

POINTERS

Sercan Külcü | 21.06.2023

PAGE 1

Contents

Contents .. 1

1 Understanding pointers and memory addresses .. 2

2 Pointer declaration and initialization .. 5

3 Pointer arithmetic .. 7

4 Dynamic memory allocation (malloc, calloc, free) ... 10

4.1 The malloc Function ... 10

4.2 The calloc Function... 10

4.3 The free Function ... 11

PAGE 2

1 Understanding pointers and memory addresses

In this chapter, we will embark on a fascinating journey to explore one of the most

powerful and fundamental concepts in the C language: pointers and memory

addresses. Understanding pointers is crucial for mastering C programming and

unleashing its full potential. So, let's dive right in!

In simple terms, a pointer is a variable that stores the memory address of another

variable. Think of it as a way to indirectly access and manipulate data stored in

computer memory. Pointers open up a whole new dimension of possibilities in C

programming, allowing us to dynamically allocate memory, create data structures,

and enhance program efficiency.

Every byte of memory in a computer has a unique address. These addresses can be

represented as hexadecimal numbers, such as 0x7FFF or 0xABCD. In C, we can use

pointers to access and manipulate the data stored at these memory addresses.

To declare a pointer in C, we use the asterisk (*) symbol before the variable name.

For example:

int *ptr;

Here, ptr is a pointer to an integer. Before using a pointer, it is essential to initialize

it with the address of a variable. We can do this by using the address-of operator (&)

followed by the variable name, like this:

int num = 10;

int *ptr = #

Now, ptr holds the memory address of num, allowing us to access or modify its value

indirectly.

Dereferencing a pointer means accessing the value stored at the memory address it

points to. To dereference a pointer in C, we use the asterisk (*) operator again. For

example:

int num = 10;

PAGE 3

int *ptr = #

printf("Value of num: %d\n", *ptr);

In the code snippet above, *ptr retrieves the value stored at the memory address

pointed to by ptr. In this case, it will print 10.

Sometimes, we may need to indicate that a pointer does not point to any valid

memory address. In such cases, we can assign the special value NULL to the pointer.

The NULL macro represents an invalid or uninitialized pointer.

int *ptr = NULL;

It is good practice to initialize pointers to NULL if we don't have a valid memory

address to assign to them immediately. This helps avoid unexpected behavior or

accessing undefined memory locations.

One of the fascinating aspects of pointers is that we can perform arithmetic

operations on them. Adding or subtracting integers to a pointer will modify its value

to point to a different memory address based on the size of the data type it points

to. For instance:

int arr[5] = {1, 2, 3, 4, 5};

int *ptr = arr; // The pointer points to the first element of the array

printf("Value at ptr: %d\n", *ptr); // Output: 1

ptr++; // Move the pointer to the next element

printf("Value at ptr: %d\n", *ptr); // Output: 2

In the example above, ptr initially points to the first element of the array arr. By

incrementing ptr with ptr++, it now points to the second element of the array.

PAGE 4

Pointers become particularly powerful when used in conjunction with functions. By

passing pointers as function arguments, we can modify variables outside the

function's scope. This allows us to create more flexible and efficient programs.

For example:

void increment(int *num) {

 (*num)++;

}

int main() {

 int x = 5;

 increment(&x);

 printf("Incremented value: %d\n", x); // Output: 6

 return 0;

}

In the code above, we pass the address of x to the increment function using &x. The

function dereferences the pointer and increments the value stored at that address.

As a result, the value of x in the main function is modified.

PAGE 5

2 Pointer declaration and initialization

In this chapter, we will focus on pointer declaration and initialization, building upon

the foundation we laid in the previous chapter. Understanding how to declare and

initialize pointers is essential for harnessing the power of this versatile feature. So,

let's delve deeper into this topic!

In C, declaring a pointer is similar to declaring any other variable. However, we use

the asterisk (*) symbol to indicate that the variable is a pointer. Let's look at some

examples:

int *ptr; // Declaring a pointer to an integer

char *chPtr; // Declaring a pointer to a character

float *fPtr; // Declaring a pointer to a float

Here, ptr is a pointer to an integer, chPtr is a pointer to a character, and fPtr is a

pointer to a float. Notice how the asterisk (*) is placed next to the data type to

indicate that these variables are pointers.

After declaring a pointer, it is crucial to initialize it with a valid memory address

before using it. There are a few ways to initialize pointers:

1. Initialization with Address-of Operator

The most common way to initialize a pointer is by using the address-of operator (&)

followed by the variable name. This allows the pointer to point to the memory

address where the variable is stored. Let's see an example:

int num = 10;

int *ptr = #

In the code above, ptr is declared as a pointer to an integer, and it is initialized with

the address of the num variable. Now, ptr points to the memory location of num,

enabling us to indirectly access and modify its value.

2. Initialization with NULL Pointer

PAGE 6

Sometimes, we may not have a valid memory address to assign to a pointer initially.

In such cases, we can initialize the pointer with a special value called NULL. The

NULL macro represents an invalid or uninitialized pointer. Here's an example:

int *ptr = NULL;

Initializing a pointer with NULL is a good practice because it explicitly indicates that

the pointer does not point to any valid memory address. Later on, we can check if a

pointer is NULL before using it to avoid accessing undefined memory locations.

3. Initialization at Declaration

In C, we can also initialize a pointer at the time of declaration. This allows us to

declare and initialize a pointer in a single statement. Here's an example:

int num = 20;

int *ptr = #

In this code snippet, we declare a variable num and assign it the value 20.

Simultaneously, we declare a pointer ptr and initialize it with the address of num.

This approach is concise and convenient when we have a valid memory address

available during declaration.

C allows us to declare multiple pointers in a single statement. To declare multiple

pointers, we separate the variable names with commas, and each variable is

preceded by an asterisk (*) symbol. Here's an example:

int *ptr1, *ptr2, *ptr3;

In this example, we declare three pointers, ptr1, ptr2, and ptr3, all of which point to

integers. It's important to note that each pointer must be initialized separately

before using it.

PAGE 7

3 Pointer arithmetic

In this chapter, we will delve into the exciting realm of pointer arithmetic. Pointer

arithmetic allows us to perform arithmetic operations on pointers, making them

even more powerful and versatile. By understanding and leveraging pointer

arithmetic, you'll be able to manipulate data efficiently and navigate complex data

structures with ease. Let's dive in!

In C, pointer arithmetic allows us to perform mathematical operations on pointers,

such as addition, subtraction, and comparison. These operations are based on the

size of the data type the pointer is associated with. When we perform arithmetic on

a pointer, the result is determined by the size of the data type the pointer points to.

This enables us to navigate through arrays, access elements, and traverse data

structures effectively.

One of the most common operations in pointer arithmetic is incrementing and

decrementing pointers. When we increment a pointer, it advances to the next

memory location based on the size of the data type it points to. Similarly, when we

decrement a pointer, it moves back to the previous memory location. Let's see some

examples:

int numbers[] = {10, 20, 30, 40, 50};

int *ptr = numbers; // Pointer points to the first element of the array

printf("Value at ptr: %d\n", *ptr); // Output: 10

ptr++; // Move the pointer to the next element

printf("Value at ptr: %d\n", *ptr); // Output: 20

In this example, ptr initially points to the first element of the numbers array. By

incrementing ptr with ptr++, it moves to the next element, and we can access its

value using the dereference operator *ptr.

Similarly, we can decrement a pointer using the -- operator:

PAGE 8

ptr--; // Move the pointer to the previous element

Pointer arithmetic is particularly useful when working with arrays. By using

arithmetic operations on pointers, we can easily navigate through arrays and access

their elements. Consider the following example:

int numbers[] = {10, 20, 30, 40, 50};

int *ptr = numbers; // Pointer points to the first element of the array

for (int i = 0; i < 5; i++) {

 printf("Value at ptr: %d\n", *ptr);

 ptr++; // Move the pointer to the next element

}

In this code snippet, we initialize ptr to point to the first element of the numbers

array. By incrementing ptr within the loop, we can iterate through the array and

print each element's value.

Pointer arithmetic can also be used to access elements at specific offsets from a base

address. This technique is particularly useful when working with complex data

structures, such as arrays of structures or multidimensional arrays. Let's see an

example:

typedef struct {

 int id;

 char name[20];

} Person;

Person people[3];

Person *ptr = people; // Pointer points to the first element of the array

PAGE 9

// Accessing the name field of the second element

char *namePtr = (ptr + 1)->name;

printf("Name: %s\n", namePtr);

In this example, we have an array of Person structures called people. By using

pointer arithmetic (ptr + 1), we move the pointer to the second element of the array.

Then, we access the name field of that structure using the arrow operator ->. This

allows us to extract and work with specific elements within complex data structures.

We can also compare pointers using relational operators (<, >, <=, >=). Comparing

pointers is useful when working with arrays or determining the order of memory

locations. However, it is important to ensure that the pointers being compared point

to elements within the same array or allocated memory block. Comparing pointers

that do not point to the same array or memory block can lead to undefined behavior.

PAGE 10

4 Dynamic memory allocation (malloc, calloc, free)

In this chapter, we will dive into the world of dynamic memory allocation. Unlike

static memory allocation, where memory is allocated at compile time, dynamic

memory allocation allows us to allocate and deallocate memory at runtime. This

flexibility empowers us to create programs that can adapt to changing data

requirements. So, let's discover how to dynamically allocate memory using the

malloc, calloc, and free functions!

Dynamic memory allocation allows us to request memory from the system at

runtime and manage it as needed. This is particularly useful when we don't know

the exact amount of memory required beforehand or when we need to allocate

memory for dynamic data structures like linked lists or resizable arrays.

4.1 The malloc Function

The malloc function (short for "memory allocate") is used to dynamically allocate

memory in C. It takes the number of bytes as an argument and returns a pointer to

the allocated memory block. Here's an example:

int *ptr = (int *)malloc(sizeof(int));

In this code snippet, malloc(sizeof(int)) allocates memory to hold an integer-sized

block. The pointer ptr is then assigned to the address of the allocated memory block.

It is important to note that malloc returns a void pointer, so we explicitly cast it to

the desired data type (int * in this case).

4.2 The calloc Function

The calloc function (short for "contiguous allocate") is another method for dynamic

memory allocation. It is similar to malloc, but it additionally initializes the allocated

memory block to zero. The calloc function takes two arguments: the number of

elements and the size of each element. Here's an example:

int *ptr = (int *)calloc(5, sizeof(int));

PAGE 11

In this code snippet, calloc(5, sizeof(int)) allocates memory for an array of 5 integers,

initializing them to zero. The pointer ptr is then assigned to the address of the

allocated memory block.

4.3 The free Function

Once we are done using dynamically allocated memory, it is essential to free it to

avoid memory leaks. The free function releases the memory back to the system.

Here's an example:

int *ptr = (int *)malloc(sizeof(int));

// Use the allocated memory

free(ptr);

In this code snippet, free(ptr) releases the memory pointed to by ptr back to the

system. After calling free, the memory is no longer accessible, and it can be

reallocated for future use.

When working with dynamic memory allocation, it is crucial to follow these best

practices:

 Always pair each malloc or calloc call with a corresponding free call to

prevent memory leaks.

 Never access memory after it has been freed. Doing so leads to undefined

behavior.

 Avoid overwriting or losing references to dynamically allocated memory

blocks. Doing so may make it impossible to free the memory properly,

resulting in memory leaks.

