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Graphs 

A graph is a data structure that represents a collection of objects, called 

vertices, and the relationships between them, called edges. Vertices are 

connected by edges, which can be directed or undirected. A directed 

edge is an edge that has a direction, such as from vertex A to vertex B. 

An undirected edge does not have a direction, such as between vertex A 

and vertex B. 

Graphs can be used to model a wide variety of real-world objects and 

relationships, such as: 

 Transportation networks, such as roads and railways, can be 

modeled as graphs, where vertices represent cities and edges 

represent roads or railways between cities. 

 Social networks, such as Facebook or Twitter, can be modeled as 

graphs, where vertices represent people and edges represent 

friendships between people. 

 Computer networks, such as the internet, can be modeled as 

graphs, where vertices represent computers and edges represent 

connections between computers. 

Representing Graphs 

There are two main ways to represent graphs: 

 Adjacency lists represent graphs as a list of lists. Each list 

represents the vertices that are connected to a particular vertex. 

 Adjacency matrices represent graphs as a matrix. Each entry in the 

matrix represents the connection between two vertices. 

Operations on Graphs 

There are a number of operations that can be performed on graphs, 

including: 

 Searching is the process of finding a particular vertex in a graph. 
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 Traversing is the process of visiting all the vertices in a graph. 

There are a number of different ways to traverse a graph, 

including: 

o Breadth-first search visits all the vertices that are connected 

to a particular vertex before visiting any other vertices. 

o Depth-first search visits all the vertices that are connected 

to a particular vertex before visiting any vertices that are 

connected to those vertices. 

 Adding vertices is the process of adding a new vertex to a graph. 

 Deleting vertices is the process of removing a vertex from a graph. 

 Adding edges is the process of adding a new edge to a graph. 

 Deleting edges is the process of removing an edge from a graph. 

Applications 

Graphs are used in a wide variety of applications, including: 

 Routing, such as finding the shortest path between two cities. 

 Scheduling, such as finding a schedule for a set of tasks that 

minimizes the total amount of time required to complete the tasks. 

 Social network analysis, such as finding influential people in a 

social network. 

 Computer vision, such as finding objects in an image. 

 Natural language processing, such as finding the relationships 

between words in a sentence. 

Conclusion 

Graphs are a powerful data structure that can be used to model a wide 

variety of real-world objects and relationships. Graphs can be used to 

solve a variety of problems, including routing, scheduling, social 

network analysis, computer vision, and natural language processing. 
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Directed Acyclic Graphs 

A directed acyclic graph (DAG) is a graph that does not contain any 

cycles. A cycle is a path that starts and ends at the same vertex. DAGs 

can be used to model a wide variety of real-world objects and 

relationships, such as: 

 Computer programs, where vertices represent instructions and 

edges represent control flow. 

 Manufacturing processes, where vertices represent steps in the 

process and edges represent the order in which the steps must be 

performed. 

 Scheduling problems, where vertices represent tasks and edges 

represent dependencies between tasks. 

Representing DAGs 

There are two main ways to represent DAGs: 

 Adjacency lists represent DAGs as a list of lists. Each list 

represents the vertices that are connected to a particular vertex. 

 Adjacency matrices represent DAGs as a matrix. Each entry in the 

matrix represents the connection between two vertices. 

Operations on DAGs 

There are a number of operations that can be performed on DAGs, 

including: 

 Topological sorting is the process of ordering the vertices in a 

DAG such that there are no directed edges from a vertex to a 

vertex that comes before it in the order. 

 Finding the shortest path is the process of finding the path 

between two vertices that has the least number of edges. 

 Finding the longest path is the process of finding the path 

between two vertices that has the greatest number of edges. 
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 Finding the critical path is the process of finding the longest path 

from the start vertex to the end vertex in a DAG. 

Applications 

DAGs are used in a wide variety of applications, including: 

 Computer programming, where DAGs are used to represent the 

control flow of computer programs. 

 Manufacturing processes, where DAGs are used to represent the 

steps in a manufacturing process. 

 Scheduling problems, where DAGs are used to represent tasks and 

dependencies between tasks. 

 Network analysis, where DAGs are used to represent networks of 

computers or other devices. 

 Theorizing about algorithms, where DAGs are used to represent 

problems that can be solved using algorithms. 

Conclusion 

DAGs are a powerful data structure that can be used to model a wide 

variety of real-world objects and relationships. DAGs can be used to 

solve a variety of problems, including topological sorting, finding the 

shortest path, finding the longest path, and finding the critical path. 
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Weighted Graphs 

A weighted graph is a graph where edges have a weight associated with 

them. The weight can represent the distance between two vertices, the 

cost of traveling between two vertices, or any other value. 

Weighted graphs can be used to model a wide variety of real-world 

objects and relationships, such as: 

 Transportation networks, such as roads and railways, can be 

modeled as weighted graphs, where vertices represent cities and 

edges represent roads or railways between cities. The weight of 

the edge can represent the distance between the cities. 

 Social networks, such as Facebook or Twitter, can be modeled as 

weighted graphs, where vertices represent people and edges 

represent friendships between people. The weight of the edge can 

represent the strength of the friendship. 

 Computer networks, such as the internet, can be modeled as 

weighted graphs, where vertices represent computers and edges 

represent connections between computers. The weight of the 

edge can represent the bandwidth of the connection. 

Representing Weighted Graphs 

There are two main ways to represent weighted graphs: 

 Adjacency lists represent weighted graphs as a list of lists. Each 

list represents the vertices that are connected to a particular 

vertex. The weight of the edge is stored in the list. 

 Adjacency matrices represent weighted graphs as a matrix. Each 

entry in the matrix represents the connection between two 

vertices. The weight of the edge is stored in the entry. 

Operations on Weighted Graphs 

There are a number of operations that can be performed on weighted 

graphs, including: 
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 Finding the shortest path is the process of finding the path 

between two vertices that has the least weight. 

 Finding the longest path is the process of finding the path 

between two vertices that has the greatest weight. 

 Finding the minimum spanning tree is the process of finding a 

subset of the edges in a graph that connects all the vertices and 

has the least total weight. 

 Finding the maximum flow is the process of finding the maximum 

amount of flow that can be sent from one vertex to another vertex 

in a graph. 

Applications 

Weighted graphs are used in a wide variety of applications, including: 

 Routing, such as finding the shortest path between two cities. 

 Scheduling, such as finding a schedule for a set of tasks that 

minimizes the total amount of time required to complete the tasks. 

 Social network analysis, such as finding influential people in a 

social network. 

 Computer vision, such as finding objects in an image. 

 Natural language processing, such as finding the relationships 

between words in a sentence. 

Conclusion 

Weighted graphs are a powerful data structure that can be used to 

model a wide variety of real-world objects and relationships. Weighted 

graphs can be used to solve a variety of problems, including routing, 

scheduling, social network analysis, computer vision, and natural 

language processing. 
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Multigraphs 

A multigraph is a graph that allows multiple edges to exist between two 

vertices. This means that there can be more than one path between two 

vertices in a multigraph. 

Multigraphs can be used to model a wide variety of real-world objects 

and relationships, such as: 

 Transportation networks, such as roads and railways, can be 

modeled as multigraphs, where vertices represent cities and edges 

represent roads or railways between cities. There can be multiple 

roads or railways between two cities, representing different routes 

that can be taken. 

 Social networks, such as Facebook or Twitter, can be modeled as 

multigraphs, where vertices represent people and edges represent 

friendships between people. There can be multiple friendships 

between two people, representing different ways that the people 

are connected. 

 Computer networks, such as the internet, can be modeled as 

multigraphs, where vertices represent computers and edges 

represent connections between computers. There can be multiple 

connections between two computers, representing different ways 

that the computers can be connected. 

Representing Multigraphs 

There are two main ways to represent multigraphs: 

 Adjacency lists represent multigraphs as a list of lists. Each list 

represents the vertices that are connected to a particular vertex. 

The number of times a vertex appears in the list represents the 

number of edges between the vertex and the current vertex. 

 Adjacency matrices represent multigraphs as a matrix. Each entry 

in the matrix represents the connection between two vertices. The 
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number of times a value appears in the entry represents the 

number of edges between the two vertices. 

Operations on Multigraphs 

There are a number of operations that can be performed on multigraphs, 

including: 

 Finding the shortest path is the process of finding the path 

between two vertices that has the least number of edges. 

 Finding the longest path is the process of finding the path 

between two vertices that has the greatest number of edges. 

 Finding the minimum spanning tree is the process of finding a 

subset of the edges in a graph that connects all the vertices and 

has the least total weight. 

 Finding the maximum flow is the process of finding the maximum 

amount of flow that can be sent from one vertex to another vertex 

in a graph. 

Applications 

Multigraphs are used in a wide variety of applications, including: 

 Routing, such as finding the shortest path between two cities. 

 Scheduling, such as finding a schedule for a set of tasks that 

minimizes the total amount of time required to complete the tasks. 

 Social network analysis, such as finding influential people in a 

social network. 

 Computer vision, such as finding objects in an image. 

 Natural language processing, such as finding the relationships 

between words in a sentence. 

Conclusion 

Multigraphs are a powerful data structure that can be used to model a 

wide variety of real-world objects and relationships. Multigraphs can be 
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used to solve a variety of problems, including routing, scheduling, social 

network analysis, computer vision, and natural language processing. 
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Minimum Spanning Trees 

A minimum spanning tree (MST) is a subset of the edges in a connected, 

edge-weighted undirected graph that connects all the vertices together, 

without any cycles and with the minimum possible total edge weight. 

That is, it is a spanning tree whose sum of edge weights is as small as 

possible. More generally, any edge-weighted undirected graph (not 

necessarily connected) has a minimum spanning forest, which is a union 

of the minimum spanning trees for its connected components. 

The minimum spanning tree of a graph can be found using a number of 

algorithms, including: 

 Kruskal's algorithm 

 Prim's algorithm 

 Boruvka's algorithm 

Kruskal's algorithm works by iteratively adding edges to the MST, 

starting with the edge with the smallest weight. Each edge is added to 

the MST only if it does not create a cycle. Prim's algorithm works by 

iteratively adding edges to the MST, starting with any vertex. Each edge 

is added to the MST only if it connects the current vertex to a vertex that 

is not already in the MST. Boruvka's algorithm works by iteratively 

merging MSTs, starting with each vertex as its own MST. Each MST is 

merged with the MST that has the smallest edge connecting them. 

Applications 

Minimum spanning trees are used in a wide variety of applications, 

including: 

 Routing, such as finding the shortest path between two cities. 

 Scheduling, such as finding a schedule for a set of tasks that 

minimizes the total amount of time required to complete the tasks. 

 Network design, such as finding the cheapest way to connect a set 

of points. 
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 Electrical engineering, such as finding the cheapest way to 

connect a set of power plants to a set of loads. 

 Computer vision, such as finding the edges in an image. 

 Natural language processing, such as finding the relationships 

between words in a sentence. 

Conclusion 

Minimum spanning trees are a powerful data structure that can be used 

to solve a variety of problems. Minimum spanning trees are a versatile 

and efficient data structure that can be used in a wide variety of 

applications. 


