to

store a set of strings. Each string is stored as a path from the root of the

tree to a leaf node. The nodes in the trie store the characters of the

strings, and the edges in the trie store the relationships between the

characters.

Tries are a very efficient data structure for storing and searching strings.

They can be used to solve a variety of problems, such as:

• String matching: Tries can be used to find all of the strings in a set

that match a given pattern.

• Spell checking: Tries can be used to check if a given word is spelled

correctly.

• Autocomplete: Tries can be used to suggest words that are likely

to be typed next.

PAGE 4

Tries are typically implemented as binary trees, where each node in the

tree stores a character and the children of each node store the characters

that follow the character stored in the node.

Tries are a powerful data structure that can be used to solve a variety of

problems. They are relatively easy to implement and can be used to solve

problems that would be difficult to solve with other data structures.

Suffix Trees

A suffix tree is a data structure that can be used to represent a string. It

is a compressed trie of all the suffixes of the string. Suffix trees are used

to solve a variety of string-related problems, such as pattern matching,

finding distinct substrings in a given string, and finding longest

palindromes.

Suffix trees can be constructed using a variety of algorithms. The most

common algorithm is Ukkonen's algorithm. Ukkonen's algorithm is a

dynamic programming algorithm that constructs the suffix tree one

suffix at a time.

Bloom Filters

A Bloom filter is a probabilistic data structure that allows for fast and

memory-efficient membership testing. It provides a way to answer the

question "Is element X in the set?" without storing the entire set of

elements. Bloom filters can offer significant space savings compared to

traditional data structures like arrays or hash tables.

A Bloom filter consists of a bit array of m bits, where m is a power of two.

Initially, all bits are set to 0. To add an element to the Bloom filter, we

hash the element k times, where k is the number of hash functions. The

hash functions should be chosen so that they are evenly distributed over

PAGE 5

the range of 0 to m - 1. For each hash function, we set the bit at the

corresponding index in the bit array to 1.

To test whether an element is in the Bloom filter, we hash the element

k times and check if the corresponding bits in the bit array are set to 1.

If all bits are set to 1, then the element is probably in the Bloom filter.

However, it is possible for an element to not be in the Bloom filter and

still return a positive result. This is called a false positive. The probability

of a false positive can be controlled by the number of hash functions

used.

Advantages of Bloom Filters

Bloom filters offer several advantages over traditional data structures for

membership testing. They are:

• Space-efficient: Bloom filters can offer significant space savings

compared to traditional data structures. The space required for a

Bloom filter is proportional to the number of bits in the bit array,

which is typically much smaller than the number of elements in

the set.

• Fast: Membership testing in a Bloom filter is very fast. It takes only

O(k) time, where k is the number of hash functions.

• Probabilistic: Bloom filters are probabilistic data structures. This

means that there is a small probability that an element will return

a positive result even if it is not in the set. This probability can be

controlled by the number of hash functions used.

Disadvantages of Bloom Filters

Bloom filters also have some disadvantages. They are:

• False positives: The main disadvantage of Bloom filters is the

possibility of false positives. This means that an element may

return a positive result even if it is not in the set. This can be a

problem if the false positive rate is too high.

PAGE 6

• Cannot be used for deletion: Bloom filters cannot be used to delete

elements from the set. Once an element is added to the Bloom

filter, it cannot be removed.

Applications of Bloom Filters

Bloom filters are used in a variety of applications, including:

• Web filtering: Bloom filters can be used to filter out unwanted

content from web pages. For example, they can be used to block

pornographic or malicious content.

• Spam filtering: Bloom filters can be used to filter out spam emails.

For example, they can be used to block emails that contain certain

keywords or phrases.

• Duplicate detection: Bloom filters can be used to detect duplicate

files. For example, they can be used to find duplicate images or

documents.

• Load balancing: Bloom filters can be used to load balance web

servers. For example, they can be used to distribute requests to

servers based on their load.

Skip Lists

A skip list is a probabilistic data structure that can be used to store a

sorted list of elements. It is similar to a linked list, but it has additional

levels that allow for faster searching.

The bottom level of a skip list is a regular linked list. The next level up

has half as many nodes as the bottom level, and so on. The top level has

only one node.

Each node in a skip list has two pointers: a forward pointer and a down

pointer. The forward pointer points to the next node in the same level.

The down pointer points to the corresponding node in the next level.

PAGE 7

To search for an element in a skip list, we start at the top level and follow

the forward pointers until we reach a node that contains the element we

are looking for. If we don't find the element, we then follow the down

pointer to the next level and repeat the process.

Insertion and deletion in a skip list are similar to search. To insert an

element, we first find the node where the element should be inserted.

We then create a new node with the element and insert it into the list.

To delete an element, we find the node that contains the element and

then remove it from the list.

Skip lists have several advantages over other data structures, such as

linked lists and binary search trees. They are typically faster for

searching, insertion, and deletion, and they are also more scalable.

Treaps

A treap is a probabilistic data structure that can be used to store a sorted

list of elements. It is like a binary search tree, but it has a random

priority associated with each node. The priority of a node is used to

determine the order of the nodes in the tree.

Treaps have several advantages over other data structures, such as

binary search trees. They are typically faster for searching, insertion, and

deletion, and they are also more scalable.

Link-Cut Trees

A link-cut tree is a data structure that can be used to represent a forest,

a set of rooted trees. It supports the following operations:

• Link : Attach a tree consisting of a single node to the forest.

• Cut : Disconnect a node (and its subtree) from the tree of which

it is part.

PAGE 8

• Find-root : Given a node, find the root of the tree to which it

belongs.

Link-cut trees are a powerful data structure that can be used to solve a

variety of problems, such as dynamic connectivity, minimum spanning

trees, and range minimum queries.

Here are some of the advantages of link-cut trees:

• They are very efficient for dynamic connectivity problems.

• They can be used to solve a variety of other problems, such as

minimum spanning trees and range minimum queries.

• They are relatively easy to implement.

Here are some of the disadvantages of link-cut trees:

• They can be more complex than other data structures, such as

binary search trees.

• They can be more difficult to understand and debug.

Overall, link-cut trees are a powerful and versatile data structure that

can be used to solve a variety of problems.

