

GRAPHS

DATA STRUCTURES IN JAVA

Sercan Külcü | Data Structures In Java | 10.05.2023

PAGE 1

Contents

Graphs ...2

Directed Acyclic Graphs .. 4

Weighted Graphs ... 6

Multigraphs .. 8

Minimum Spanning Trees ... 11

PAGE 2

Graphs

A graph is a data structure that represents a collection of objects, called

vertices, and the relationships between them, called edges. Vertices are

connected by edges, which can be directed or undirected. A directed

edge is an edge that has a direction, such as from vertex A to vertex B.

An undirected edge does not have a direction, such as between vertex A

and vertex B.

Graphs can be used to model a wide variety of real-world objects and

relationships, such as:

 Transportation networks, such as roads and railways, can be

modeled as graphs, where vertices represent cities and edges

represent roads or railways between cities.

 Social networks, such as Facebook or Twitter, can be modeled as

graphs, where vertices represent people and edges represent

friendships between people.

 Computer networks, such as the internet, can be modeled as

graphs, where vertices represent computers and edges represent

connections between computers.

Representing Graphs

There are two main ways to represent graphs:

 Adjacency lists represent graphs as a list of lists. Each list

represents the vertices that are connected to a particular vertex.

 Adjacency matrices represent graphs as a matrix. Each entry in the

matrix represents the connection between two vertices.

Operations on Graphs

There are a number of operations that can be performed on graphs,

including:

 Searching is the process of finding a particular vertex in a graph.

PAGE 3

 Traversing is the process of visiting all the vertices in a graph.

There are a number of different ways to traverse a graph,

including:

o Breadth-first search visits all the vertices that are connected

to a particular vertex before visiting any other vertices.

o Depth-first search visits all the vertices that are connected

to a particular vertex before visiting any vertices that are

connected to those vertices.

 Adding vertices is the process of adding a new vertex to a graph.

 Deleting vertices is the process of removing a vertex from a graph.

 Adding edges is the process of adding a new edge to a graph.

 Deleting edges is the process of removing an edge from a graph.

Applications

Graphs are used in a wide variety of applications, including:

 Routing, such as finding the shortest path between two cities.

 Scheduling, such as finding a schedule for a set of tasks that

minimizes the total amount of time required to complete the tasks.

 Social network analysis, such as finding influential people in a

social network.

 Computer vision, such as finding objects in an image.

 Natural language processing, such as finding the relationships

between words in a sentence.

Conclusion

Graphs are a powerful data structure that can be used to model a wide

variety of real-world objects and relationships. Graphs can be used to

solve a variety of problems, including routing, scheduling, social

network analysis, computer vision, and natural language processing.

PAGE 4

Directed Acyclic Graphs

A directed acyclic graph (DAG) is a graph that does not contain any

cycles. A cycle is a path that starts and ends at the same vertex. DAGs

can be used to model a wide variety of real-world objects and

relationships, such as:

 Computer programs, where vertices represent instructions and

edges represent control flow.

 Manufacturing processes, where vertices represent steps in the

process and edges represent the order in which the steps must be

performed.

 Scheduling problems, where vertices represent tasks and edges

represent dependencies between tasks.

Representing DAGs

There are two main ways to represent DAGs:

 Adjacency lists represent DAGs as a list of lists. Each list

represents the vertices that are connected to a particular vertex.

 Adjacency matrices represent DAGs as a matrix. Each entry in the

matrix represents the connection between two vertices.

Operations on DAGs

There are a number of operations that can be performed on DAGs,

including:

 Topological sorting is the process of ordering the vertices in a

DAG such that there are no directed edges from a vertex to a

vertex that comes before it in the order.

 Finding the shortest path is the process of finding the path

between two vertices that has the least number of edges.

 Finding the longest path is the process of finding the path

between two vertices that has the greatest number of edges.

PAGE 5

 Finding the critical path is the process of finding the longest path

from the start vertex to the end vertex in a DAG.

Applications

DAGs are used in a wide variety of applications, including:

 Computer programming, where DAGs are used to represent the

control flow of computer programs.

 Manufacturing processes, where DAGs are used to represent the

steps in a manufacturing process.

 Scheduling problems, where DAGs are used to represent tasks and

dependencies between tasks.

 Network analysis, where DAGs are used to represent networks of

computers or other devices.

 Theorizing about algorithms, where DAGs are used to represent

problems that can be solved using algorithms.

Conclusion

DAGs are a powerful data structure that can be used to model a wide

variety of real-world objects and relationships. DAGs can be used to

solve a variety of problems, including topological sorting, finding the

shortest path, finding the longest path, and finding the critical path.

PAGE 6

Weighted Graphs

A weighted graph is a graph where edges have a weight associated with

them. The weight can represent the distance between two vertices, the

cost of traveling between two vertices, or any other value.

Weighted graphs can be used to model a wide variety of real-world

objects and relationships, such as:

 Transportation networks, such as roads and railways, can be

modeled as weighted graphs, where vertices represent cities and

edges represent roads or railways between cities. The weight of

the edge can represent the distance between the cities.

 Social networks, such as Facebook or Twitter, can be modeled as

weighted graphs, where vertices represent people and edges

represent friendships between people. The weight of the edge can

represent the strength of the friendship.

 Computer networks, such as the internet, can be modeled as

weighted graphs, where vertices represent computers and edges

represent connections between computers. The weight of the

edge can represent the bandwidth of the connection.

Representing Weighted Graphs

There are two main ways to represent weighted graphs:

 Adjacency lists represent weighted graphs as a list of lists. Each

list represents the vertices that are connected to a particular

vertex. The weight of the edge is stored in the list.

 Adjacency matrices represent weighted graphs as a matrix. Each

entry in the matrix represents the connection between two

vertices. The weight of the edge is stored in the entry.

Operations on Weighted Graphs

There are a number of operations that can be performed on weighted

graphs, including:

PAGE 7

 Finding the shortest path is the process of finding the path

between two vertices that has the least weight.

 Finding the longest path is the process of finding the path

between two vertices that has the greatest weight.

 Finding the minimum spanning tree is the process of finding a

subset of the edges in a graph that connects all the vertices and

has the least total weight.

 Finding the maximum flow is the process of finding the maximum

amount of flow that can be sent from one vertex to another vertex

in a graph.

Applications

Weighted graphs are used in a wide variety of applications, including:

 Routing, such as finding the shortest path between two cities.

 Scheduling, such as finding a schedule for a set of tasks that

minimizes the total amount of time required to complete the tasks.

 Social network analysis, such as finding influential people in a

social network.

 Computer vision, such as finding objects in an image.

 Natural language processing, such as finding the relationships

between words in a sentence.

Conclusion

Weighted graphs are a powerful data structure that can be used to

model a wide variety of real-world objects and relationships. Weighted

graphs can be used to solve a variety of problems, including routing,

scheduling, social network analysis, computer vision, and natural

language processing.

PAGE 8

Multigraphs

A multigraph is a graph that allows multiple edges to exist between two

vertices. This means that there can be more than one path between two

vertices in a multigraph.

Multigraphs can be used to model a wide variety of real-world objects

and relationships, such as:

 Transportation networks, such as roads and railways, can be

modeled as multigraphs, where vertices represent cities and edges

represent roads or railways between cities. There can be multiple

roads or railways between two cities, representing different routes

that can be taken.

 Social networks, such as Facebook or Twitter, can be modeled as

multigraphs, where vertices represent people and edges represent

friendships between people. There can be multiple friendships

between two people, representing different ways that the people

are connected.

 Computer networks, such as the internet, can be modeled as

multigraphs, where vertices represent computers and edges

represent connections between computers. There can be multiple

connections between two computers, representing different ways

that the computers can be connected.

Representing Multigraphs

There are two main ways to represent multigraphs:

 Adjacency lists represent multigraphs as a list of lists. Each list

represents the vertices that are connected to a particular vertex.

The number of times a vertex appears in the list represents the

number of edges between the vertex and the current vertex.

 Adjacency matrices represent multigraphs as a matrix. Each entry

in the matrix represents the connection between two vertices. The

PAGE 9

number of times a value appears in the entry represents the

number of edges between the two vertices.

Operations on Multigraphs

There are a number of operations that can be performed on multigraphs,

including:

 Finding the shortest path is the process of finding the path

between two vertices that has the least number of edges.

 Finding the longest path is the process of finding the path

between two vertices that has the greatest number of edges.

 Finding the minimum spanning tree is the process of finding a

subset of the edges in a graph that connects all the vertices and

has the least total weight.

 Finding the maximum flow is the process of finding the maximum

amount of flow that can be sent from one vertex to another vertex

in a graph.

Applications

Multigraphs are used in a wide variety of applications, including:

 Routing, such as finding the shortest path between two cities.

 Scheduling, such as finding a schedule for a set of tasks that

minimizes the total amount of time required to complete the tasks.

 Social network analysis, such as finding influential people in a

social network.

 Computer vision, such as finding objects in an image.

 Natural language processing, such as finding the relationships

between words in a sentence.

Conclusion

Multigraphs are a powerful data structure that can be used to model a

wide variety of real-world objects and relationships. Multigraphs can be

PAGE 10

used to solve a variety of problems, including routing, scheduling, social

network analysis, computer vision, and natural language processing.

PAGE 11

Minimum Spanning Trees

A minimum spanning tree (MST) is a subset of the edges in a connected,

edge-weighted undirected graph that connects all the vertices together,

without any cycles and with the minimum possible total edge weight.

That is, it is a spanning tree whose sum of edge weights is as small as

possible. More generally, any edge-weighted undirected graph (not

necessarily connected) has a minimum spanning forest, which is a union

of the minimum spanning trees for its connected components.

The minimum spanning tree of a graph can be found using a number of

algorithms, including:

 Kruskal's algorithm

 Prim's algorithm

 Boruvka's algorithm

Kruskal's algorithm works by iteratively adding edges to the MST,

starting with the edge with the smallest weight. Each edge is added to

the MST only if it does not create a cycle. Prim's algorithm works by

iteratively adding edges to the MST, starting with any vertex. Each edge

is added to the MST only if it connects the current vertex to a vertex that

is not already in the MST. Boruvka's algorithm works by iteratively

merging MSTs, starting with each vertex as its own MST. Each MST is

merged with the MST that has the smallest edge connecting them.

Applications

Minimum spanning trees are used in a wide variety of applications,

including:

 Routing, such as finding the shortest path between two cities.

 Scheduling, such as finding a schedule for a set of tasks that

minimizes the total amount of time required to complete the tasks.

 Network design, such as finding the cheapest way to connect a set

of points.

PAGE 12

 Electrical engineering, such as finding the cheapest way to

connect a set of power plants to a set of loads.

 Computer vision, such as finding the edges in an image.

 Natural language processing, such as finding the relationships

between words in a sentence.

Conclusion

Minimum spanning trees are a powerful data structure that can be used

to solve a variety of problems. Minimum spanning trees are a versatile

and efficient data structure that can be used in a wide variety of

applications.

