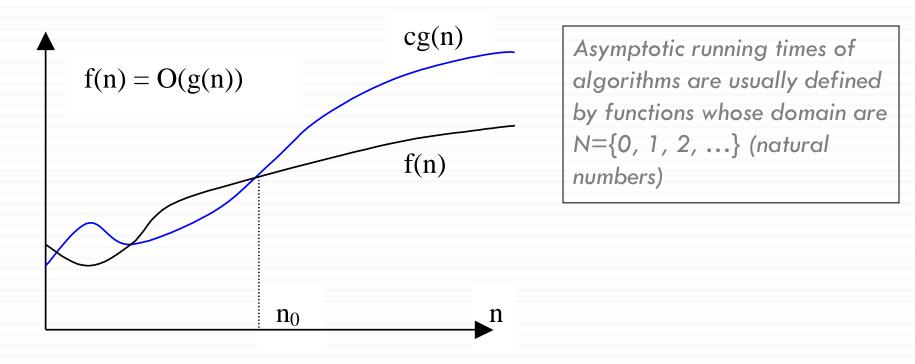
Algorithms I

Asymptotic Notation

O-notation: Asymptotic upper bound

f(n) = O(g(n)) if ∃ positive constants c, n_0 such that $0 \le f(n) \le cg(n), \forall n \ge n_0$



Show that
$$2n^2 = O(n^3)$$

We need to find two positive constants: **c** and **n**₀ such that: $0 \le 2n^2 \le cn^3$ for all $n \ge n_0$

Choose c = 2 and $n_0 = 1$ $\rightarrow 2n^2 \le 2n^3$ for all $n \ge 1$

Or, choose c = 1 and $n_0 = 2$ $\rightarrow 2n^2 \le n^3$ for all $n \ge 2$

Show that
$$2n^2 + n = O(n^2)$$

We need to find two positive constants: **c** and **n**₀ such that: $0 \le 2n^2 + n \le cn^2$ for all $n \ge n_0$ $2 + (1/n) \le c$ for all $n \ge n_0$

Choose c = 3 and $n_0 = 1$

→ $2n^2 + n \le 3n^2$ for all $n \ge 1$

O-notation

□ What does f(n) = O(g(n)) really mean?

The notation is a little sloppy
One-way equation
e.g. n² = O (n³), but we cannot say O(n³) = n²

 \Box O(g(n)) is in fact a set of functions:

 $O(g(n)) = \{f(n): \exists \text{ positive constants } c, n_0 \text{ such that}$ $0 \le f(n) \le cg(n), \forall n \ge n_0\}$

O-notation

 O(g(n)) = {f(n): ∃ positive constants c, n₀ such that 0 ≤ f(n) ≤ cg(n), ∀n ≥ n₀}
 In other words: O(g(n)) is in fact: the set of functions that have asymptotic upper bound g(n)

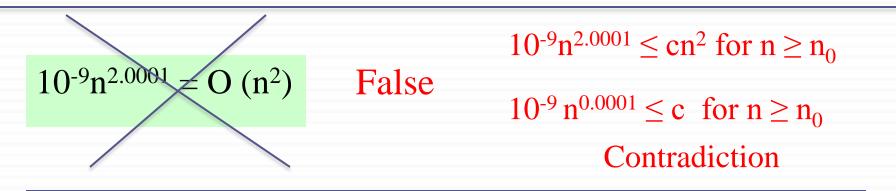
 $\Box \text{ e.g. } 2n^2 = O(n^3) \underline{means} \quad 2n^2 \in O(n^3)$

 $2n^2$ is in the set of functions that have asymptotic upper bound n^3

True or False?

$10^9 n^2 = O(n^2)$	True	Choose $c = 10^9$ and $n_0 = 1$
		$0 \le 10^9 n^2 \le 10^9 n^2$ for $n \ge 1$

$100n^{1.9999} = O(n^2)$	True	Choose $c = 100$ and $n_0 = 1$
	ITue	$0 < 100n^{1.9999} < 100n^2$ for n>1



O-notation

- \Box *O*-notation is an upper bound notation
- □ What does it mean if we say:

"The runtime (T(n)) of Algorithm A is <u>at least O(n²)</u>"

 \rightarrow says nothing about the runtime. Why?

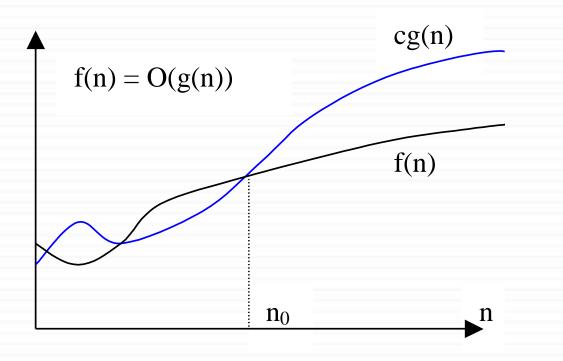
 $O(n^2)$: The set of functions with asymptotic *upper bound* n^2

 $T(n) \ge O(n^2)$ means: $T(n) \ge h(n)$ for some $h(n) \in O(n^2)$

h(n) = 0 function is also in $O(n^2)$. Hence: $T(n) \ge 0$ runtime must be nonnegative anyway!

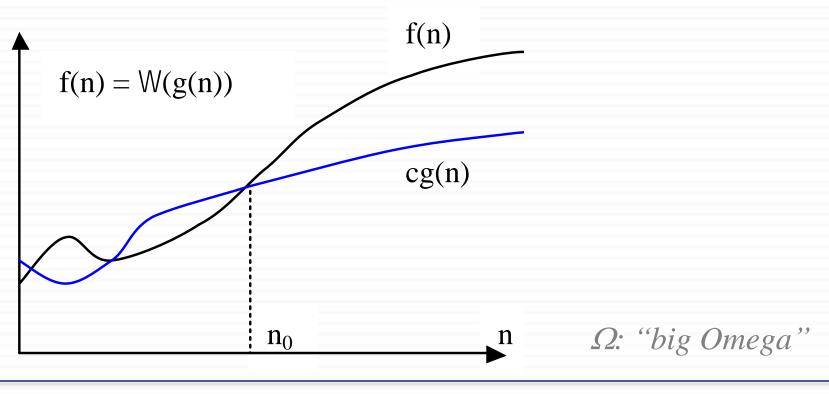
Summary: O-notation: Asymptotic upper bound

 $f(n) \in O(g(n))$ if ∃ positive constants c, n_0 such that $0 \le f(n) \le cg(n), \forall n \ge n_0$



Ω -notation: Asymptotic lower bound

 $f(n) = \Omega(g(n))$ if \exists positive constants c, n_0 such that $0 \le cg(n) \le f(n), \forall n \ge n_0$



Show that $2n^3 = \Omega(n^2)$

We need to find two positive constants: **c** and $\mathbf{n_0}$ such that: $0 \le cn^2 \le 2n^3$ for all $n \ge n_0$

Choose c = 1 and $n_0 = 1$ $\rightarrow n^2 \le 2n^3$ for all $n \ge 1$

Show that
$$\sqrt{n} = \Omega(\lg n)$$

We need to find two positive constants: **c** and **n**₀ such that: c lg $n \le \sqrt{n}$ for all $n \ge n_0$

Choose c = 1 and $n_0 = 16$ $\rightarrow lg n \le \sqrt{n}$ for all $n \ge 16$

Ω -notation: Asymptotic Lower Bound

□ $\Omega(g(n)) = \{f(n): \exists \text{ positive constants } c, n_0 \text{ such that}$ $0 \le cg(n) \le f(n), \forall n \ge n_0\}$

 \Box In other words: Ω (g(n)) is in fact:

the set of functions that have asymptotic lower bound g(n)

True or False?

$10^9 n^2 = \Omega (n^2)$	True	Choose $c = 10^9$ and $n_0 = 1$ $0 \le 10^9 n^2 \le 10^9 n^2$ for $n \ge 1$
$100n^{1.9999} = \Omega$ (n ²)	False	$\begin{array}{ll} cn^2 \leq 100n^{1.9999} & \mbox{for } n \geq n_0 \\ n^{0.0001} \leq (100/c) & \mbox{for } n \geq n_0 \\ & \mbox{Contradiction} \end{array}$
$10^{-9} n^{2.0001} = \Omega (n^2)$	True	Choose $c = 10^{-9}$ and $n_0 = 1$ $0 \le 10^{-9} n^2 \le 10^{-9} n^{2.0001}$ for $n \ge 1$

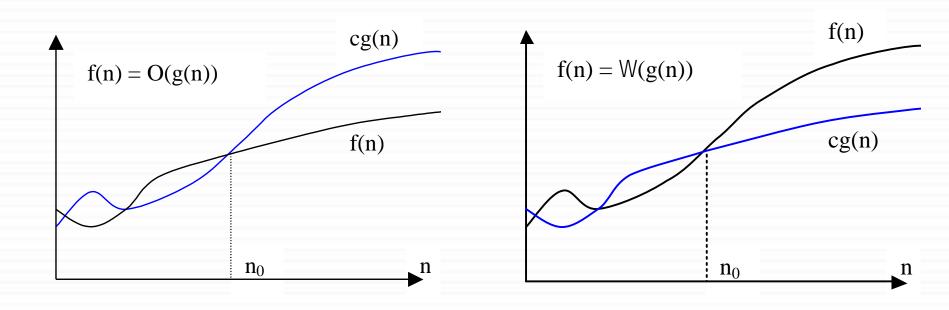
Summary: O-notation and Ω -notation

□ O(g(n)): The set of functions with asymptotic upper bound g(n) f(n) = O(g(n)) $f(n) \in O(g(n))$ if ∃ positive constants c, n_0 such that

 $0 \le f(n) \le cg(n), \forall n \ge n_0$

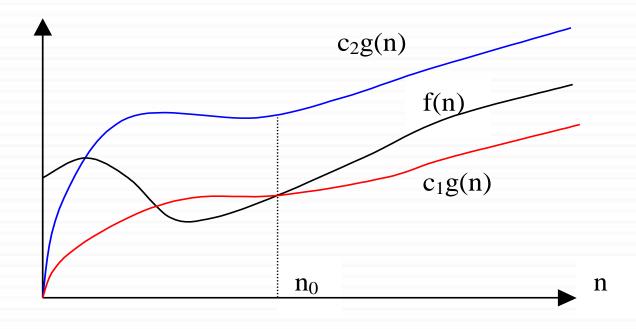
□ $\Omega(g(n))$: The set of functions with asymptotic lower bound g(n) $f(n) = \Omega(g(n))$ $f(n) \in \Omega(g(n))$ ∃ positive constants c, n_0 such that $0 \le cg(n) \le f(n), \forall n \ge n_0$

Summary: O-notation and Ω -notation



Θ -notation: Asymptotically tight bound

□ $f(n)=\Theta(g(n))$ if \exists positive constants c_1, c_2, n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0$



Show that
$$2n^2 + n = \Theta(n^2)$$

We need to find 3 positive constants: $\mathbf{c_1}$, $\mathbf{c_2}$ and $\mathbf{n_0}$ such that: $0 \le c_1 n^2 \le 2n^2 + n \le c_2 n^2$ for all $n \ge n_0$ $c_1 \le 2 + (1/n) \le c_2$ for all $n \ge n_0$

Choose $c_1 = 2$, $c_2 = 3$, and $n_0 = 1$

$$\Rightarrow 2n^2 \le 2n^2 + n \le 3n^2 \text{ for all } n \ge 1$$

Example

Show that
$$\frac{1}{2}n^2 - 2n = \Theta(n^2)$$

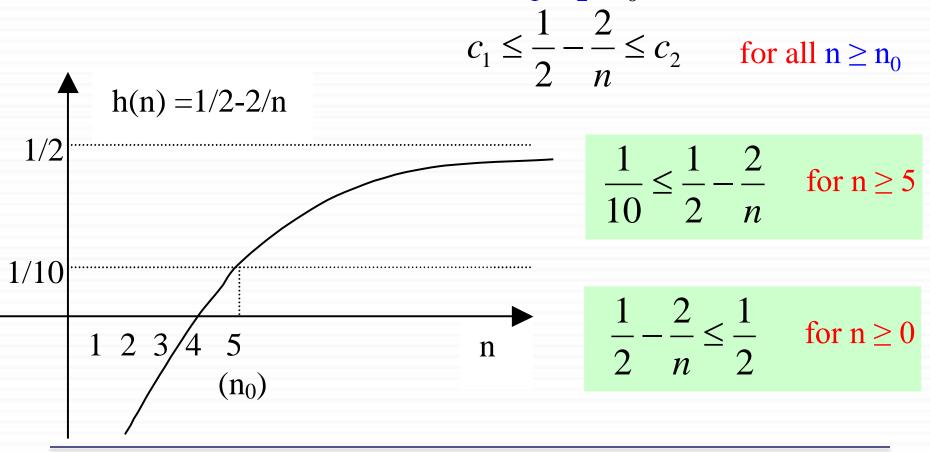
We need to find 3 positive constants: c_1 , c_2 and n_0 such that:

$$0 \le c_1 n^2 \le \frac{1}{2} n^2 - 2n \le c_2 n^2$$
 for all $n \ge n_0$

$$c_1 \le \frac{1}{2} - \frac{2}{n} \le c_2 \qquad \text{for all } n \ge n_0$$

Example (cont'd)

 \square Choose 3 positive constants: c_1, c_2, n_0 that satisfy:



Example (cont'd)

 \square Choose 3 constants: c_1, c_2, n_0 that satisfy:

$$c_1 \le \frac{1}{2} - \frac{2}{n} \le c_2$$
 for all $n \ge n_0$

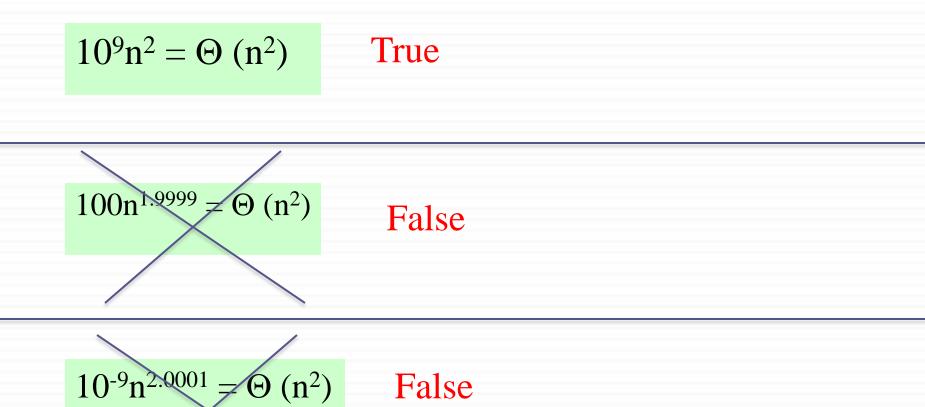
$$\frac{1}{10} \le \frac{1}{2} - \frac{2}{n} \quad \text{for } n \ge 5 \qquad \qquad \frac{1}{2} - \frac{2}{n} \le \frac{1}{2} \quad \text{for } n \ge 0$$

Therefore, we can choose:: $c_1 = \frac{1}{10}$ $c_2 = \frac{1}{2}$ $n_0 = 5$

Θ -notation: Asymptotically tight bound

- Theorem: leading constants & low-order terms don't matter
- Justification: can choose the leading constant large enough to make high-order term dominate other terms

True or False?



Θ -notation: Asymptotically tight bound

 $\Box \ \Theta(g(n)) = \{f(n): \exists \text{ positive constants } c_1, c_2, n_0 \text{ such that} \\ 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0 \}$

 \Box In other words: $\Theta(g(n))$ is in fact:

the set of functions that have asymptotically tight bound g(n)

Θ -notation: Asymptotically tight bound

□ <u>Theorem</u>:

 $f(n) = \Theta(g(n))$ if and only if

f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

In other words:
 Θ is stronger than both O and Ω

 \Box In other words:

 $\Theta(g(n)) \subseteq O(g(n))$ and $\Theta(g(n)) \subseteq \Omega(g(n))$

$\Box \text{ Prove that } 10^{-8} \text{ } n^2 \neq \Theta(n)$

Before proof, note that $10^{-8}n^2 = \Omega(n)$ but $10^{-8}n^2 \neq O(n)$

Proof by contradiction:

Suppose positive constants c_2 and n_0 exist such that:

 $10^{-8}n^2 \le c_2 n$ for all $n \ge n_0$

 $10^{-8}n \le c_2$ for all $n \ge n_0$

Contradiction: c_2 is a constant

Summary: O, Ω , and Θ notations

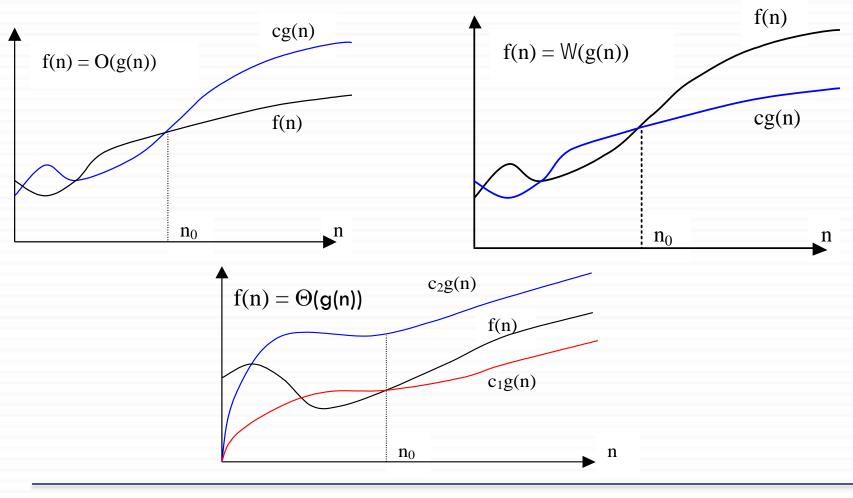
 \Box O(g(n)): The set of functions with asymptotic upper bound g(n)

 \square $\Omega(g(n))$: The set of functions with asymptotic lower bound g(n)

 $\Box \Theta(g(n))$: The set of functions with asymptotically tight bound g(n)

 \Box f(n) = $\Theta(g(n))$ if and only if f(n) = O(g(n)) and f(n) = $\Omega(g(n))$

Summary: O, Ω , and Θ notations



o ("small o") Notation Asymptotic upper bound that is <u>not tight</u>

<u>Reminder</u>: Upper bound provided by O ("big O") notation can be tight or not tight:

e.g. $2n^2 = O(n^2)$ $2n = O(n^2)$

is asymptotically tight is not asymptotically tight

o-Notation: An upper bound that is not asymptotically tight

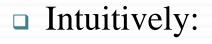
o ("small o") Notation Asymptotic upper bound that is <u>not tight</u>

□ $o(g(n)) = \{f(n): \text{ for } \underline{any} \text{ constant } c > 0,$ ∃ a constant $n_0 > 0$, such that $0 \le f(n) < cg(n), \forall n \ge n_0\}$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

• e.g., $2n = o(n^2)$, **but** $2n^2 \neq o(n^2)$, any positive c satisfies c = 2 does not satisfy ω ("small omega") Notation Asymptotic lower bound that is <u>not tight</u>

 $\Box \ \omega(\mathbf{g}(\mathbf{n})) = \{\mathbf{f}(\mathbf{n}): \text{ for } \underline{\mathbf{any}} \text{ constant } \mathbf{c} > \mathbf{0},$ $\exists \text{ a constant } \mathbf{n}_0 > \mathbf{0}, \text{ such that}$ $\mathbf{0} \le \mathbf{cg}(\mathbf{n}) < \mathbf{f}(\mathbf{n}), \ \forall \mathbf{n} \ge \mathbf{n}_0\}$



$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$$

□ e.g., $n^2/2 = \omega(n)$, any positive *c* satisfies *but* $n^2/2 \neq \omega(n^2)$, c = 1/2 does not satisfy

Analogy to the comparison of two real numbers

□ $f(n) = O(g(n)) \leftrightarrow a \le b$ □ $f(n) = \Omega(g(n)) \leftrightarrow a \ge b$ □ $f(n) = \Theta(g(n)) \leftrightarrow a = b$

□ $f(n) = o(g(n)) \leftrightarrow a < b$ □ $f(n) = \omega(g(n)) \leftrightarrow a > b$

True or False?

$2^{n} = O(3^{n})$ True $2^{n} = \Omega(3^{n})$ False	$5n^{2} = O(n^{2})$ $5n^{2} = \Omega(n^{2})$ $5n^{2} = \Theta(n^{2})$ $5n^{2} = o(n^{2})$ $5n^{2} = \omega(n^{2})$	True True True False False
$2^{n} = \Theta(3^{n})$ False	$2^{n} = O(3^{n})$	False

 $n^2 lgn = O(n^2)$ False $n^2 lgn = \Omega(n^2)$ True $n^2 lgn = \Theta(n^2)$ False $n^2 lgn = o(n^2)$ False $n^2 lgn = \omega(n^2)$ True

 $2^n = o(3^n)$ True $2^n = \omega(3^n)$ False

Analogy to comparison of two real numbers

Trichotomy property for real numbers:
 For any two real numbers a and b, we have <u>either</u> a < b, <u>or</u> a = b, <u>or</u> a > b

□ Trichotomy property *does not hold* for asymptotic notation

For two functions f(n) & g(n), it may be the case that <u>neither</u> $f(n) = O(g(n)) \underline{nor} f(n) = \Omega(g(n)) holds$

e.g. n and $n^{1+sin(n)}$ cannot be compared asymptotically

Asymptotic Comparison of Functions

(Similar to the relational properties of real numbers)

Transitivity: holds for all e.g., $f(n) = \Theta(g(n)) \& g(n) = \Theta(h(n)) \Longrightarrow f(n) = \Theta(h(n))$ <u>Reflexivity</u>: holds for Θ , O, Ω e.g., f(n) = O(f(n))Symmetry: holds only for Θ e.g., $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$ <u>Transpose symmetry</u>: holds for $(O \leftrightarrow \Omega)$ and $(o \leftrightarrow \omega)$) e.g., $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$

Using O-Notation to Describe Running Times

- □ Used to bound worst-case running times
 - Implies an upper bound runtime for arbitrary inputs as well
- Example:
 "Insertion sort has worst-case runtime of O(n²)"

<u>Note</u>: This $O(n^2)$ upper bound also applies to its running time on every input.

Using O-Notation to Describe Running Times

 \square Abuse to say "running time of insertion sort is $O(n^2)$ "

For a given n, the actual running time <u>depends on</u> the particular input of size n

■ i.e., running time is not only a function of n

However, worst-case running time is only a function of n

Using O-Notation to Describe Running Times

 \square When we say:

"" *Running time of insertion sort is* $O(n^2)$ ",

what we really mean is:

"Worst-case running time of insertion sort is $O(n^2)$ "

or equivalently:

"No matter what particular input of size n is chosen, the running time on that set of inputs is $O(n^2)$ "

Using Ω -Notation to Describe Running Times

□ Used to bound best-case running times

■ Implies a lower bound runtime for arbitrary inputs as well

Example:
 "Insertion sort has best-case runtime of Ω(n)"

<u>Note</u>: This $\Omega(n)$ lower bound also applies to its running time on every input.

Using Ω -Notation to Describe Running Times

 \square When we say:

"Running time of algorithm A is $\Omega(g(n))$ ",

what we mean is:

"For any input of size n, the runtime of A is <u>at least</u> a constant times g(n) for sufficiently large n"

Using -Notation to Describe Running Times

□ *Note*: It's not contradictory to say:

"worst-case running time of insertion sort is $\Omega(n^2)$ "

because there exists an input that causes the algorithm to take $\Omega(n^2)$.

Using Θ -Notation to Describe Running Times

□ Consider 2 cases about the runtime of an algorithm:

- □ <u>Case 1</u>: Worst-case and best-case <u>not asymptotically equal</u>
 → Use Θ-notation to bound worst-case and best-case runtimes <u>separately</u>
- Case 2: Worst-case and best-case <u>asymptotically equal</u>
 → Use Θ-notation to bound the runtime for any input

Using Θ-Notation to Describe Running Times Case 1

□ <u>Case 1</u>: Worst-case and best-case <u>not asymptotically equal</u>
 → Use Θ-notation to bound the worst-case and best-case runtimes <u>separately</u>

• We can say:

• "The worst-case runtime of insertion sort is $\Theta(n^2)$ "

• "The best-case runtime of insertion sort is $\Theta(n)$ "

■ But, we can't say:

• "The runtime of insertion sort is $\Theta(n^2)$ for every input"

■ A ⊖-bound on worst-/best-case running time does not apply to its running time on arbitrary inputs

Using Θ-Notation to Describe Running Times Case 2

<u>Case 2</u>: Worst-case and best-case <u>asymptotically equal</u>
 → Use Θ-notation to bound the runtime for any input

■ e.g. For merge-sort, we have: T(n) = O(nlgn) $T(n) = \Omega(nlgn)$ $T(n) = \Theta(nlgn)$

Using Asymptotic Notation to Describe Runtimes Summary

- "The <u>worst case</u> runtime of Insertion Sort is O(n²)"
 Also implies: "The runtime of Insertion Sort is O(n²)"
- "The <u>best-case</u> runtime of Insertion Sort is Ω(n)"
 Also implies: "The runtime of Insertion Sort is Ω(n)"
- The <u>worst case</u> runtime of Insertion Sort is Θ(n²)"
 ▶ But: "The runtime of Insertion Sort is not Θ(n²)"
- □ "The <u>best case</u> runtime of Insertion Sort is Θ(n)"
 > But: "The runtime of Insertion Sort is not Θ(n)"

Using Asymptotic Notation to Describe Runtimes Summary

- "The worst case runtime of Merge Sort is $\Theta(nlgn)$ "
- "The <u>best case</u> runtime of Merge Sort is $\Theta(nlgn)$ "
- "The runtime of Merge Sort is $\Theta(nlgn)$ "
 - This is true, because the best and worst case runtimes have asymptotically the same tight bound Θ(nlgn)

Asymptotic Notation in Equations

□ Asymptotic notation appears <u>alone on the RHS</u> of an equation:

> implies set membership
 e.g., n = O(n²) means n ∈ O(n²)

- □ Asymptotic notation appears <u>on the RHS</u> of an equation
 - stands for <u>some</u> anonymous function in the set e.g., $2n^2 + 3n + 1 = 2n^2 + \Theta(n)$ means: $2n^2 + 3n + 1 = 2n^2 + h(n)$, for <u>some</u> $h(n) \in \Theta(n)$
 - *i.e.*, h(n) = 3n + 1

Asymptotic Notation in Equations

 Asymptotic notation appears <u>on the LHS</u> of an equation:
 > stands for <u>any</u> anonymous function in the set
 e.g., 2n² + Θ(n) = Θ(n²) means: for <u>any</u> function g(n) ∈ Θ(n)
 ∃ <u>some</u> function h(n) ∈ Θ(n²) such that 2n²+g(n) = h(n)

RHS provides coarser level of detail than LHS

Algorithms I

Solving Recurrences

Solving Recurrences

Reminder: Runtime (T(n)) of MergeSort was expressed as a recurrence

 $T(n) = \begin{cases} \Theta(1) & \text{if } n=1 \\ \\ 2T(n/2) + \Theta(n) & \text{otherwise} \end{cases}$

 Solving recurrences is like solving differential equations, integrals, etc.

□*Need to learn a few tricks*

Recurrences

□ <u>Recurrence</u>: An equation or inequality that describes a function in terms of its value on smaller inputs.

Example:

$$T(n) = \begin{cases} 1 & \text{if } n=1\\ T(\lceil n/2 \rceil) + 1 & \text{if } n>1 \end{cases}$$

Recurrence - Example

$$T(n) = \begin{cases} 1 & \text{if } n=1 \\ T(\lceil n/2 \rceil) + 1 & \text{if } n>1 \end{cases}$$

- \Box Simplification: Assume $n = 2^k$
- \Box Claimed answer: T(n) = lgn + 1
- □ Substitute claimed answer in the recurrence:

$$\lg n + 1 = \begin{cases} 1 & \text{if } n = 1\\ (\lg(\lceil n/2 \rceil) + 2) & \text{if } n > 1 \end{cases}$$

True when $n = 2^k$

Technicalities: Floor/Ceiling

- Technically, should be careful about the floor and ceiling functions (as in the book).
- \square e.g. For merge sort, the recurrence should in fact be:

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n) & \text{if } n > 1 \end{cases}$$

 \Box But, it's usually ok to:

- > ignore floor/ceiling
- > solve for exact powers of 2 (or another number)

Technicalities: Boundary Conditions

- □ Usually assume: $T(n) = \Theta(1)$ for sufficiently small n
 - Changes the exact solution, but usually the asymptotic solution is not affected (e.g. if polynomially bounded)
- For convenience, the boundary conditions generally implicitly stated in a recurrence

 $T(n) = 2T(n/2) + \Theta(n)$

assuming that

 $T(n) = \Theta(1)$ for sufficiently small n

Example: When Boundary Conditions Matter

- □ Exponential function: $T(n) = (T(n/2))^2$
- Assume T(1) = c (where c is a positive constant). T(2) = (T(1))² = c² T(4) = (T(2))² = c⁴ T(n) = Θ(cⁿ)
 e.g.T(1) = 2 ⇒ T(n) = Θ(2ⁿ) T(1) = 3 ⇒ T(n) = Θ(3ⁿ) However Θ(2ⁿ) ≠ Θ(3ⁿ)

□ Difference in solution more dramatic when:

$$T(1) = 1 \Longrightarrow T(n) = \Theta(1^n) = \Theta(1)$$

Solving Recurrences

- □ We will focus on 3 techniques in this lecture:
 - 1. Substitution method
 - 1. Recursion tree approach
 - 1. Master method

Substitution Method

□ The most general method:

- 1. Guess
- 2. Prove by induction
- 3. Solve for constants

Substitution Method: Example

Solve
$$T(n) = 4T(n/2) + n$$
 (assume $T(1) = \Theta(1)$)

1. Guess $T(n) = O(n^3)$ (need to prove O and Ω separately)

2. Prove by induction that $T(n) \le cn^3$ for large n (i.e. $n \ge n_0$)

Inductive hypothesis: $T(k) \le ck^3$ for any k < n

Assuming ind. hyp. holds, prove $T(n) \le cn^3$

Substitution Method: Example – cont'd

Original recurrence: T(n) = 4T(n/2) + n

From inductive hypothesis: $T(n/2) \le c(n/2)^3$ Substitute this into the original recurrence:

$$T(n) \leq 4c (n/2)^3 + n$$

= (c/2) n³ + n
= cn³ - ((c/2)n³ - n) \longrightarrow desired - residual
 $\leq cn^3$

when $((c/2)n^3 - n) \ge 0$

Substitution Method: Example – cont'd

- □ So far, we have shown:
 - $T(n) \le cn^3 \qquad \text{when } ((c/2)n^3 n) \ge 0$
- We can choose $c \ge 2$ and $n_0 \ge 1$
- □ But, the proof is not complete yet.
- <u>Reminder</u>: Proof by induction:
 - 1. Prove the base cases
 - 2. Inductive hypothesis for smaller sizes
 - 3. Prove the general case

haven't proved the base cases yet

Substitution Method: Example – cont'd

- □ We need to prove the base cases <u>Base</u>: $T(n) = \Theta(1)$ for small n (e.g. for $n = n_0$)
- We should show that: $"\Theta(1)" \le cn^3$ for $n = n_0$ This holds if we pick c big enough
- So, the proof of T(n) = O(n³) is complete.
 But, is this a tight bound?

Example: A tighter upper bound?

- □ Original recurrence: T(n) = 4T(n/2) + n□ Try to prove that $T(n) = O(n^2)$,
 - i.e. $T(n) \le cn^2$ for all $n \ge n_0$
- □ Ind. hyp: Assume that T(k) ≤ ck² for k < n
 □ Prove the general case: T(n) ≤ cn²

- \Box Original recurrence: T(n) = 4T(n/2) + n
- □ Ind. hyp: Assume that $T(k) \le ck^2$ for k < n
- □ Prove the general case: $T(n) \le cn^2$

T(n) = 4T(n/2) + n $\leq 4c(n/2)^{2} + n$ $= cn^{2} + n$ $= O(n^{2})$ Wrong! We must prove exactly

- \Box Original recurrence: T(n) = 4T(n/2) + n
- □ Ind. hyp: Assume that $T(k) \le ck^2$ for k < n
- □ Prove the general case: $T(n) \le cn^2$
- □ So far, we have:
 - $T(n) \le cn^2 + n$

No matter which positive c value we choose, this <u>does not</u> show that $T(n) \le cn^2$

Proof failed?

□ What was the problem?

> The inductive hypothesis was not strong enough

<u>Idea</u>: Start with a stronger inductive hypothesis
 Subtract a low-order term

□ Inductive hypothesis: $T(k) \le c_1 k^2 - c_2 k$ for k < n

 $\Box \text{ Prove the general case: } T(n) \leq c_1 n^2 - c_2 n$

- \Box Original recurrence: T(n) = 4T(n/2) + n
- □ Ind. hyp: Assume that $T(k) \le c_1 k^2 c_2 k$ for k < n
- □ Prove the general case: $T(n) \le c_1 n^2 c_2 n$

□ We now need to prove $T(n) \le c_1 n^2 - c_2 n$ for the <u>base cases</u>.

$$\begin{split} T(n) &= \Theta(1) \ \text{ for } \ 1 \leq n \leq n_0 \ (\text{implicit assumption}) \\ ``\Theta(1)" &\leq c_1 n^2 - c_2 n \ \text{for } n \ \text{small enough (e.g. } n = n_0) \\ \text{ We can choose } c_1 \ \text{large enough to make this hold} \end{split}$$

• We have proved that $T(n) = O(n^2)$

Substitution Method: Example 2

 \Box For the recurrence T(n) = 4T(n/2) + n, prove that $T(n) = \Omega(n^2)$ i.e. $T(n) \ge cn^2$ for any $n \ge n_0$ \Box <u>Ind. hyp</u>: $T(k) \ge ck^2$ for any k < n \square <u>Prove general case</u>: $T(n) \ge cn^2$ T(n) = 4T(n/2) + n $\geq 4c (n/2)^2 + n$ $= cn^{2} + n$ $> cn^2$ since n > 0Proof succeeded – no need to strengthen the ind. hyp as in the last example

□ We now need to prove that $T(n) \ge cn^2$ for the base cases

$$\begin{split} T(n) &= \Theta(1) \ \text{ for } 1 \leq n \leq n_0 \ (\text{implicit assumption}) \\ ``\Theta(1)" \geq cn^2 \quad \text{ for } n = n_0 \\ n_0 \ \text{ is sufficiently small (i.e. constant)} \\ \text{ We can choose } c \ \text{small enough for this to hold} \end{split}$$

□ We have proved that $T(n) = \Omega(n^2)$

Substitution Method - Summary

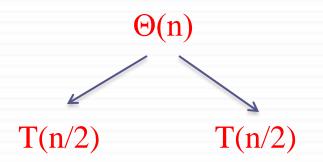
1. Guess the asymptotic complexity

- 1. Prove your guess using induction
 - 1. Assume inductive hypothesis holds for k < n
 - 2. Try to prove the general case for n
 <u>Note</u>: <u>MUST</u> prove the <u>EXACT</u> inequality
 <u>CANNOT</u> ignore lower order terms
 If the proof fails, strengthen the ind. hyp. and try again
 - 3. Prove the base cases (usually straightforward)

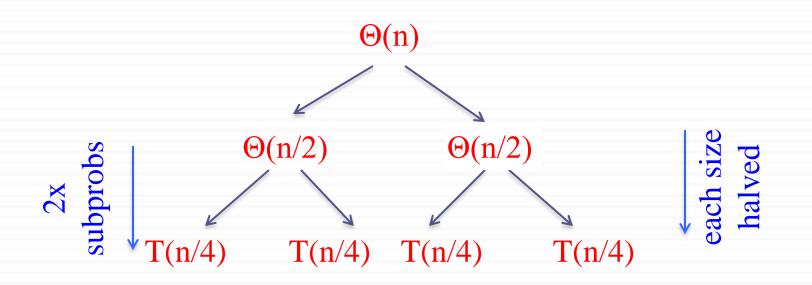
Recursion Tree Method

- A recursion tree models the runtime costs of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable.
 Not suitable for formal proofs
- The recursion-tree method promotes intuition, however.

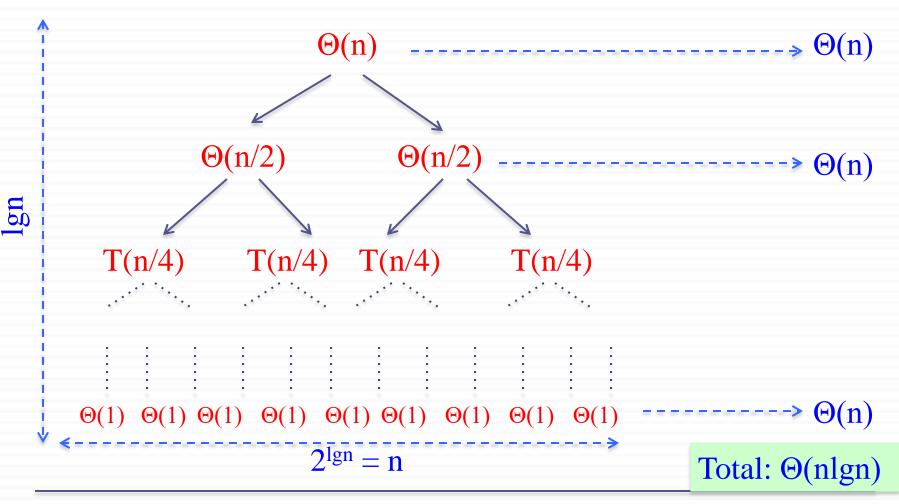
Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$



Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$



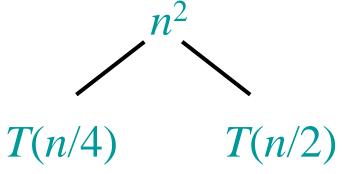
Solve Recurrence: $T(n) = 2T(n/2) + \Theta(n)$

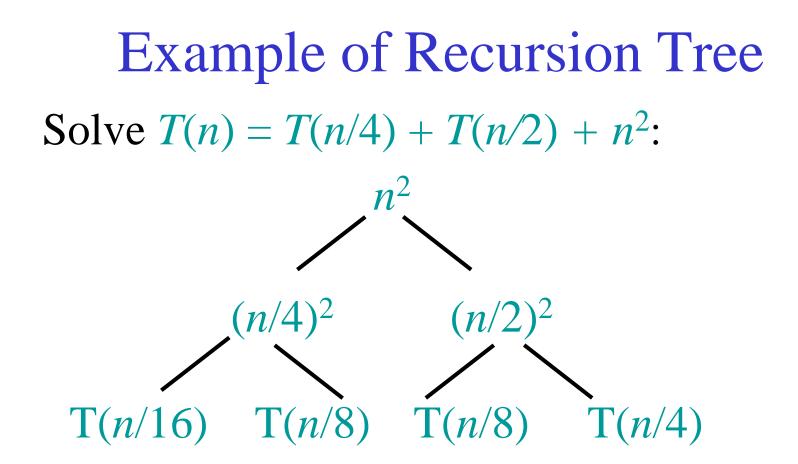


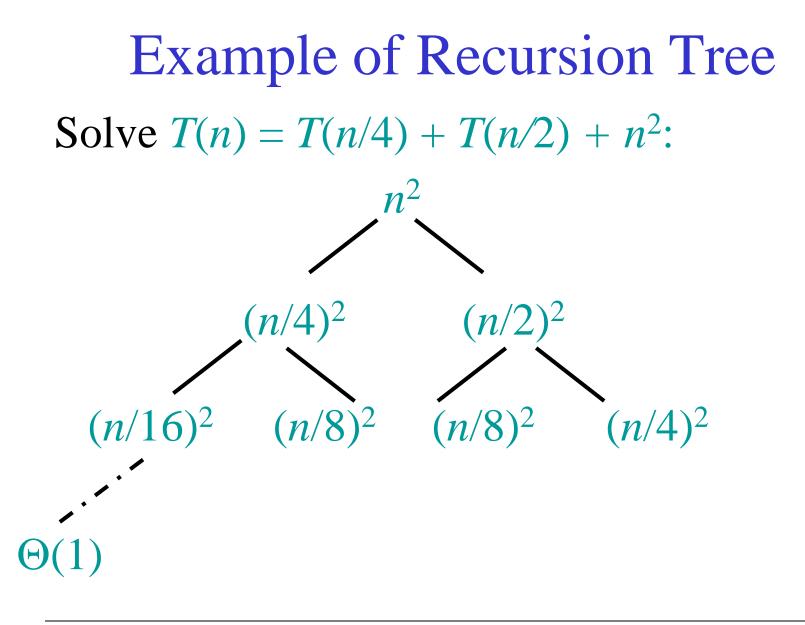
Example of Recursion Tree Solve $T(n) = T(n/4) + T(n/2) + n^2$:

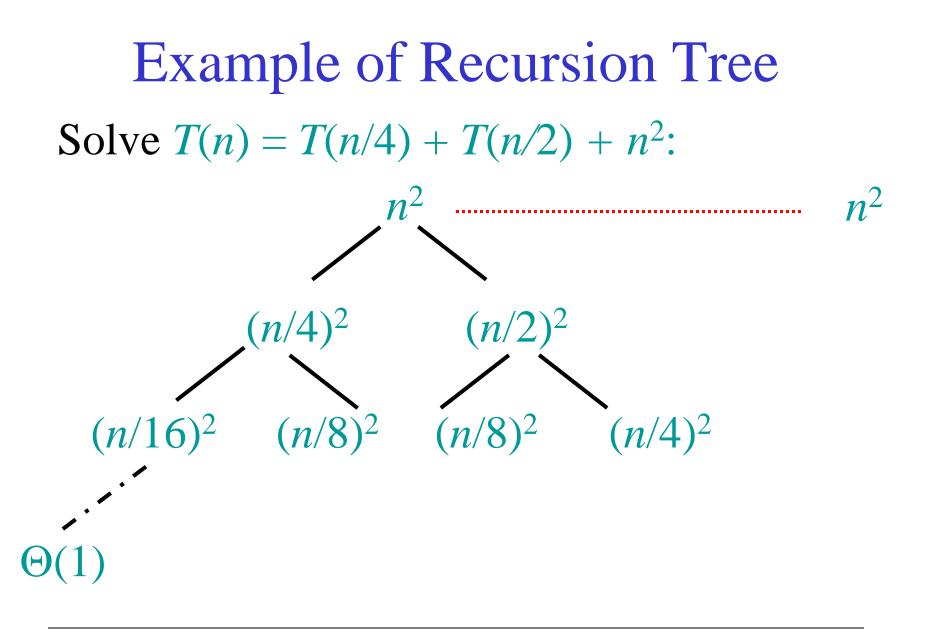
Example of Recursion Tree Solve $T(n) = T(n/4) + T(n/2) + n^2$: T(n)

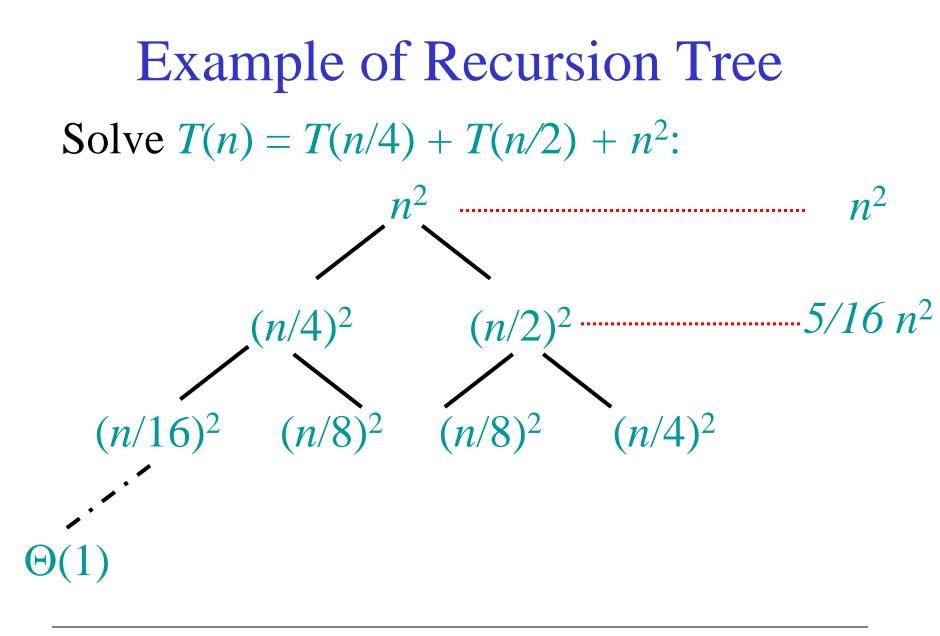
Example of Recursion Tree Solve $T(n) = T(n/4) + T(n/2) + n^2$:

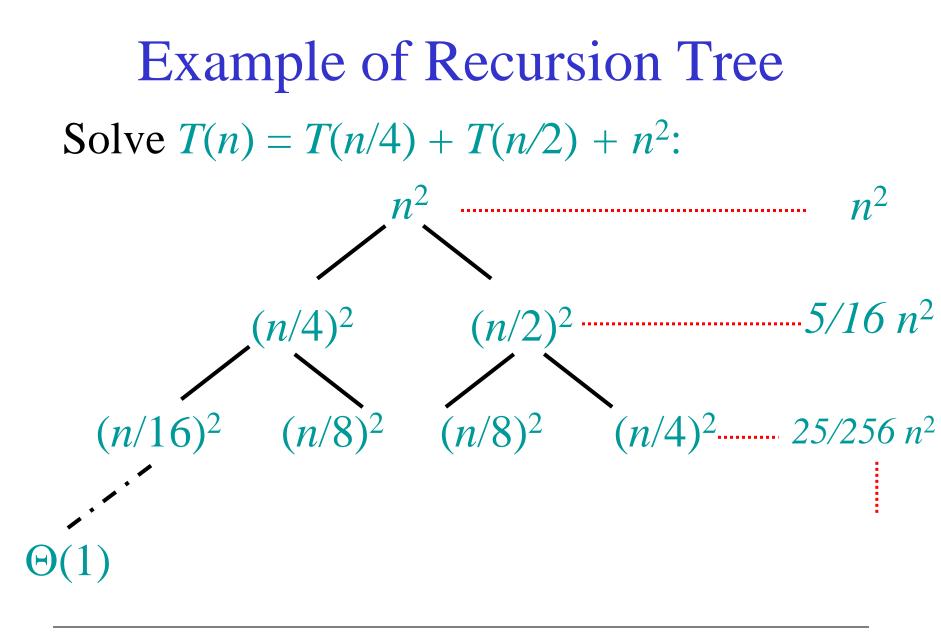


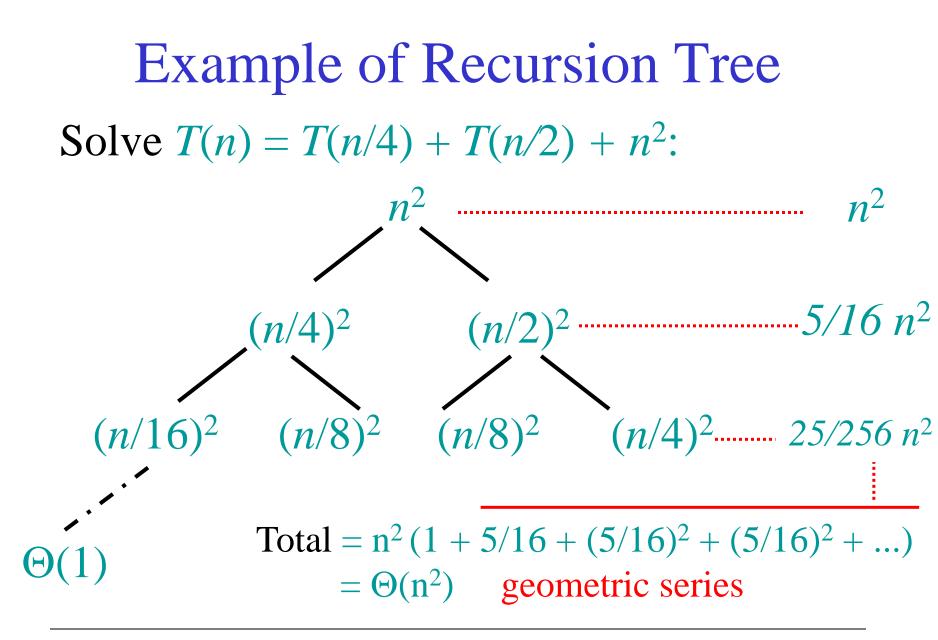












The Master Method

□ A powerful black-box method to solve recurrences.

□ The master method applies to recurrences of the form

T(n) = aT(n/b) + f(n)

where $a \ge 1$, b > 1, and f is asymptotically positive.

The Master Method: 3 Cases

- \square Recurrence: T(n) = aT(n/b) + f(n)
- Compare f (n) with $n^{\log_b a}$ Intuitively:
 Case 1: f (n) grows polynomially slower than $n^{\log_b a}$ Case 2: f (n) grows at the same rate as $n^{\log_b a}$ Case 3: f (n) grows polynomially faster than $n^{\log_b a}$

The Master Method: Case 1

$$\square \text{ Recurrence: } T(n) = aT(n/b) + f(n)$$

Case 1:
$$\frac{n^{\log_b a}}{f(n)} = \Omega(n^{\mathcal{E}})$$
 for some constant $\varepsilon > 0$

i.e., f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ε} factor).

Solution:
$$T(n) = \Theta(n^{\log_b a})$$

The Master Method: Case 2 (simple version)

$$\square \text{ Recurrence: } T(n) = aT(n/b) + f(n)$$

$$\underline{\text{Case 2}}: \quad \frac{f(n)}{n^{\log_b a}} = \Theta(1)$$

i.e., f(n) and $n^{\log_b a}$ grow at similar rates

Solution:
$$T(n) = \Theta(n^{\log_b a} \lg n)$$

The Master Method: Case 3

Case 3:
$$\frac{f(n)}{n^{\log_b a}} = \Omega(n^{\mathcal{E}})$$

for some constant $\varepsilon > 0$

i.e., f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor).

and the following regularity condition holds: $a f(n/b) \le c f(n)$ for some constant c < 1

Solution:
$$T(n) = \Theta(f(n))$$

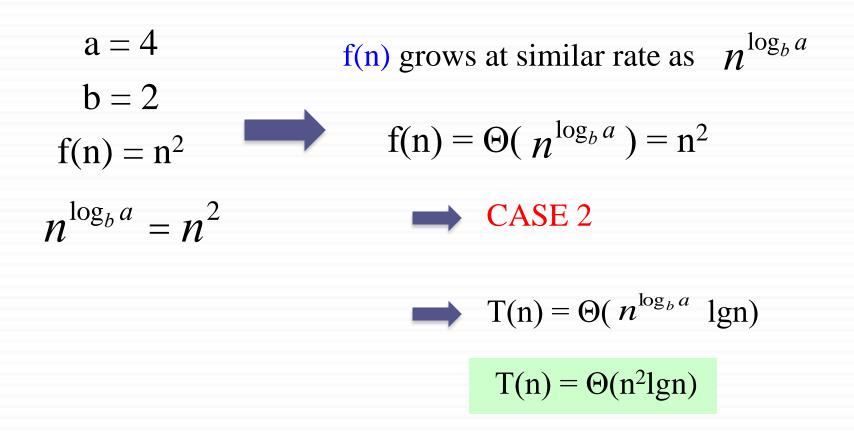
Example: T(n) = 4T(n/2) + n

a = 4
b = 2
f(n) = n

$$n^{\log_b a} = n^2$$

f(n) grows polynomially slower than $n^{\log_b a}$
 $\frac{n^{\log_b a}}{f(n)} = \frac{n^2}{n} = n = \Omega(n^{\mathcal{E}})$
for $\varepsilon = 1$
 \longrightarrow CASE 1
 \longrightarrow T(n) = $\Theta(n^{\log_b a})$
T(n) = $\Theta(n^{2})$

Example: $T(n) = 4T(n/2) + n^2$



Example: $T(n) = 4T(n/2) + n^3$

$$a = 4$$

$$b = 2$$

$$f(n) \text{ grows } \underline{polynomially} \text{ faster than } n^{\log_b a}$$

$$f(n) = n^3$$

$$n^{\log_b a} = n^2$$

$$f(n) = n^3 = \frac{f(n)}{n^{\log_b a}} = \frac{n^3}{n^2} = n = \Omega(n^{\mathcal{E}})$$

$$f(n) = 0$$

$$f(n) = 0 \text{ for } \varepsilon = 1$$

$$f(n) = 0 \text{ for } \varepsilon = 1$$

$$f(n) = 0 \text{ for } \varepsilon = 1$$

$$f(n) = 0 \text{ for } \varepsilon = 1$$

Example: $T(n) = 4T(n/2) + n^2/lgn$

a = 4 b = 2 $f(n) = n^2/lgn$ $n^{\log_b a} = n^2$

f(n) grows slower than
$$n^{\log_b a}$$

but is it polynomially slower?

$$\frac{n^{\log_b a}}{f(n)} = \frac{n^2}{\frac{n^2}{\log n}} = \lg n \neq \Omega(n^{\mathcal{E}})$$
for any $\varepsilon > 0$
is not CASE 1
Master method does not apply!

The Master Method: Case 2 (general version)

$$\square \text{ Recurrence: } T(n) = aT(n/b) + f(n)$$

$$\frac{\text{Case 2:}}{n^{\log_b a}} = \Theta(\lg^k n) \quad \text{for some constant } k \ge 0$$

Solution:
$$T(n) = \Theta(n^{\log_b a} - \lg^{k+1} n)$$

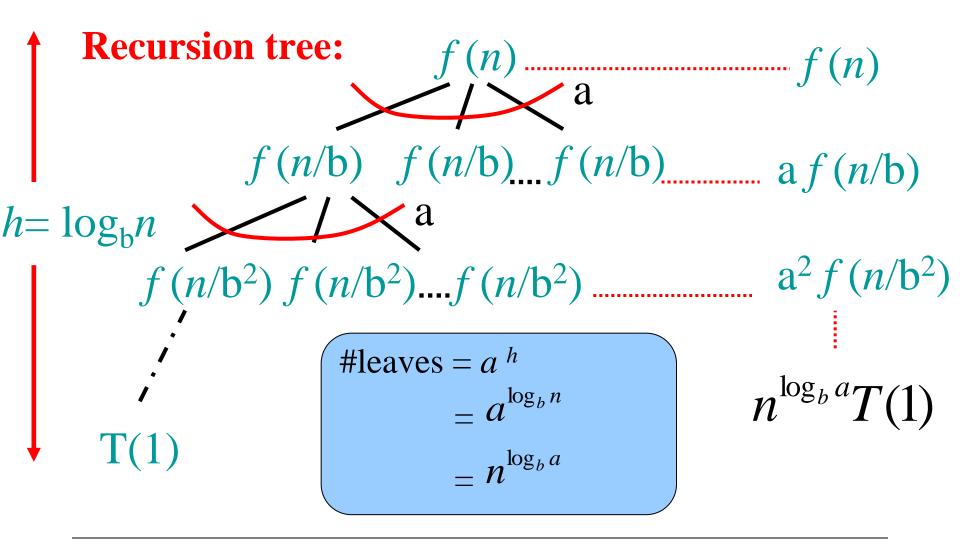
General Method (Akra-Bazzi)

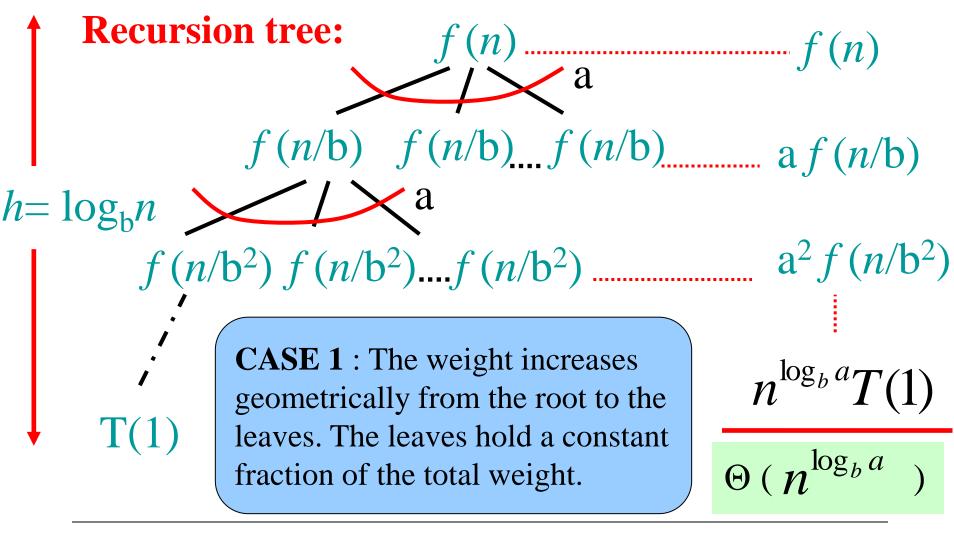
$$T(n) = \sum_{i=1}^{k} a_{i} T(n / b_{i}) + f(n)$$

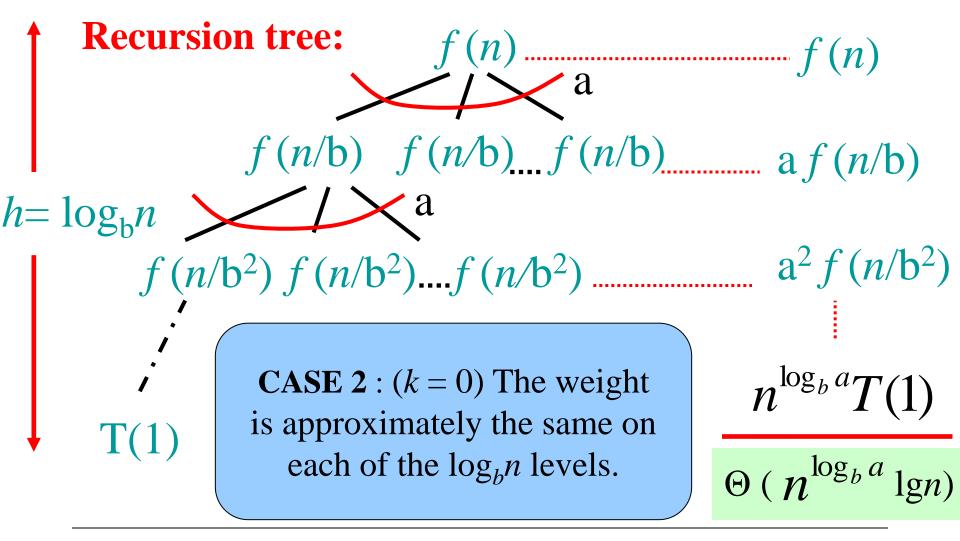
Let *p* be the unique solution to

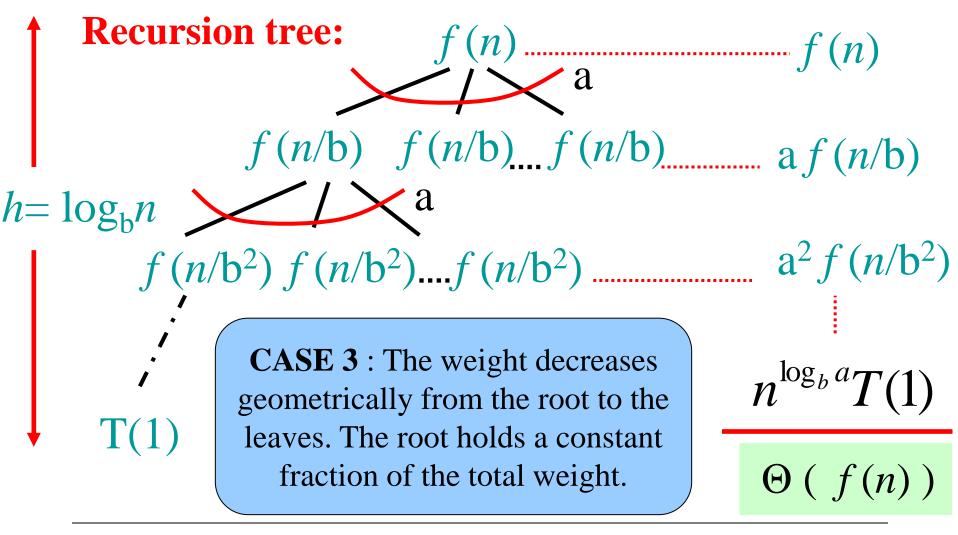
$$\sum_{i=1}^{k} (a_i / b^p_i) = 1$$

Then, the answers are the same as for the master method, but with n^p instead of $n^{\log_b a}$ (Akra and Bazzi also prove an even more general result.)









Proof of Master Theorem: Case 1 and Case 2

• Recall from the recursion tree (note $h = \lg_b n$ =tree height)

$$T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{h-1} a^i f(n/b^i)$$

Leaf cost Non-leaf cost = g(n)

Proof of Case 1

$$\geq \frac{n^{\log_b a}}{f(n)} = \Omega(n^{\varepsilon}) \quad \text{for some } \varepsilon > 0$$

$$\geq \frac{n^{\log_b a}}{f(n)} = \Omega(n^{\varepsilon}) \Longrightarrow \frac{f(n)}{n^{\log_b a}} = O(n^{-\varepsilon}) \Longrightarrow f(n) = O(n^{\log_b a - \varepsilon})$$

$$\succ g(n) = \sum_{i=0}^{h-1} a^i O\left((n/b^i)^{\log_b a-\varepsilon} \right) = O\left(\sum_{i=0}^{h-1} a^i (n/b^i)^{\log_b a-\varepsilon} \right)$$

$$= O\left(n^{\log_b a - \varepsilon} \sum_{i=0}^{h-1} a^i b^{i\varepsilon} / b^{i\log_b a}\right)$$

Case 1 (cont')

 $\sum_{i=0}^{h-1} \frac{a^{i} b^{i\varepsilon}}{b^{i\log_{b} a}} = \sum_{i=0}^{h-1} a^{i} \frac{(b^{\varepsilon})^{i}}{(b^{\log_{b} a})^{i}} = \sum a^{i} \frac{b^{\varepsilon}}{a^{i}} = \sum_{i=0}^{h-1} (b^{\varepsilon})^{i}$

= An increasing geometric series since b > 1

$$=\frac{b^{\varepsilon h}-1}{b^{\varepsilon}-1}=\frac{(b^{h})^{\varepsilon}-1}{b^{\varepsilon}-1}=\frac{(b^{\log_{b} n})^{\varepsilon}-1}{b^{\varepsilon}-1}=\frac{n^{\varepsilon}-1}{b^{\varepsilon}-1}=O(n^{\varepsilon})$$

Case 1 (cont')

$$- g(n) = O\left(n^{\log_b a - \varepsilon}O(n^{\varepsilon})\right) = O\left(\frac{n^{\log_b a}}{n^{\varepsilon}}O(n^{\varepsilon})\right)$$

$$=O(n^{\log_b a})$$

$$-T(n) = \Theta(n^{\log_b a}) + g(n) = \Theta(n^{\log_b a}) + O(n^{\log_b a})$$

$$=\Theta(n^{\log_b a})$$

Q.E.D.

Proof of Case 2 (limited to *k*=0)

$$\frac{f(n)}{n^{\log_b a}} = \Theta(\lg^0 n) = \Theta(1) \Longrightarrow f(n) = \Theta(n^{\log_b a}) \Longrightarrow f(n/b^i) = \Theta\left((\frac{n}{b^i})^{\log_b a}\right)$$

$$\therefore g(n) = \sum_{i=0}^{h-1} a^{i} \Theta\left((n/b^{i})^{\log_{b} a}\right)$$
$$= \Theta\left(\sum_{i=0}^{h-1} a^{i} \frac{n^{\log_{b} a}}{b^{i\log_{b} a}}\right) = \Theta\left(n^{\log_{b} a} \sum_{i=0}^{h-1} a^{i} \frac{1}{(b^{\log_{b} a})^{i}}\right) = \Theta\left(n^{\log_{b} a} \sum_{i=0}^{h-1} a^{i} \frac{1}{a^{i}}\right)$$
$$= \Theta\left(n^{\log_{b} a} \sum_{i=0}^{\log_{b} n-1}\right) = \Theta\left(n^{\log_{b} a} \log_{b} n\right) = \Theta\left(n^{\log_{b} a} \lg n\right)$$
$$T(n) = n^{\log_{b} a} + \Theta\left(n^{\log_{b} a} \lg n\right)$$
$$= \Theta\left(n^{\log_{b} a} \lg n\right)$$
Q.E.D.