
1

Algorithms I

Asymptotic Notation

Mustafa Özdal

2Mustafa Özdal

O-notation: Asymptotic upper bound

f(n) = O(g(n)) if  positive constants c, n0 such that

 0  f(n)  cg(n), n  n0

 cg(n)

f(n)

f(n) = O(g(n))

n0 n

Asymptotic running times of

algorithms are usually defined

by functions whose domain are

N={0, 1, 2, …} (natural

numbers)

3Mustafa Özdal

Example

Show that 2n2 = O(n3)

We need to find two positive constants: c and n0 such that:

 0 ≤ 2n2 ≤ cn3 for all n ≥ n0

Choose c = 2 and n0 = 1

 ➔ 2n2 ≤ 2n3 for all n ≥ 1

Or, choose c = 1 and n0 = 2

 ➔ 2n2 ≤ n3 for all n ≥ 2

4Mustafa Özdal

Example

Show that 2n2 + n = O(n2)

We need to find two positive constants: c and n0 such that:

Choose c = 3 and n0 = 1

 ➔ 2n2 + n ≤ 3n2 for all n ≥ 1

0 ≤ 2n2 + n ≤ cn2 for all n ≥ n0

2 + (1/n) ≤ c for all n ≥ n0

5Mustafa Özdal

O-notation

 What does f(n) = O(g(n)) really mean?

 The notation is a little sloppy

 One-way equation

◼ e.g. n2 = O (n3), but we cannot say O(n3) = n2

 O(g(n)) is in fact a set of functions:

O(g(n)) = {f(n):  positive constants c, n0 such that

0  f(n)  cg(n), n  n0}

6Mustafa Özdal

O-notation

 O(g(n)) = {f(n):  positive constants c, n0 such that

0  f(n)  cg(n), n  n0}

 In other words: O(g(n)) is in fact:

 the set of functions that have asymptotic upper bound g(n)

 e.g. 2n2 = O(n3) means 2n2  O(n3)

2n2 is in the set of functions that have asymptotic upper bound n3

7Mustafa Özdal

True or False?

109n2 = O (n2) True Choose c = 109 and n0 = 1

0 ≤ 109n2 ≤ 109n2 for n ≥1

100n1.9999 = O (n2) True
Choose c = 100 and n0 = 1

0 ≤ 100n1.9999 ≤ 100n2 for n≥1

10-9n2.0001 = O (n2) False
10-9n2.0001 ≤ cn2 for n ≥ n0

10-9 n0.0001 ≤ c for n ≥ n0

Contradiction

8Mustafa Özdal

O-notation

 O-notation is an upper bound notation

 What does it mean if we say:

 “The runtime (T(n)) of Algorithm A is at least O(n2)”

→ says nothing about the runtime. Why?

O(n2): The set of functions with asymptotic upper bound n2

T(n) ≥ O(n2) means: T(n) ≥ h(n) for some h(n)  O(n2)

h(n) = 0 function is also in O(n2). Hence: T(n) ≥ 0

runtime must be nonnegative anyway!

9Mustafa Özdal

Summary: O-notation: Asymptotic upper bound

f(n)  O(g(n)) if  positive constants c, n0 such that

 0  f(n)  cg(n), n  n0

 cg(n)

f(n)

f(n) = O(g(n))

n0 n

10Mustafa Özdal

-notation: Asymptotic lower bound

f(n) =  (g(n)) if  positive constants c, n0 such that

 0  cg(n)  f(n), n  n0

: “big Omega”

 f(n)

cg(n)

f(n) = W(g(n))

n0 n

11Mustafa Özdal

Example

Show that 2n3 = (n2)

We need to find two positive constants: c and n0 such that:

 0 ≤ cn2 ≤ 2n3 for all n ≥ n0

Choose c = 1 and n0 = 1

 ➔ n2 ≤ 2n3 for all n ≥ 1

12Mustafa Özdal

Example

Show that = (lg n)

We need to find two positive constants: c and n0 such that:

 c lg n ≤ for all n ≥ n0

Choose c = 1 and n0 = 16

 ➔ lg n ≤ for all n ≥ 16

n

n

n

13Mustafa Özdal

-notation: Asymptotic Lower Bound

❑ (g(n)) = {f(n):  positive constants c, n0 such that

 0  cg(n)  f(n), n  n0}

 In other words:  (g(n)) is in fact:

 the set of functions that have asymptotic lower bound g(n)

14Mustafa Özdal

True or False?

109n2 =  (n2) True Choose c = 109 and n0 = 1

0 ≤ 109n2 ≤ 109n2 for n ≥1

100n1.9999 = 
(n2) False

cn2 ≤ 100n1.9999 for n ≥ n0

n0.0001 ≤ (100/c) for n≥n0

10-9n2.0001 =  (n2) True
Choose c = 10-9 and n0 =1

Contradiction

0 ≤ 10-9n2 ≤ 10-9n2.0001 for n ≥1

15Mustafa Özdal

Summary: O-notation and -notation

 O(g(n)): The set of functions with asymptotic upper bound g(n)

 f(n) = O(g(n))

 f(n)  O(g(n)) if  positive constants c, n0 such
that

 0  f(n)  cg(n), n  n0

 (g(n)): The set of functions with asymptotic lower bound g(n)

 f(n) = (g(n))

 f(n)  (g(n))  positive constants c, n0 such that

 0  cg(n)  f(n), n  n0

16Mustafa Özdal

Summary: O-notation and -notation

 cg(n)

f(n)

f(n) = O(g(n))

n0 n

 f(n)

cg(n)

f(n) = W(g(n))

n0 n

17Mustafa Özdal

-notation: Asymptotically tight bound

❑ f(n)=(g(n)) if  positive constants c1, c2, n0 such that

 0  c1g(n)  f(n)  c2g(n), n  n0

f(n)

c1g(n)

n0 n

c2g(n)

18Mustafa Özdal

Example

Show that 2n2 + n = Θ(n2)

We need to find 3 positive constants: c1, c2 and n0 such that:

Choose c1 = 2, c2 = 3, and n0 = 1

 ➔ 2n2 ≤ 2n2 + n ≤ 3n2 for all n ≥ 1

0 ≤ c1n
2 ≤ 2n2 + n ≤ c2n

2 for all n ≥ n0

c1 ≤ 2 + (1/n) ≤ c2 for all n ≥ n0

19Mustafa Özdal

Example

Show that

We need to find 3 positive constants: c1, c2 and n0 such that:

0 ≤ c1n

2 ≤ ≤ c2n
2 for all n ≥ n0

)(2
2

1 22 nnn =−

nn 2
2

1 2 −

21

2

2

1
c

n
c − for all n ≥ n0

20Mustafa Özdal

Example (cont’d)

 Choose 3 positive constants: c1, c2, n0 that satisfy:

21

2

2

1
c

n
c − for all n ≥ n0

h(n) =1/2-2/n

n

 1/2

 1/10

1 2 3 4 5

 (n0)

n

2

2

1

10

1
− for n ≥ 5

2

12

2

1
−

n
for n ≥ 0

21Mustafa Özdal

Example (cont’d)

 Choose 3 constants: c1, c2, n0 that satisfy:

21

2

2

1
c

n
c − for all n ≥ n0

n

2

2

1

10

1
− for n ≥ 5

2

12

2

1
−

n
for n ≥ 0

Therefore, we can choose:: c1 =
1

10
c2 =

1

2
n0 = 5

22Mustafa Özdal

-notation: Asymptotically tight bound

❑ Theorem: leading constants & low-order terms don’t

matter

❑ Justification: can choose the leading constant large

enough to make high-order term dominate other

terms

23Mustafa Özdal

True or False?

109n2 =  (n2) True

100n1.9999 =  (n2) False

10-9n2.0001 =  (n2) False

24Mustafa Özdal

-notation: Asymptotically tight bound

 (g(n))={f(n):  positive constants c1, c2, n0 such that

0  c1g(n)  f(n)  c2g(n), n  n0}

 In other words: (g(n)) is in fact:

 the set of functions that have asymptotically tight bound g(n)

25Mustafa Özdal

-notation: Asymptotically tight bound

 Theorem:

 f(n) = (g(n)) if and only if

 f(n) = O(g(n)) and f(n) = (g(n))

 In other words:

  is stronger than both O and 

 In other words:

 (g(n))  O(g(n)) and

(g(n))  (g(n))

26Mustafa Özdal

Example

 Prove that 10-8 n2  (n)

Before proof, note that 10-8n2 = (n) but 10-8n2  O(n)

Proof by contradiction:

 Suppose positive constants c2 and n0 exist such that:

 10-8n2 ≤ c2n for all n ≥ n0

10-8n ≤ c2 for all n ≥ n0

Contradiction: c2 is a constant

27Mustafa Özdal

Summary: O, , and  notations

 O(g(n)): The set of functions with asymptotic upper bound g(n)

 (g(n)): The set of functions with asymptotic lower bound g(n)

 (g(n)): The set of functions with asymptotically tight bound g(n)

 f(n) = (g(n)) if and only if f(n) = O(g(n)) and f(n) = (g(n))

28Mustafa Özdal

Summary: O, , and  notations

 cg(n)

f(n)

f(n) = O(g(n))

n0 n

 f(n)

cg(n)

f(n) = W(g(n))

n0 n

f(n)

c1g(n)

n0 n

c2g(n)
f(n) = (g(n))

29Mustafa Özdal

o (“small o”) Notation

 Asymptotic upper bound that is not tight

Reminder: Upper bound provided by O (“big O”) notation
can be tight or not tight:

 e.g. 2n2 = O(n2) is asymptotically tight

 2n = O(n2) is not asymptotically tight

o-Notation: An upper bound that is not asymptotically tight

both true

30Mustafa Özdal

o (“small o”) Notation

 Asymptotic upper bound that is not tight

❑ o(g(n)) = {f(n): for any constant c  0,

 a constant n0  0, such that

0  f(n) < cg(n), n  n0}

❑ Intuitively:

❑ e.g., 2n = o(n2), any positive c satisfies

 but 2n2  o(n2), c = 2 does not satisfy

0
)(

)(
lim =

→ ng

nf

n

31Mustafa Özdal

 (“small omega”) Notation

 Asymptotic lower bound that is not tight

❑ (g(n)) = {f(n): for any constant c  0,

 a constant n0  0, such that

0  cg(n) < f(n), n  n0}

❑ Intuitively:

❑ e.g., n2/2 = (n), any positive c satisfies

 but n2/2  (n2), c = 1/2 does not satisfy

=
→)(

)(
lim

ng

nf

n

32Mustafa Özdal

Analogy to the comparison of two real numbers

❑ f(n) = O(g(n))  a  b

❑ f(n) = (g(n))  a  b

❑ f(n) = (g(n))  a = b

❑ f(n) = o(g(n))  a < b

❑ f(n) = (g(n))  a > b

33Mustafa Özdal

True or False?

5n2 = O(n2)

5n2 = (n2)

5n2 = (n2)

5n2 = o(n2)

5n2 = (n2)

True

True

True

False

False

n2lgn = O(n2)

n2lgn = (n2)

n2lgn = (n2)

n2lgn = o(n2)

n2lgn = (n2)

True

False

False

False

True

2n = (3n)

2n = O(3n)

2n = o(3n)

2n = (3n)

2n = (3n)

False

True

False True

False

34Mustafa Özdal

Analogy to comparison of two real numbers

 Trichotomy property for real numbers:

For any two real numbers a and b,

we have either a < b, or a = b, or a > b

For two functions f(n) & g(n), it may be the case that

 neither f(n) = O(g(n)) nor f(n) = (g(n)) holds

e.g. n and n1+sin(n) cannot be compared asymptotically

 Trichotomy property does not hold for asymptotic notation

35Mustafa Özdal

Asymptotic Comparison of Functions
(Similar to the relational properties of real numbers)

Transpose symmetry:

 e.g., f(n) = O(g(n))  g(n) = (f(n))

Transitivity:

 e.g., f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))

holds for all

Reflexivity:

 e.g., f(n) = O(f(n))

holds for , O, 

Symmetry:

 e.g., f(n) = (g(n))  g(n) = (f(n))

holds only for 

holds for (O  ) and (o  ))

36Mustafa Özdal

Using O-Notation to Describe Running Times

 Used to bound worst-case running times

 Implies an upper bound runtime for arbitrary inputs as well

 Example:

 “Insertion sort has worst-case runtime of O(n2)”

 Note: This O(n2) upper bound also applies to its running

time on every input.

37Mustafa Özdal

Using O-Notation to Describe Running Times

 Abuse to say “running time of insertion sort is O(n2)”

 For a given n, the actual running time depends on the

particular input of size n

 i.e., running time is not only a function of n

 However, worst-case running time is only a function

of n

38Mustafa Özdal

Using O-Notation to Describe Running Times

 When we say:

 “Running time of insertion sort is O(n2)”,

what we really mean is:

 “Worst-case running time of insertion sort is O(n2)”

or equivalently:

 “No matter what particular input of size n is chosen,

the running time on that set of inputs is O(n2)”

39Mustafa Özdal

Using -Notation to Describe Running Times

 Used to bound best-case running times

 Implies a lower bound runtime for arbitrary inputs as well

 Example:

 “Insertion sort has best-case runtime of (n)”

 Note: This (n) lower bound also applies to its running

time on every input.

40Mustafa Özdal

Using -Notation to Describe Running Times

 When we say:

 “Running time of algorithm A is (g(n))”,

 what we mean is:

 “For any input of size n, the runtime of A is at least a

constant times g(n) for sufficiently large n”

41Mustafa Özdal

Using -Notation to Describe Running Times

 Note: It’s not contradictory to say:

 “worst-case running time of insertion sort is (n2)”

 because there exists an input that causes the

algorithm to take (n2).

42Mustafa Özdal

Using -Notation to Describe Running Times

 Consider 2 cases about the runtime of an algorithm:

 Case 1: Worst-case and best-case not asymptotically equal

➔Use -notation to bound worst-case and best-case runtimes

separately

 Case 2: Worst-case and best-case asymptotically equal

➔Use -notation to bound the runtime for any input

43Mustafa Özdal

Using -Notation to Describe Running Times

Case 1

 Case 1: Worst-case and best-case not asymptotically equal

➔Use -notation to bound the worst-case and best-case
runtimes separately

 We can say:

◼ “The worst-case runtime of insertion sort is (n2)”

◼ “The best-case runtime of insertion sort is (n)”

 But, we can’t say:

◼ “The runtime of insertion sort is (n2) for every input”

 A -bound on worst-/best-case running time does not apply to its
running time on arbitrary inputs

44Mustafa Özdal

Using -Notation to Describe Running Times

Case 2

 Case 2: Worst-case and best-case asymptotically equal

➔Use -notation to bound the runtime for any input

 e.g. For merge-sort, we have:

 T(n) = O(nlgn)

T(n) = (nlgn)
T(n) = (nlgn)

45Mustafa Özdal

Using Asymptotic Notation to Describe Runtimes

Summary

 “The worst case runtime of Insertion Sort is O(n2)”

➢ Also implies: “The runtime of Insertion Sort is O(n2)”

 “The best-case runtime of Insertion Sort is (n)”

➢ Also implies: “The runtime of Insertion Sort is (n)”

❑ “The worst case runtime of Insertion Sort is (n2)”

➢ But: “The runtime of Insertion Sort is not (n2)”

❑ “The best case runtime of Insertion Sort is (n)”

➢ But: “The runtime of Insertion Sort is not (n)”

46Mustafa Özdal

Using Asymptotic Notation to Describe Runtimes

Summary

❑ “The worst case runtime of Merge Sort is (nlgn)”

❑ “The best case runtime of Merge Sort is (nlgn)”

❑ “The runtime of Merge Sort is (nlgn)”

➢ This is true, because the best and worst case runtimes have

asymptotically the same tight bound (nlgn)

47Mustafa Özdal

Asymptotic Notation in Equations

❑ Asymptotic notation appears alone on the RHS of an equation:

➢ implies set membership

 e.g., n = O(n2) means n  O(n2)

❑ Asymptotic notation appears on the RHS of an equation

❑ stands for some anonymous function in the set

 e.g., 2n2 + 3n + 1 = 2n2 + (n) means:

2n2 + 3n + 1 = 2n2 + h(n), for some h(n)  (n)

 i.e., h(n) = 3n + 1

48Mustafa Özdal

Asymptotic Notation in Equations

❑ Asymptotic notation appears on the LHS of an equation:

➢ stands for any anonymous function in the set

 e.g., 2n2 + (n) = (n2) means:

 for any function g(n)  (n)

 some function h(n)  (n2)

such that 2n2+g(n) = h(n)

❑ RHS provides coarser level of detail than LHS

1

Algorithms I

Solving Recurrences

Mustafa Özdal

2Mustafa Özdal

Solving Recurrences

 Reminder: Runtime (T(n)) of MergeSort was

expressed as a recurrence

 Solving recurrences is like solving differential

equations, integrals, etc.

❑Need to learn a few tricks

(1) if n=1

2T(n/2) + (n) otherwise
T(n) =

3Mustafa Özdal

Recurrences

 Recurrence: An equation or inequality that describes

a function in terms of its value on smaller inputs.

 



+
=

1)2/(

1
)(

nT
nT

if n=1

if n >1

Example:

4Mustafa Özdal

Recurrence - Example

 Simplification: Assume n = 2k

 Claimed answer: T(n) = lgn + 1

 Substitute claimed answer in the recurrence:

 



+
=

1)2/(

1
)(

nT
nT

if n = 1

if n > 1 



+
=+

)2)2/(lg(

1
1lg

n
n

True when n = 2k

if n=1

if n >1

5Mustafa Özdal

Technicalities: Floor/Ceiling

 Technically, should be careful about the floor and

ceiling functions (as in the book).

 e.g. For merge sort, the recurrence should in fact be:

 ()  ()



++


=

)(2/2/

)1(
)(

nnTnT
nT

if n = 1

if n > 1

 But, it’s usually ok to:

➢ ignore floor/ceiling

➢ solve for exact powers of 2 (or another number)

6Mustafa Özdal

Technicalities: Boundary Conditions

 Usually assume: T(n) = Θ(1) for sufficiently small n

 Changes the exact solution, but usually the asymptotic

solution is not affected (e.g. if polynomially bounded)

 For convenience, the boundary conditions generally

implicitly stated in a recurrence

 T(n) = 2T(n/2) + Θ(n)

assuming that

 T(n) = Θ(1) for sufficiently small n

7Mustafa Özdal

Example: When Boundary Conditions Matter

 Exponential function: T(n) = (T(n/2))2

 Assume T(1) = c (where c is a positive constant).

 T(2) = (T(1))2 = c2

 T(4) = (T(2))2 = c4

 T(n) = Θ(cn)

 e.g.
)3()2(

)3()(3)1(

)2()(2)1(
nn

n

n

However
nTT

nTT






==

==

)1()1()(1)1(=== nnTT

 Difference in solution more dramatic when:

8Mustafa Özdal

Solving Recurrences

 We will focus on 3 techniques in this lecture:

1. Substitution method

1. Recursion tree approach

1. Master method

9Mustafa Özdal

Substitution Method

 The most general method:

1. Guess

2. Prove by induction

3. Solve for constants

10

Solve T(n) = 4T(n/2) + n (assume T(1) = Θ(1))

1. Guess T(n) = O(n3) (need to prove O and Ω separately)

2. Prove by induction that T(n) ≤ cn3 for large n (i.e. n ≥ n0)

 Inductive hypothesis: T(k) ≤ ck3 for any k < n

 Assuming ind. hyp. holds, prove T(n) ≤ cn3

Mustafa Özdal

Substitution Method: Example

11Mustafa Özdal

Substitution Method: Example – cont’d

Original recurrence: T(n) = 4T(n/2) + n

From inductive hypothesis: T(n/2) ≤ c(n/2)3

Substitute this into the original recurrence:

 T(n) ≤ 4c (n/2)3 + n

 = (c/2) n3 + n

 = cn3 – ((c/2)n3 – n)

 ≤ cn3

 when ((c/2)n3 – n) ≥ 0

desired - residual

12Mustafa Özdal

Substitution Method: Example – cont’d

 So far, we have shown:

 T(n) ≤ cn3 when ((c/2)n3 – n) ≥ 0

❑ We can choose c ≥ 2 and n0 ≥ 1

❑ But, the proof is not complete yet.

❑ Reminder: Proof by induction:

1. Prove the base cases

2. Inductive hypothesis for smaller sizes

3. Prove the general case

haven’t proved

the base cases yet

13Mustafa Özdal

Substitution Method: Example – cont’d

 We need to prove the base cases

Base: T(n) = Θ(1) for small n (e.g. for n = n0)

 We should show that:

 “Θ(1)” ≤ cn3 for n = n0

 This holds if we pick c big enough

 So, the proof of T(n) = O(n3) is complete.

 But, is this a tight bound?

14Mustafa Özdal

Example: A tighter upper bound?

 Original recurrence: T(n) = 4T(n/2) + n

 Try to prove that T(n) = O(n2),

 i.e. T(n) ≤ cn2 for all n ≥ n0

 Ind. hyp: Assume that T(k) ≤ ck2 for k < n

 Prove the general case: T(n) ≤ cn2

15Mustafa Özdal

Example (cont’d)

 Original recurrence: T(n) = 4T(n/2) + n

 Ind. hyp: Assume that T(k) ≤ ck2 for k < n

 Prove the general case: T(n) ≤ cn2

 T(n) = 4T(n/2) + n

 ≤ 4c(n/2)2 + n

 = cn2 + n

 = O(n2) Wrong! We must prove exactly

16Mustafa Özdal

Example (cont’d)

 Original recurrence: T(n) = 4T(n/2) + n

 Ind. hyp: Assume that T(k) ≤ ck2 for k < n

 Prove the general case: T(n) ≤ cn2

 So far, we have:

 T(n) ≤ cn2 + n

 No matter which positive c value we choose,

 this does not show that T(n) ≤ cn2

 Proof failed?

17Mustafa Özdal

Example (cont’d)

 What was the problem?

➢ The inductive hypothesis was not strong enough

 Idea: Start with a stronger inductive hypothesis

 Subtract a low-order term

 Inductive hypothesis: T(k)  c1k
2 – c2k for k < n

 Prove the general case: T(n) ≤ c1n
2 - c2n

18Mustafa Özdal

Example (cont’d)

 Original recurrence: T(n) = 4T(n/2) + n

 Ind. hyp: Assume that T(k) ≤ c1k
2 - c2k for k < n

 Prove the general case: T(n) ≤ c1n
2 – c2n

 T(n) = 4T(n/2) + n

 ≤ 4 (c1(n/2)2 – c2(n/2)) + n

 = c1n
2 – 2c2n + n

 = c1n
2 – c2n – (c2n – n)

 ≤ c1n
2 – c2n for n(c2n – 1) ≥ 0

 choose c2 ≥ 1

19Mustafa Özdal

Example (cont’d)

 We now need to prove

 T(n) ≤ c1n
2 – c2n

 for the base cases.

 T(n) = Θ(1) for 1 ≤ n ≤ n0 (implicit assumption)

 “Θ(1)” ≤ c1n
2 – c2n for n small enough (e.g. n = n0)

 We can choose c1 large enough to make this hold

 We have proved that T(n) = O(n2)

20Mustafa Özdal

Substitution Method: Example 2

 For the recurrence T(n) = 4T(n/2) + n,

prove that T(n) = Ω(n2)

 i.e. T(n) ≥ cn2 for any n ≥ n0

 Ind. hyp: T(k) ≥ ck2 for any k < n

 Prove general case: T(n) ≥ cn2

 T(n) = 4T(n/2) + n

 ≥ 4c (n/2)2 + n

 = cn2 + n

 ≥ cn2 since n > 0

 Proof succeeded – no need to strengthen the ind. hyp as
in the last example

21Mustafa Özdal

Example 2 (cont’d)

 We now need to prove that

 T(n) ≥ cn2

for the base cases

 T(n) = Θ(1) for 1 ≤ n ≤ n0 (implicit assumption)

 “Θ(1)” ≥ cn2 for n = n0

 n0 is sufficiently small (i.e. constant)

 We can choose c small enough for this to hold

 We have proved that T(n) = Ω (n2)

22Mustafa Özdal

Substitution Method - Summary

1. Guess the asymptotic complexity

1. Prove your guess using induction

1. Assume inductive hypothesis holds for k < n

2. Try to prove the general case for n

 Note: MUST prove the EXACT inequality

 CANNOT ignore lower order terms

 If the proof fails, strengthen the ind. hyp. and try again

3. Prove the base cases (usually straightforward)

23Mustafa Özdal

Recursion Tree Method

 A recursion tree models the runtime costs of a

recursive execution of an algorithm.

 The recursion tree method is good for generating

guesses for the substitution method.

 The recursion-tree method can be unreliable.

 Not suitable for formal proofs

 The recursion-tree method promotes intuition,

however.

24Mustafa Özdal

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

T(n/2) T(n/2)

25Mustafa Özdal

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(n/2)Θ(n/2)

2
x

su
b
p
ro

b
s

ea
ch

 s
iz

e

h
al

v
ed

26Mustafa Özdal

Solve Recurrence: T(n) = 2T (n/2) + Θ(n)

Θ(n)

Θ(n/2) Θ(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

Θ(1) Θ(1) Θ(1) Θ(1) Θ(1)Θ(1)Θ(1) Θ(1) Θ(1)

2lgn = n

lg
n

Θ(n)

Θ(n)

Θ(n)

Total: Θ(nlgn)

27

Example of Recursion Tree

Solve T(n) = T(n/4) + T(n/2) + n2:

28

Solve T(n) = T(n/4) + T(n/2) + n2:

T(n)

Example of Recursion Tree

29

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

T(n/4) T(n/2)

Example of Recursion Tree

30

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

Example of Recursion Tree

31

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(1)

Example of Recursion Tree

32

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(1)

n2

Example of Recursion Tree

33

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(1)

n2

5/16 n2

Example of Recursion Tree

34

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(1)

n2

5/16 n2

25/256 n2

Example of Recursion Tree

35

Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(1)

n2

5/16 n2

25/256 n2

Total = n2 (1 + 5/16 + (5/16)2 + (5/16)2 + ...)

= (n2) geometric series

Example of Recursion Tree

36Mustafa Özdal

The Master Method

 A powerful black-box method to solve recurrences.

 The master method applies to recurrences of the form

T(n) = aT(n/b) + f (n)

where a ≥ 1, b > 1, and f is asymptotically positive.

37Mustafa Özdal

The Master Method: 3 Cases

 Recurrence: T(n) = aT(n/b) + f (n)

 Compare f (n) with

❑ Intuitively:

Case 1: f (n) grows polynomially slower than

Case 2: f (n) grows at the same rate as

Case 3: f (n) grows polynomially faster than

abn
log

nlogb a

abn
log

nlogb a

38Mustafa Özdal

The Master Method: Case 1

 Recurrence: T(n) = aT(n/b) + f (n)

Case 1: for some constant ε > 0

 i.e., f (n) grows polynomialy slower than

 (by an nε factor).

Solution: T(n) = Θ()

)(
)(

log
n

nf

n
ab

=

abn
log

abn
log

39Mustafa Özdal

The Master Method: Case 2 (simple version)

 Recurrence: T(n) = aT(n/b) + f (n)

Case 2:

i.e., f (n) and grow at similar rates

Solution: T(n) = Θ(lgn)

abn
log

abn
log

)1(
)(

log
=

abn

nf

40Mustafa Özdal

The Master Method: Case 3

Case 3: for some constant ε > 0

i.e., f (n) grows polynomialy faster than (by an nε factor).

 and the following regularity condition holds:

 a f (n/b)  c f (n) for some constant c < 1

Solution: T(n) = Θ(f(n))

abn
log

)(
)(

log

n
n

nf
ab

=

41Mustafa Özdal

Example: T(n) = 4T(n/2) + n

a = 4

b = 2

f(n) = n

nlogb a = n2

f(n) grows polynomially slower than nlogb a

)(
)(

2log
nn

n

n

nf

n
ab

===

CASE 1

T(n) = Θ()abn
log

T(n) = Θ(n2)

for ε = 1

42Mustafa Özdal

Example: T(n) = 4T(n/2) + n2

a = 4

b = 2

f(n) = n2

nlogb a = n2

f(n) grows at similar rate as nlogb a

CASE 2

T(n) = Θ(lgn)
abn

log

T(n) = Θ(n2lgn)

f(n) = Θ() = n2nlogb a

43Mustafa Özdal

Example: T(n) = 4T(n/2) + n3

a = 4

b = 2

f(n) = n3

nlogb a = n2

f(n) grows polynomially faster than nlogb a

)(
)(

2

3

log

nn
n

n

n

nf
ab

===

seems like CASE 3, but need

to check the regularity condition

T(n) = Θ(f(n)) T(n) = Θ(n3)

for ε = 1

Regularity condition: a f (n/b)  c f (n) for some constant c < 1

4 (n/2)3 ≤ cn3 for c = 1/2

CASE 3

44Mustafa Özdal

Example: T(n) = 4T(n/2) + n2/lgn

a = 4

b = 2

f(n) = n2/lgn

nlogb a = n2

f(n) grows slower than nlogb a

)(lg

lg

)(
2

2log
nn

n

n

n

nf

n
ab

==

is not CASE 1

for any ε > 0

but is it polynomially slower?

Master method does not apply!

45Mustafa Özdal

The Master Method: Case 2 (general version)

 Recurrence: T(n) = aT(n/b) + f (n)

Case 2: for some constant k ≥ 0

Solution: T(n) = Θ (lgk+1n)
abn

log

)(lg
)(

log
n

n

nf k

ab
=

46

General Method (Akra-Bazzi)

Let p be the unique solution to

Then, the answers are the same as for the

master method, but with np instead of

(Akra and Bazzi also prove an even more general result.)


=

+=
k

i

ii nfbnTanT
1

)()/()(


=

=
k

i

i
p

i ba
1

1)/(

abn
log

47

Idea of Master Theorem

Recursion tree:

)1(
log

Tn
ab

T(1)

f (n/b)

f (n)f (n)

f (n/b) f (n/b)

a

a f (n/b)

f (n/b2) f (n/b2) f (n/b2)

ah= logbn

a2 f (n/b2)

#leaves = a h

=

=

nba
log

abn
log

48

Recursion tree:

)1(
log

Tn
ab

T(1)

f (n/b)

f (n)f (n)

f (n/b) f (n/b)

a

a f (n/b)

f (n/b2) f (n/b2) f (n/b2)

ah= logbn

a2 f (n/b2)

CASE 1 : The weight increases

geometrically from the root to the

leaves. The leaves hold a constant

fraction of the total weight. Θ ()
abn

log

Idea of Master Theorem

49

Recursion tree:

)1(
log

Tn
ab

T(1)

f (n/b)

f (n)f (n)

f (n/b) f (n/b)

a

a f (n/b)

f (n/b2) f (n/b2) f (n/b2)

ah= logbn

a2 f (n/b2)

CASE 2 : (k = 0) The weight

is approximately the same on

each of the logbn levels.
Θ (lgn)

abn
log

Idea of Master Theorem

50

Recursion tree:

)1(
log

Tn
ab

T(1)

f (n/b)

f (n)f (n)

f (n/b) f (n/b)

a

a f (n/b)

f (n/b2) f (n/b2) f (n/b2)

ah= logbn

a2 f (n/b2)

CASE 3 : The weight decreases

geometrically from the root to the

leaves. The root holds a constant

fraction of the total weight. Θ (f (n))

Idea of Master Theorem

51

Proof of Master Theorem:

Case 1 and Case 2

• Recall from the recursion tree (note h = lgbn=tree

height)


−

=

+=
1

0

log
)/()()(

h

i

iia
bnfannT b

Leaf cost Non-leaf cost = g(n)

52

Proof of Case 1

➢ for some  > 0

➢

➢

➢

)(
)(

log
n

nf

n
ab

=

)()()(
)(

)(
)(

log

log

log
 −− ===

a

a

a

b

b

b

nOnfnO
n

nf
n

nf

n

() 







== 

−

=

−
−

=

−
1

0

log
1

0

log
)/()/()(

h

i

aii
h

i

aii bb bnaObnOang










= 

−

=

−
1

0

loglog
/

h

i

aiiia bb bbanO 

53

= An increasing geometric series since b > 1


−

=

−

=

−

=

===
1

0

1

0
log

1

0
log

)(
)(

)(h

i

i

i

i
i

h

i
ia

i
i

h

i
ai

ii

b
a

b
a

b

b
a

b

ba
bb




)(
1

1

1

1)(

1

1)(

1

1
log



















nO
b

n

b

b

b

b

b

b
nhh b

=
−

−
=

−

−
=

−

−
=

−

−
=

Case 1 (cont’)

54

() 









==

−
)()()(

log
log 




nO

n

n
OnOnOng

a
a

b

b

)()()()()(
logloglog aaa bbb nOnngnnT +=+=

Case 1 (cont’)

)(
log abnO=

)(
log abn=

Q.E.D.

55

Proof of Case 2 (limited to k=0)









=








=










= 

−

=

−

=

−

=

1

0

log
1

0
log

log
1

0
log

log
1

)(

1 h

i
i

ia
h

i
ia

ia
h

i
ai

a
i

a
an

b
an

b

n
a b

b

b

b

b









====

a

i

ia

a
bb

b b

n
bnfnnfn

n

nf loglog0

log
)()/()()()1()(lg

)(

()
−

=

=
1

0

log
)/()(

h

i

aii bbnang

)lg()(
loglog

nnnnT
aa bb +=

()nn
ab lg

log
=

() ()nnnnn
a

b

a
n

i

a bb

b

b lglog1
loglog

1log

0

log
==








= 

−

=

Q.E.D.

	Slide 1
	Slide 2: O-notation: Asymptotic upper bound
	Slide 3: Example
	Slide 4: Example
	Slide 5: O-notation
	Slide 6: O-notation
	Slide 7: True or False?
	Slide 8: O-notation
	Slide 9: Summary: O-notation: Asymptotic upper bound
	Slide 10: -notation: Asymptotic lower bound
	Slide 11: Example
	Slide 12: Example
	Slide 13: -notation: Asymptotic Lower Bound
	Slide 14: True or False?
	Slide 15: Summary: O-notation and -notation
	Slide 16: Summary: O-notation and -notation
	Slide 17: -notation: Asymptotically tight bound
	Slide 18: Example
	Slide 19: Example
	Slide 20: Example (cont’d)
	Slide 21: Example (cont’d)
	Slide 22: -notation: Asymptotically tight bound
	Slide 23: True or False?
	Slide 24: -notation: Asymptotically tight bound
	Slide 25: -notation: Asymptotically tight bound
	Slide 26: Example
	Slide 27: Summary: O, , and  notations
	Slide 28: Summary: O, , and  notations
	Slide 29: o (“small o”) Notation Asymptotic upper bound that is not tight
	Slide 30: o (“small o”) Notation Asymptotic upper bound that is not tight
	Slide 31:  (“small omega”) Notation Asymptotic lower bound that is not tight
	Slide 32: Analogy to the comparison of two real numbers
	Slide 33: True or False?
	Slide 34: Analogy to comparison of two real numbers
	Slide 35: Asymptotic Comparison of Functions (Similar to the relational properties of real numbers)
	Slide 36: Using O-Notation to Describe Running Times
	Slide 37: Using O-Notation to Describe Running Times
	Slide 38: Using O-Notation to Describe Running Times
	Slide 39: Using -Notation to Describe Running Times
	Slide 40: Using -Notation to Describe Running Times
	Slide 41: Using -Notation to Describe Running Times
	Slide 42: Using -Notation to Describe Running Times
	Slide 43: Using -Notation to Describe Running Times Case 1
	Slide 44: Using -Notation to Describe Running Times Case 2
	Slide 45: Using Asymptotic Notation to Describe Runtimes Summary
	Slide 46: Using Asymptotic Notation to Describe Runtimes Summary
	Slide 47: Asymptotic Notation in Equations
	Slide 48: Asymptotic Notation in Equations
	Slide 1
	Slide 2: Solving Recurrences
	Slide 3: Recurrences
	Slide 4: Recurrence - Example
	Slide 5: Technicalities: Floor/Ceiling
	Slide 6: Technicalities: Boundary Conditions
	Slide 7: Example: When Boundary Conditions Matter
	Slide 8: Solving Recurrences
	Slide 9: Substitution Method
	Slide 10: Substitution Method: Example
	Slide 11: Substitution Method: Example – cont’d
	Slide 12: Substitution Method: Example – cont’d
	Slide 13: Substitution Method: Example – cont’d
	Slide 14: Example: A tighter upper bound?
	Slide 15: Example (cont’d)
	Slide 16: Example (cont’d)
	Slide 17: Example (cont’d)
	Slide 18: Example (cont’d)
	Slide 19: Example (cont’d)
	Slide 20: Substitution Method: Example 2
	Slide 21: Example 2 (cont’d)
	Slide 22: Substitution Method - Summary
	Slide 23: Recursion Tree Method
	Slide 24: Solve Recurrence: T(n) = 2T (n/2) + Θ(n)
	Slide 25: Solve Recurrence: T(n) = 2T (n/2) + Θ(n)
	Slide 26: Solve Recurrence: T(n) = 2T (n/2) + Θ(n)
	Slide 27: Example of Recursion Tree
	Slide 28: Example of Recursion Tree
	Slide 29: Example of Recursion Tree
	Slide 30: Example of Recursion Tree
	Slide 31: Example of Recursion Tree
	Slide 32: Example of Recursion Tree
	Slide 33: Example of Recursion Tree
	Slide 34: Example of Recursion Tree
	Slide 35: Example of Recursion Tree
	Slide 36: The Master Method
	Slide 37: The Master Method: 3 Cases
	Slide 38: The Master Method: Case 1
	Slide 39: The Master Method: Case 2 (simple version)
	Slide 40: The Master Method: Case 3
	Slide 41: Example: T(n) = 4T(n/2) + n
	Slide 42: Example: T(n) = 4T(n/2) + n2
	Slide 43: Example: T(n) = 4T(n/2) + n3
	Slide 44: Example: T(n) = 4T(n/2) + n2/lgn
	Slide 45: The Master Method: Case 2 (general version)
	Slide 46: General Method (Akra-Bazzi)
	Slide 47: Idea of Master Theorem
	Slide 48: Idea of Master Theorem
	Slide 49: Idea of Master Theorem
	Slide 50: Idea of Master Theorem
	Slide 51: Proof of Master Theorem: Case 1 and Case 2
	Slide 52: Proof of Case 1
	Slide 53: Case 1 (cont’)
	Slide 54: Case 1 (cont’)
	Slide 55: Proof of Case 2 (limited to k=0)

