

HEAPS AND PRIORITY
QUEUES

DATA STRUCTURES IN JAVA

Sercan Külcü | Data Structures In Java | 10.05.2023

PAGE 1

Contents

Heaps ...2

Binary Heaps .. 6

Fibonacci Heaps ... 8

Skew Heaps ... 10

Binomial Heaps .. 11

Union-Find .. 12

Priority Queue .. 16

PAGE 2

Heaps

A heap is a data structure that can be used to store a collection of

elements in a way that allows for efficient access to the minimum or

maximum element. A heap is a complete binary tree, which means that

all levels of the tree are filled, except for the last level, which is filled

from left to right.

There are two types of heaps: max heaps and min heaps. In a max heap,

the value of the root node is always greater than or equal to the values

of its children. In a min heap, the value of the root node is always less

than or equal to the values of its children.

Heaps can be used to implement priority queues. A priority queue is a

data structure that stores a collection of elements, each of which has a

priority. The elements in a priority queue are ordered by their priority,

with the element with the highest priority at the front of the queue.

Heaps can also be used to implement sorting algorithms. The most

common heap sorting algorithm is heap sort. Heap sort works by first

building a max heap from the input array. The root node of the max

heap is then removed and placed at the end of the array. The heap is

then rebuilt without the root node. This process is repeated until the

array is sorted.

Heaps are a powerful data structure that can be used for a variety of

tasks. They are efficient for access to the minimum or maximum

element, and they can be used to implement priority queues and sorting

algorithms.

Operations on Heaps

There are a number of operations that can be performed on heaps. Some

of the most common operations include:

 Insert: An element can be inserted into a heap by adding it to the

end of the tree and then heapifying the tree.

PAGE 3

 Delete: An element can be deleted from a heap by removing the

root node and then heapifying the tree.

 GetMin: The minimum element in a heap can be obtained by

accessing the root node.

 GetMax: The maximum element in a heap can be obtained by

accessing the root node.

 Heapify: A heap can be heapified by recursively sorting the

subtrees of the root node.

Implementation of Heaps in Java

Heaps can be implemented in Java using a variety of data structures.

One common implementation is to use an array. The elements of the

array are stored in level order, with the root node at index 0 and the

leaves at the bottom of the array.

The following code shows how to implement a max heap in Java:

public class MaxHeap {

 private int[] data;

 private int size;

 public MaxHeap(int capacity) {

 data = new int[capacity];

 }

 public void insert(int element) {

 data[size++] = element;

 heapify(size - 1);

PAGE 4

 }

 public int getMax() {

 return data[0];

 }

 public void deleteMax() {

 data[0] = data[size - 1];

 size--;

 heapify(0);

 }

 private void heapify(int index) {

 int left = 2 * index + 1;

 int right = 2 * index + 2;

 int largest = index;

 if (left < size && data[left] > data[largest]) {

 largest = left;

 }

 if (right < size && data[right] > data[largest]) {

PAGE 5

 largest = right;

 }

 if (largest != index) {

 int temp = data[index];

 data[index] = data[largest];

 data[largest] = temp;

 heapify(largest);

 }

 }

}

This implementation of a max heap supports the following operations:

 Insert: An element can be inserted into the heap by calling the

insert() method.

 DeleteMax: The maximum element can be deleted from the heap

by calling the deleteMax() method.

 GetMax: The maximum element in the heap can be obtained by

calling the getMax() method.

Heaps are a powerful data structure that can be used for a variety of

tasks. They are efficient for access to the minimum or maximum

element, and they can be used to implement priority queues and sorting

algorithms.

PAGE 6

Binary Heaps

A binary heap is a data structure that can be used to store a collection

of elements in a way that allows for efficient access to the minimum or

maximum element. A binary heap is a complete binary tree, which

means that all levels of the tree are filled, except for the last level, which

is filled from left to right.

There are two types of binary heaps: max heaps and min heaps. In a max

heap, the value of the root node is always greater than or equal to the

values of its children. In a min heap, the value of the root node is always

less than or equal to the values of its children.

Binary heaps can be used to implement priority queues. A priority queue

is a data structure that stores a collection of elements, each of which has

a priority. The elements in a priority queue are ordered by their priority,

with the element with the highest priority at the front of the queue.

Binary heaps can also be used to implement sorting algorithms. The

most common binary heap sorting algorithm is heap sort. Heap sort

works by first building a max heap from the input array. The root node

of the max heap is then removed and placed at the end of the array. The

heap is then rebuilt without the root node. This process is repeated until

the array is sorted.

Binary heaps are a powerful data structure that can be used for a variety

of tasks. They are efficient for access to the minimum or maximum

element, and they can be used to implement priority queues and sorting

algorithms.

Operations on Binary Heaps

There are a number of operations that can be performed on binary heaps.

Some of the most common operations include:

 Insert: An element can be inserted into a binary heap by adding it

to the end of the tree and then heapifying the tree.

PAGE 7

 Delete: An element can be deleted from a binary heap by

removing the root node and then heapifying the tree.

 GetMin: The minimum element in a binary heap can be obtained

by accessing the root node.

 GetMax: The maximum element in a binary heap can be obtained

by accessing the root node.

 Heapify: A binary heap can be heapified by recursively sorting the

subtrees of the root node.

PAGE 8

Fibonacci Heaps

A Fibonacci heap is a data structure that can be used to store a collection

of elements in a way that allows for efficient access to the minimum or

maximum element. A Fibonacci heap is a collection of trees satisfying

the minimum-heap property, that is, the key of a child is always greater

than or equal to the key of the parent. This implies that the minimum

key is always at the root of one of the trees. Compared with binomial

heaps, the structure of a Fibonacci heap is more flexible. The trees do

not have a prescribed shape and in the extreme case the heap can have

every element in a separate tree. This flexibility allows some operations

to be executed in a lazy manner, postponing the work for later

operations.

In computer science, a Fibonacci heap is a data structure for priority

queue operations, consisting of a collection of heap-ordered trees. It has

a better amortized running time than many other priority queue data

structures including the binary heap and binomial heap. Michael L.

Fredman and Robert E. Tarjan developed Fibonacci heaps in 1984 and

published them in a scientific journal in 1987. Fibonacci heaps are

named after the Fibonacci numbers, which are used in their running

time analysis.

Operations on Fibonacci Heaps

There are a number of operations that can be performed on Fibonacci

heaps. Some of the most common operations include:

 Insert: An element can be inserted into a Fibonacci heap by

adding it to the end of the tree and then consolidating the heap.

 DeleteMin: The minimum element in a Fibonacci heap can be

obtained by removing the root node and then consolidating the

heap.

PAGE 9

 DecreaseKey: The key of an element in a Fibonacci heap can be

decreased by updating the element's key and then consolidating

the heap.

 Merge: Two Fibonacci heaps can be merged into a single Fibonacci

heap.

PAGE 10

Skew Heaps

A skew heap is a data structure that can be used to store a collection of

elements in a way that allows for efficient access to the minimum or

maximum element. A skew heap is a heap, which means that the

elements are stored in a way that the minimum or maximum element

can be found quickly. Skew heaps are also binomial heaps, which means

that they can be merged efficiently.

Skew heaps were invented by Vadim V. Makeev in 1985. They are a more

efficient data structure than binary heaps for some operations, such as

decrease-key and delete-min. Skew heaps are also more efficient than

Fibonacci heaps for some operations, such as merge.

Operations on Skew Heaps

There are a number of operations that can be performed on skew heaps.

Some of the most common operations include:

 Insert: An element can be inserted into a skew heap by adding it

to the end of the tree and then splaying the tree.

 DeleteMin: The minimum element in a skew heap can be obtained

by removing the root node and then splaying the tree.

 DecreaseKey: The key of an element in a skew heap can be

decreased by updating the element's key and then splaying the

tree.

 Merge: Two skew heaps can be merged into a single skew heap.

PAGE 11

Binomial Heaps

A binomial heap is a data structure that can be used to store a collection

of elements in a way that allows for efficient access to the minimum or

maximum element. A binomial heap is a heap, which means that the

elements are stored in a way that the minimum or maximum element

can be found quickly. Binomial heaps are also union-find data structures,

which means that they can be merged efficiently.

Binomial heaps were invented by Michael L. Fredman and Robert E.

Tarjan in 1984. They are a more efficient data structure than binary

heaps for some operations, such as decrease-key and delete-min.

Binomial heaps are also more efficient than Fibonacci heaps for some

operations, such as merge.

Operations on Binomial Heaps

There are a number of operations that can be performed on binomial

heaps. Some of the most common operations include:

 Insert: An element can be inserted into a binomial heap by adding

it to the end of the tree and then merging the tree with a binomial

tree of degree 1.

 DeleteMin: The minimum element in a binomial heap can be

obtained by removing the root node and then merging the tree

with the binomial trees of all the children of the root node.

 DecreaseKey: The key of an element in a binomial heap can be

decreased by updating the element's key and then merging the

tree with the binomial trees of all the children of the element.

 Merge: Two binomial heaps can be merged into a single binomial

heap.

PAGE 12

Union-Find

A union-find data structure is a data structure that can be used to track

the connected components of a set. A connected component is a subset

of a set in which any two elements can be reached from each other by

following edges.

Union-find data structures are often used to solve problems in graph

theory, such as finding the connected components of a graph and

finding the minimum spanning tree of a graph.

Operations on Union-Find Data Structures

There are a number of operations that can be performed on union-find

data structures. Some of the most common operations include:

 Union: The union operation combines two connected

components into a single connected component.

 Find: The find operation finds the connected component that

contains a given element.

 Count: The count operation returns the number of connected

components in the data structure.

Implementation of Union-Find Data Structures in Java

Union-find data structures can be implemented in Java using a variety

of data structures. One common implementation is to use an array. The

elements of the array are stored in index order, with the root node of

each connected component at index 0 and the leaves at the bottom of

the array.

The following code shows how to implement a union-find data structure

in Java:

public class UnionFind {

PAGE 13

 private int[] data;

 private int[] rank;

 public UnionFind(int n) {

 data = new int[n];

 rank = new int[n];

 for (int i = 0; i < n; i++) {

 data[i] = i;

 rank[i] = 0;

 }

 }

 public void union(int x, int y) {

 int rootX = find(x);

 int rootY = find(y);

 if (rootX == rootY) {

 return;

 }

 if (rank[rootX] < rank[rootY]) {

 data[rootX] = rootY;

 } else {

 data[rootY] = rootX;

PAGE 14

 if (rank[rootX] == rank[rootY]) {

 rank[rootX]++;

 }

 }

 }

 public int find(int x) {

 if (data[x] == x) {

 return x;

 } else {

 return data[x] = find(data[x]);

 }

 }

 public boolean connected(int x, int y) {

 return find(x) == find(y);

 }

 public int count() {

 int count = 0;

 for (int i = 0; i < data.length; i++) {

 if (data[i] == i) {

PAGE 15

 count++;

 }

 }

 return count;

 }

}

Union-find data structures are a powerful data structure that can be

used for a variety of tasks. They are efficient for finding connected

components and minimum spanning trees, and they can be used to

solve a variety of problems in graph theory.

PAGE 16

Priority Queue

A priority queue is a data structure that can be used to store a collection

of elements in a way that allows for efficient access to the element with

the highest priority. The priority of an element is a value that is

associated with the element, and it is used to determine the order in

which the elements are processed.

Priority queues are often used to solve problems in scheduling, such as

finding the shortest path between two nodes in a graph and finding the

maximum flow in a network.

Operations on Priority Queues

There are a number of operations that can be performed on priority

queues. Some of the most common operations include:

 Enqueue: The enqueue operation adds an element to the priority

queue.

 Dequeue: The dequeue operation removes the element with the

highest priority from the priority queue.

 Peek: The peek operation returns the element with the highest

priority from the priority queue without removing it.

 IsEmpty: The isEmpty operation returns true if the priority queue

is empty and false otherwise.

Implementation of Priority Queues in Java

Priority queues can be implemented in Java using a variety of data

structures. One common implementation is to use a heap. A heap is a

data structure that stores elements in a way that allows for efficient

access to the element with the highest priority.

The following code shows how to implement a priority queue in Java

using a heap:

public class PriorityQueue {

PAGE 17

 private Node[] data;

 private int size;

 public PriorityQueue() {

 data = new Node[0];

 size = 0;

 }

 public void enqueue(int element) {

 Node newNode = new Node(element);

 data = Arrays.copyOf(data, size + 1);

 data[size] = newNode;

 size++;

 heapify(size - 1);

 }

 public int dequeue() {

 if (size == 0) {

 return -1;

 }

 int min = data[0].element;

PAGE 18

 data[0] = data[size - 1];

 size--;

 heapify(0);

 return min;

 }

 public int peek() {

 if (size == 0) {

 return -1;

 }

 return data[0].element;

 }

 public boolean isEmpty() {

 return size == 0;

 }

 private void heapify(int index) {

 while (index < size / 2) {

 int leftChild = 2 * index + 1;

 int rightChild = 2 * index + 2;

 int largest = index;

PAGE 19

 if (leftChild < size && data[leftChild].element >

data[largest].element) {

 largest = leftChild;

 }

 if (rightChild < size && data[rightChild].element >

data[largest].element) {

 largest = rightChild;

 }

 if (largest != index) {

 swap(index, largest);

 heapify(largest);

 }

 }

 }

 private void swap(int index1, int index2) {

 Node temp = data[index1];

 data[index1] = data[index2];

 data[index2] = temp;

 }

}

Priority queues are a powerful data structure that can be used for a

variety of tasks. They are efficient for access to the element with the

PAGE 20

highest priority, and they can be used to solve a variety of problems in

scheduling and graph theory.

