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O-notation: Asymptotic upper bound

f(n) = O(g(n)) if  positive constants c, n0 such that 

                            0  f(n)  cg(n), n  n0

 cg(n) 

f(n) 

f(n) = O(g(n)) 

n0 n 

Asymptotic running times of 

algorithms are usually defined 

by functions whose domain are

N={0, 1, 2, …} (natural 

numbers)



3Mustafa Özdal

Example

Show that 2n2 = O(n3)

We need to find two positive constants: c and n0 such that:

 0 ≤ 2n2 ≤ cn3   for all n ≥ n0

Choose c = 2 and n0 = 1

  ➔ 2n2 ≤ 2n3 for all n ≥ 1

Or, choose c = 1 and n0 = 2

  ➔ 2n2 ≤ n3 for all n ≥ 2
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Example

Show that 2n2 + n = O(n2)

We need to find two positive constants: c and n0 such that:

 

Choose c = 3 and n0 = 1

  ➔ 2n2 + n ≤ 3n2 for all n ≥ 1 

0 ≤  2n2 + n ≤ cn2 for all n ≥ n0

2 + (1/n) ≤ c for all n ≥ n0
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O-notation

 What does f(n) = O(g(n)) really mean?

 The notation is a little sloppy

 One-way equation

◼ e.g. n2 = O (n3), but we cannot say O(n3) = n2

 O(g(n)) is in fact a set of functions:

O(g(n)) = {f(n):  positive constants c, n0 such that

0  f(n)  cg(n), n  n0}
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O-notation

 O(g(n)) = {f(n):  positive constants c, n0 such that

0  f(n)  cg(n), n  n0}

 In other words: O(g(n)) is in fact:

    the set of functions that have asymptotic upper bound g(n) 

 e.g. 2n2 = O(n3) means   2n2  O(n3) 

2n2 is in the set of functions that have asymptotic upper bound n3
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True or False?

109n2 = O (n2) True Choose c = 109  and n0 = 1

0 ≤ 109n2  ≤ 109n2 for n ≥1 

100n1.9999 = O (n2) True
Choose c = 100  and n0 = 1

0 ≤ 100n1.9999  ≤ 100n2 for n≥1 

10-9n2.0001 = O (n2) False
10-9n2.0001 ≤ cn2 for n ≥ n0

10-9 n0.0001 ≤ c  for n ≥ n0

Contradiction
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O-notation

 O-notation is an upper bound notation

 What does it mean if we say:

 “The runtime (T(n)) of Algorithm A is at least O(n2)”

→ says nothing about the runtime. Why?

O(n2): The set of functions with asymptotic upper bound n2

T(n) ≥  O(n2) means: T(n) ≥ h(n) for some h(n)  O(n2) 

h(n) = 0 function is also in O(n2). Hence: T(n) ≥ 0

runtime must be nonnegative anyway!
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Summary: O-notation: Asymptotic upper bound

f(n)  O(g(n)) if  positive constants c, n0 such that 

                            0  f(n)  cg(n), n  n0

 cg(n) 

f(n) 

f(n) = O(g(n)) 

n0 n 



10Mustafa Özdal

-notation: Asymptotic lower bound

f(n) =  (g(n)) if  positive constants c, n0 such that 

    0  cg(n)  f(n), n  n0

: “big Omega”

 f(n) 

cg(n) 

f(n) = W(g(n)) 

n0 n 
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Example

Show that 2n3 = (n2)

We need to find two positive constants: c and n0 such that:

 0 ≤ cn2 ≤ 2n3   for all n ≥ n0

Choose c = 1 and n0 = 1

  ➔ n2 ≤ 2n3 for all n ≥ 1
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Example

Show that       = (lg n)

We need to find two positive constants: c and n0 such that:

 c lg n ≤        for all n ≥ n0

Choose c = 1 and n0 = 16

  ➔ lg n ≤        for all n ≥ 16

n

n

n
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-notation: Asymptotic Lower Bound

❑ (g(n)) = {f(n):  positive constants c, n0 such that 

 0  cg(n)  f(n), n  n0}

 In other words:  (g(n)) is in fact:

    the set of functions that have asymptotic lower bound g(n)
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True or False?

109n2 =  (n2) True Choose c = 109  and n0 = 1

0 ≤ 109n2  ≤ 109n2 for n ≥1 

100n1.9999 =  
(n2) False

cn2  ≤ 100n1.9999      for n ≥ n0

n0.0001 ≤ (100/c)     for n≥n0
 

10-9n2.0001 =  (n2) True
Choose c = 10-9 and n0 =1 

Contradiction

0 ≤ 10-9n2  ≤ 10-9n2.0001 for n ≥1 
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Summary: O-notation and -notation 

 O(g(n)): The set of functions with asymptotic upper bound g(n)

 f(n) = O(g(n)) 

 f(n)  O(g(n)) if  positive constants c, n0 such 
that 

                             0  f(n)  cg(n), n  n0

 (g(n)): The set of functions with asymptotic lower bound g(n)

 f(n) = (g(n))

            f(n)  (g(n))  positive constants c, n0 such that 

 0  cg(n)  f(n), n  n0
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Summary: O-notation and -notation 

 cg(n) 

f(n) 

f(n) = O(g(n)) 

n0 n 

 f(n) 

cg(n) 

f(n) = W(g(n)) 

n0 n 
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-notation: Asymptotically tight bound 

❑ f(n)=(g(n)) if  positive constants c1, c2, n0 such that  

 0  c1g(n)  f(n)  c2g(n), n  n0

 

f(n) 

c1g(n) 

n0 n 

c2g(n) 
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Example

Show that 2n2 + n = Θ(n2)

We need to find 3 positive constants: c1, c2 and n0 such that:

 

Choose c1 = 2, c2 = 3, and n0 = 1

  ➔ 2n2 ≤ 2n2 + n ≤ 3n2 for all n ≥ 1 

0 ≤ c1n
2 ≤ 2n2 + n ≤ c2n

2 for all n ≥ n0

c1 ≤ 2 + (1/n) ≤ c2 for all n ≥ n0
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Example

Show that

We need to find 3 positive constants: c1, c2 and n0 such that:

 
0 ≤ c1n

2 ≤                     ≤ c2n
2   for all n ≥ n0

)(2
2

1 22 nnn =−

nn 2
2

1 2 −

21

2

2

1
c

n
c − for all n ≥ n0
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Example (cont’d)

 Choose 3 positive constants: c1, c2, n0 that satisfy:

21

2

2

1
c

n
c − for all n ≥ n0 

h(n) =1/2-2/n 

n 

 1/2 

  1/10 

1  2  3  4   5 

                (n0) 

n

2

2

1

10

1
− for n ≥ 5

2

12

2

1
−

n
for n ≥ 0
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Example (cont’d)

 Choose 3 constants: c1, c2, n0 that satisfy:

21

2

2

1
c

n
c − for all n ≥ n0

n

2

2

1

10

1
− for n ≥ 5

2

12

2

1
−

n
for n ≥ 0

Therefore, we can choose:: c1 =
1

10
c2 =

1

2
n0 = 5
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-notation: Asymptotically tight bound 

❑ Theorem: leading constants & low-order terms don’t 

matter

❑ Justification: can choose the leading constant large 

enough to make high-order term dominate other 

terms
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True or False?

109n2 =  (n2) True

100n1.9999 =  (n2) False

10-9n2.0001 =  (n2) False
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-notation: Asymptotically tight bound 

 (g(n))={f(n):  positive constants c1, c2, n0 such that

0  c1g(n)  f(n)  c2g(n), n  n0}

 In other words: (g(n)) is in fact:

   the set of functions that have asymptotically tight bound g(n)
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-notation: Asymptotically tight bound 

 Theorem: 

 f(n) = (g(n)) if and only if 

    f(n) = O(g(n)) and f(n) = (g(n))

 In other words:

  is stronger than both O and 

 In other words:

  (g(n))  O(g(n)) and 

(g(n))  (g(n)) 
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Example

 Prove that 10-8 n2  (n)

Before proof, note that 10-8n2 = (n) but 10-8n2  O(n) 

Proof by contradiction: 

 Suppose positive constants c2 and n0 exist such that:

  10-8n2 ≤ c2n     for all n ≥ n0

10-8n ≤ c2      for all n ≥ n0

Contradiction: c2 is a constant 
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Summary: O, , and  notations 

 O(g(n)): The set of functions with asymptotic upper bound g(n)

 (g(n)): The set of functions with asymptotic lower bound g(n)

 (g(n)): The set of functions with asymptotically tight bound g(n)

 f(n) = (g(n)) if and only if f(n) = O(g(n)) and f(n) = (g(n))
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Summary: O, , and  notations 

 cg(n) 

f(n) 

f(n) = O(g(n)) 

n0 n 

 f(n) 

cg(n) 

f(n) = W(g(n)) 

n0 n 

 

f(n) 

c1g(n) 

n0 n 

c2g(n) 
f(n) = (g(n)) 
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o (“small o”) Notation

 Asymptotic upper bound that is not tight

Reminder: Upper bound provided by O (“big O”) notation 
can be tight or not tight:

 e.g.   2n2 = O(n2) is asymptotically tight

          2n = O(n2)  is not asymptotically tight

o-Notation: An upper bound that is not asymptotically tight  

both true
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o (“small o”) Notation

 Asymptotic upper bound that is not tight

❑ o(g(n)) = {f(n): for any constant c  0, 

 a constant n0  0, such that

0  f(n) < cg(n), n  n0}

❑ Intuitively:

❑ e.g.,   2n = o(n2), any positive c satisfies 

 but 2n2  o(n2), c = 2 does not satisfy

0
)(

)(
lim =

→ ng

nf

n
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 (“small omega”) Notation

 Asymptotic lower bound that is not tight

❑ (g(n)) = {f(n): for any constant c  0, 

 a constant n0  0, such that

0  cg(n) < f(n), n  n0}

❑ Intuitively:

❑ e.g.,   n2/2 = (n), any positive c satisfies 

 but n2/2  (n2), c = 1/2 does not satisfy

=
→ )(

)(
lim

ng

nf

n
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Analogy to the comparison of two real numbers

❑ f(n) = O(g(n))  a  b

❑ f(n) = (g(n))  a  b

❑ f(n) = (g(n))  a = b

❑ f(n) = o(g(n))  a < b

❑ f(n) = (g(n))  a > b
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True or False?

5n2 = O(n2)

5n2 = (n2)

5n2 = (n2)

5n2 = o(n2)

5n2 = (n2)

True

True

True

False

False

n2lgn = O(n2)

n2lgn = (n2)

n2lgn = (n2)

n2lgn = o(n2)

n2lgn = (n2)

True

False

False

False

True

2n = (3n)

2n = O(3n)

2n = o(3n)

2n = (3n)

2n = (3n)

False

True

False True

False
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Analogy to comparison of two real numbers

 Trichotomy property for real numbers:

For any two real numbers a and b, 

we have either a < b, or a = b, or a > b

For two functions f(n) & g(n), it may be the case that 

 neither f(n) = O(g(n)) nor f(n) = (g(n)) holds

e.g. n and n1+sin(n) cannot be compared asymptotically

 Trichotomy property does not hold for asymptotic notation
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Asymptotic Comparison of Functions
(Similar to the relational properties of real numbers)

Transpose symmetry:

   e.g., f(n) = O(g(n))  g(n) = (f(n))

Transitivity: 

    e.g., f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))

holds for all

Reflexivity:

   e.g., f(n) = O(f(n))

holds for , O, 

Symmetry: 

   e.g., f(n) = (g(n))  g(n) = (f(n))

holds only for 

holds for (O  ) and (o  ))
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Using O-Notation to Describe Running Times

 Used to bound worst-case running times

 Implies an upper bound runtime for arbitrary inputs as well

 Example: 

 “Insertion sort has worst-case runtime of O(n2)”

 Note: This O(n2) upper bound also applies to its running 

time on every input.
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Using O-Notation to Describe Running Times

 Abuse to say “running time of insertion sort is O(n2)”

 For a given n, the actual running time depends on the 

particular input of size n

 i.e., running time is not only a function of n

 However, worst-case running time is only a function 

of n
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Using O-Notation to Describe Running Times

 When we say:

 “Running time of insertion sort is O(n2)”,

what we really mean is:

       “Worst-case running time of insertion sort is O(n2)”

or equivalently:

       “No matter what particular input of size n is chosen, 

the running time on that set of inputs is O(n2)”
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Using -Notation to Describe Running Times

 Used to bound best-case running times

 Implies a lower bound runtime for arbitrary inputs as well

 Example: 

 “Insertion sort has best-case runtime of (n)”

 Note: This (n) lower bound also applies to its running 

time on every input.
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Using -Notation to Describe Running Times

 When we say:

 “Running time of algorithm A is (g(n))”,

    

    what we mean is:

  “For any input of size n, the runtime of A is at least a 

constant times g(n) for sufficiently large n”
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Using -Notation to Describe Running Times

 Note: It’s not contradictory to say:

      “worst-case running time of insertion sort is (n2)”

    because there exists an input that causes the 

algorithm to take (n2).
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Using -Notation to Describe Running Times

 Consider 2 cases about the runtime of an algorithm:

 Case 1: Worst-case and best-case not asymptotically equal

➔Use -notation to bound worst-case and best-case runtimes 

separately

 Case 2: Worst-case and best-case asymptotically equal

➔Use -notation to bound the runtime for any input
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Using -Notation to Describe Running Times

Case 1

 Case 1: Worst-case and best-case not asymptotically equal

➔Use -notation to bound the worst-case and best-case 
runtimes separately

 We can say: 

◼ “The worst-case runtime of insertion sort is (n2)”

◼ “The best-case runtime of insertion sort is (n)”

 But, we can’t say:

◼ “The runtime of insertion sort is (n2) for every input”

 A -bound on worst-/best-case running time does not apply to its 
running time on arbitrary inputs
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Using -Notation to Describe Running Times

Case 2

 Case 2: Worst-case and best-case asymptotically equal

➔Use -notation to bound the runtime for any input

 e.g. For merge-sort, we have:

 T(n) = O(nlgn) 

T(n) = (nlgn) 
T(n) = (nlgn)
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Using Asymptotic Notation to Describe Runtimes

Summary

 “The worst case runtime of Insertion Sort is O(n2)”

➢ Also implies: “The runtime of Insertion Sort is O(n2)” 

   

 “The best-case runtime of Insertion Sort is (n)”

➢ Also implies: “The runtime of Insertion Sort is (n)” 

   

❑ “The worst case runtime of Insertion Sort is (n2)”

➢ But: “The runtime of Insertion Sort is not (n2)”

❑ “The best case runtime of Insertion Sort is (n)”

➢ But: “The runtime of Insertion Sort is not (n)”
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Using Asymptotic Notation to Describe Runtimes

Summary

  

❑ “The worst case runtime of Merge Sort is (nlgn)”

❑ “The best case runtime of Merge Sort is (nlgn)”

❑ “The runtime of Merge Sort is (nlgn)”

➢ This is true, because the best and worst case runtimes have 

asymptotically the same tight bound (nlgn)
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Asymptotic Notation in Equations

❑ Asymptotic notation appears alone on the RHS of an equation:

➢ implies set membership

 e.g., n = O(n2) means n  O(n2) 

❑ Asymptotic notation appears on the RHS of an equation

❑ stands for some anonymous function in the set

      e.g., 2n2 + 3n + 1 = 2n2  + (n) means:

2n2 + 3n + 1 = 2n2  + h(n), for some h(n)  (n) 

     i.e., h(n) = 3n + 1
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Asymptotic Notation in Equations

❑ Asymptotic notation appears on the LHS of an equation:

➢ stands for any anonymous function in the set

     e.g., 2n2 + (n) = (n2) means:

 for any function g(n)  (n) 

 some function h(n)  (n2) 

such that 2n2+g(n) = h(n)

❑ RHS provides coarser level of detail than LHS
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Algorithms I

Solving Recurrences

Mustafa Özdal
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Solving Recurrences

 Reminder: Runtime (T(n)) of MergeSort was 

expressed as a recurrence

 Solving recurrences is like solving differential 

equations, integrals, etc. 

❑Need to learn a few tricks

(1)   if n=1

2T(n/2) + (n)  otherwise
T(n) = 
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Recurrences

 Recurrence: An equation or inequality that describes 

a function in terms of its value on smaller inputs.

 



+
=

1)2/(

1
)(

nT
nT

if  n=1

if  n >1

Example:
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Recurrence - Example

 Simplification: Assume n = 2k

 Claimed answer: T(n) = lgn + 1

 Substitute claimed answer in the recurrence:

 

 



+
=

1)2/(

1
)(

nT
nT

if n = 1

if n > 1 



+
=+

)2)2/(lg(

1
1lg

n
n

True when n = 2k

if  n=1

if  n >1
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Technicalities: Floor/Ceiling

 Technically, should be careful about the floor and 

ceiling functions (as in the book).

 e.g. For merge sort, the recurrence should in fact be:

 ( )  ( )



++


=

)(2/2/

)1(
)(

nnTnT
nT

if n = 1

if n > 1

  But, it’s usually ok to:

➢ ignore floor/ceiling

➢ solve for exact powers of 2 (or another number)
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Technicalities: Boundary Conditions

 Usually assume: T(n) = Θ(1) for sufficiently small n

 Changes the exact solution, but usually the asymptotic 

solution is not affected (e.g. if polynomially bounded)

 For convenience, the boundary conditions generally 

implicitly stated in a recurrence

 T(n) = 2T(n/2) + Θ(n)

assuming that

 T(n) = Θ(1) for sufficiently small n
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Example: When Boundary Conditions Matter

 Exponential function: T(n) = (T(n/2))2

 Assume T(1) = c  (where c is a positive constant).

  T(2) = (T(1))2 = c2

  T(4) = (T(2))2 = c4

  T(n) = Θ(cn)

 e.g.
)3()2(

)3()(3)1(

)2()(2)1(
nn

n

n

However
nTT

nTT






==

==

)1()1()(1)1( === nnTT

 Difference in solution more dramatic when:
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Solving Recurrences

 We will focus on 3 techniques in this lecture:

1. Substitution method

1. Recursion tree approach

1. Master method 
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Substitution Method

 The most general method:

1. Guess

2. Prove by induction

3. Solve for constants
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Solve T(n) = 4T(n/2) + n (assume T(1) = Θ(1))

1. Guess T(n) = O(n3)  (need to prove O and Ω separately)

2. Prove by induction that T(n) ≤ cn3 for large n (i.e. n ≥ n0)

 Inductive hypothesis: T(k) ≤ ck3 for any k < n

 Assuming ind. hyp. holds, prove T(n) ≤ cn3 

Mustafa Özdal

Substitution Method: Example
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Substitution Method: Example – cont’d

Original recurrence: T(n) = 4T(n/2) + n 

From inductive hypothesis:  T(n/2) ≤ c(n/2)3

Substitute this into the original recurrence:

 T(n)   ≤  4c (n/2)3 + n

  =  (c/2) n3 + n

           = cn3 – ((c/2)n3 – n)

  ≤ cn3

   when ((c/2)n3 – n) ≥ 0

desired - residual
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Substitution Method: Example – cont’d

 So far, we have shown:

 T(n) ≤ cn3  when ((c/2)n3 – n) ≥ 0

❑ We can choose c ≥ 2 and n0 ≥ 1

❑ But, the proof is not complete yet.

❑ Reminder: Proof by induction:

1. Prove the base cases

2. Inductive hypothesis for smaller sizes

3. Prove the general case

haven’t proved 

the base cases yet
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Substitution Method: Example – cont’d

 We need to prove the base cases

Base: T(n) = Θ(1) for small n (e.g. for n = n0)

 We should show that:

 “Θ(1)” ≤ cn3    for n = n0

   This holds if we pick c big enough

 So, the proof of T(n) = O(n3) is complete.

 But, is this a tight bound?
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Example: A tighter upper bound?

 Original recurrence: T(n) = 4T(n/2) + n

 Try to prove that T(n) = O(n2),

 i.e. T(n) ≤ cn2 for all n ≥ n0

 Ind. hyp: Assume that T(k) ≤ ck2  for k < n

 Prove the general case: T(n) ≤ cn2
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Example (cont’d)

 Original recurrence: T(n) = 4T(n/2) + n

 Ind. hyp: Assume that T(k) ≤ ck2  for k < n

 Prove the general case: T(n) ≤ cn2

 T(n) = 4T(n/2) + n

  ≤ 4c(n/2)2 + n

  = cn2 + n 

  = O(n2) Wrong! We must prove exactly



16Mustafa Özdal

Example (cont’d)

 Original recurrence: T(n) = 4T(n/2) + n

 Ind. hyp: Assume that T(k) ≤ ck2  for k < n

 Prove the general case: T(n) ≤ cn2

 So far, we have:

 T(n) ≤ cn2 + n

     No matter which positive c value we choose, 

      this does not show that T(n) ≤ cn2

 Proof failed?
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Example (cont’d)

 What was the problem?

➢ The inductive hypothesis was not strong enough

 Idea: Start with a stronger inductive hypothesis

 Subtract a low-order term 

 Inductive hypothesis: T(k)  c1k
2 – c2k for k < n

 Prove the general case: T(n) ≤ c1n
2 - c2n

  



18Mustafa Özdal

Example (cont’d)

 Original recurrence: T(n) = 4T(n/2) + n

 Ind. hyp: Assume that T(k) ≤ c1k
2 - c2k  for k < n

 Prove the general case: T(n) ≤ c1n
2 – c2n

  T(n) = 4T(n/2) + n

   ≤ 4 (c1(n/2)2 – c2(n/2)) + n

   = c1n
2 – 2c2n + n

   = c1n
2 – c2n – (c2n – n)

   ≤  c1n
2 – c2n  for n(c2n – 1) ≥ 0

      choose c2 ≥ 1  
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Example (cont’d)

 We now need to prove

  T(n) ≤ c1n
2 – c2n

    for the base cases.

 T(n) = Θ(1)  for  1 ≤ n ≤ n0  (implicit assumption)

 “Θ(1)” ≤ c1n
2 – c2n for n small enough (e.g. n = n0)

  We can choose c1 large enough to make this hold

 We have proved that T(n) = O(n2)
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Substitution Method: Example 2

 For the recurrence T(n) = 4T(n/2) + n, 

prove that T(n) = Ω(n2)

 i.e. T(n) ≥ cn2    for any n ≥ n0

 Ind. hyp: T(k) ≥ ck2 for any k < n

 Prove general case: T(n) ≥ cn2

  T(n) = 4T(n/2) + n

   ≥ 4c (n/2)2 + n 

   = cn2 + n

   ≥ cn2  since n > 0

 Proof succeeded – no need to strengthen the ind. hyp as 
in the last example
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Example 2 (cont’d)

 We now need to prove that

 T(n) ≥ cn2 

for the base cases

 T(n) = Θ(1)  for  1 ≤ n ≤ n0  (implicit assumption)

 “Θ(1)” ≥ cn2    for n = n0

   n0 is sufficiently small (i.e. constant)

  We can choose c small enough for this to hold

 We have proved that T(n) = Ω (n2)



22Mustafa Özdal

Substitution Method - Summary

1. Guess the asymptotic complexity

1. Prove your guess using induction

1. Assume inductive hypothesis holds for k < n

2. Try to prove the general case for n

  Note: MUST prove the EXACT inequality

            CANNOT ignore lower order terms 

  If the proof fails, strengthen the ind. hyp. and try again

3. Prove the base cases (usually straightforward)
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Recursion Tree Method

 A recursion tree models the runtime costs of a

recursive execution of an algorithm.

 The recursion tree method is good for generating 

guesses for the substitution method.

 The recursion-tree method can be unreliable.

 Not suitable for formal proofs

 The recursion-tree method promotes intuition,

however.
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

T(n/2) T(n/2)
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(n/2)Θ(n/2)

2
x

su
b
p
ro

b
s

ea
ch

 s
iz

e

h
al

v
ed
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Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2) Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)Θ(1)Θ(1) Θ(1) Θ(1)

2lgn = n

lg
n

Θ(n)

Θ(n)

Θ(n)

Total: Θ(nlgn) 
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Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:
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Solve T(n) = T(n/4) + T(n/2) + n2:

T(n)

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

n2

T(n/4) T(n/2)

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(1)

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(1)

n2

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(1)

n2

5/16 n2

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(1)

n2

5/16 n2

25/256 n2

Example of Recursion Tree
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Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(1)

n2

5/16 n2

25/256 n2

Total = n2 (1 + 5/16 + (5/16)2 + (5/16)2 + ...)

= (n2)     geometric series

Example of Recursion Tree
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The Master Method

 A powerful black-box method to solve recurrences.

 The master method applies to recurrences of the form

T(n) = aT(n/b) + f (n) 

where a ≥ 1, b > 1, and f is asymptotically positive.
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The Master Method: 3 Cases

 Recurrence: T(n) = aT(n/b) + f (n) 

 Compare f (n) with 

❑ Intuitively:

Case 1: f (n) grows polynomially slower than 

Case 2: f (n) grows at the same rate as 

Case 3: f (n) grows polynomially faster than 

abn
log

nlogb a

abn
log

nlogb a
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The Master Method: Case 1

 Recurrence: T(n) = aT(n/b) + f (n) 

Case 1:    for some constant ε > 0

 i.e., f (n) grows polynomialy slower than 

     (by an nε factor).

Solution:  T(n) = Θ( )

)(
)(

log
n

nf

n
ab

=

abn
log

abn
log
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The Master Method: Case 2 (simple version)

 Recurrence: T(n) = aT(n/b) + f (n) 

Case 2: 

 

i.e., f (n) and               grow at similar rates

Solution:  T(n) = Θ( lgn)

abn
log

abn
log

)1(
)(

log
=

abn

nf
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The Master Method: Case 3

Case 3:     for some constant ε > 0

  

i.e., f (n) grows polynomialy faster than (by an nε factor).

 and the following regularity condition holds:

    a f (n/b)  c f (n) for some constant c < 1

Solution:  T(n) = Θ( f(n) )

abn
log

)(
)(

log

n
n

nf
ab

=
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Example: T(n) = 4T(n/2) + n

a = 4

b = 2

f(n) = n

nlogb a = n2

f(n) grows polynomially slower than nlogb a

)(
)(

2log
nn

n

n

nf

n
ab

===

CASE 1

T(n) = Θ(           )abn
log

T(n) = Θ(n2)

for ε = 1
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Example: T(n) = 4T(n/2) + n2

a = 4

b = 2

f(n) = n2

nlogb a = n2

f(n) grows at similar rate as nlogb a

CASE 2

T(n) = Θ(            lgn)
abn

log

T(n) = Θ(n2lgn)

f(n) = Θ(           ) = n2nlogb a
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Example: T(n) = 4T(n/2) + n3

a = 4

b = 2

f(n) = n3

nlogb a = n2

f(n) grows polynomially faster than nlogb a

)(
)(

2

3

log

nn
n

n

n

nf
ab

===

seems like CASE 3, but need

to check the regularity condition

T(n) = Θ(f(n)) T(n) = Θ(n3)

for ε = 1

Regularity condition: a f (n/b)  c f (n) for some constant c < 1

4 (n/2)3 ≤ cn3 for c = 1/2

CASE 3
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Example: T(n) = 4T(n/2) + n2/lgn

a = 4

b = 2

f(n) = n2/lgn

nlogb a = n2

f(n) grows slower than nlogb a

)(lg

lg

)(
2

2log
nn

n

n

n

nf

n
ab

==

is not CASE 1

for any ε > 0

but is it polynomially slower?

Master method does not apply!
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The Master Method: Case 2 (general version)

 Recurrence: T(n) = aT(n/b) + f (n) 

Case 2:    for some constant k ≥ 0

 

Solution:  T(n) = Θ ( lgk+1n)
abn

log

)(lg
)(

log
n

n

nf k

ab
=
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General Method (Akra-Bazzi)

Let p be the unique solution to

Then, the answers are the same as for the

master method, but with np instead of 

(Akra and Bazzi also prove an even more general result.)


=

+=
k

i

ii nfbnTanT
1

)()/()(


=

=
k

i

i
p

i ba
1

1)/(

abn
log
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Idea of Master Theorem

Recursion tree:

)1(
log

Tn
ab

T(1)

f (n/b)

f (n)f (n)

f (n/b) f (n/b)

a

a f (n/b)

f (n/b2) f (n/b2) f (n/b2)

ah= logbn

a2 f (n/b2)

#leaves = a h

= 

= 

nba
log

abn
log
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Recursion tree:

)1(
log

Tn
ab

T(1)

f (n/b)

f (n)f (n)

f (n/b) f (n/b)

a

a f (n/b)

f (n/b2) f (n/b2) f (n/b2)

ah= logbn

a2 f (n/b2)

CASE 1 : The weight increases

geometrically from the root to the

leaves. The leaves hold a constant

fraction of the total weight. Θ (               )
abn

log

Idea of Master Theorem
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Recursion tree:

)1(
log

Tn
ab

T(1)

f (n/b)

f (n)f (n)

f (n/b) f (n/b)

a

a f (n/b)

f (n/b2) f (n/b2) f (n/b2)

ah= logbn

a2 f (n/b2)

CASE 2 : (k = 0) The weight

is approximately the same on

each of the logbn levels.
Θ (             lgn)

abn
log

Idea of Master Theorem
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Recursion tree:

)1(
log

Tn
ab

T(1)

f (n/b)

f (n)f (n)

f (n/b) f (n/b)

a

a f (n/b)

f (n/b2) f (n/b2) f (n/b2)

ah= logbn

a2 f (n/b2)

CASE 3 : The weight decreases

geometrically from the root to the

leaves. The root holds a constant

fraction of the total weight. Θ (  f (n) )

Idea of Master Theorem
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Proof of Master Theorem:

Case 1 and Case 2

• Recall from the recursion tree (note h = lgbn=tree

height)


−

=

+=
1

0

log
)/()()(

h

i

iia
bnfannT b

Leaf cost Non-leaf cost = g(n)
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Proof of Case 1

➢ for some  > 0

➢

➢

➢

)(
)(

log
n

nf

n
ab

=

)()()(
)(

)(
)(

log

log

log
 −− ===

a

a

a

b

b

b

nOnfnO
n

nf
n

nf

n

( ) 







== 

−

=

−
−

=

−
1

0

log
1

0

log
)/()/()(

h

i

aii
h

i

aii bb bnaObnOang










= 

−

=

−
1

0

loglog
/

h

i

aiiia bb bbanO 
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= An increasing geometric series since b > 1


−

=

−

=

−

=

===
1

0

1

0
log

1

0
log

)(
)(

)( h

i

i

i

i
i

h

i
ia

i
i

h

i
ai

ii

b
a

b
a

b

b
a

b

ba
bb




)(
1

1

1

1)(

1

1)(

1

1
log



















nO
b

n

b

b

b

b

b

b
nhh b

=
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−
=

−

−
=

−

−
=

−

−
=

Case 1 (cont’)
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( ) 









==

−
)()()(

log
log 




nO

n

n
OnOnOng

a
a

b

b

)()()()()(
logloglog aaa bbb nOnngnnT +=+=

Case 1 (cont’)

)(
log abnO=

)(
log abn=

Q.E.D.
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Proof of Case 2 (limited to k=0)









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Q.E.D.
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