

APPROXIMATION
ALGORITHMS

ALGORITHMS IN JAVA

Sercan Külcü | Algorithms In Java | 10.05.2023

PAGE 1

Contents

Introduction ..2

Well-known approximation algorithms ... 4

Greedy algorithm .. 5

Primal-dual algorithm ..7

Local search algorithm .. 9

Genetic algorithm .. 11

Ant colony optimization algorithm ... 14

PAGE 2

Introduction

Approximation algorithms are designed to trade off optimality for

efficiency. They provide a near-optimal solution with a bounded

approximation ratio, meaning the solution is guaranteed to be within a

certain factor of the optimal solution. The approximation ratio

determines the quality of the solution and can vary depending on the

problem.

Here are some key concepts and types of approximation algorithms:

Approximation Ratio:

The approximation ratio is a measure of how close the solution

produced by an approximation algorithm is to the optimal solution. It

is typically expressed as a constant factor (e.g., 2, 1.5, etc.) and represents

the worst-case performance guarantee of the algorithm. For example, if

an algorithm has an approximation ratio of 2, it means the solution it

provides is guaranteed to be at most twice the optimal solution.

Greedy Algorithms:

Greedy algorithms construct a solution step-by-step by making locally

optimal choices at each stage. While they may not always produce an

optimal solution, some greedy algorithms have provable approximation

guarantees for specific problems. Examples include the greedy

algorithm for the minimum spanning tree problem (MST) and the

greedy algorithm for the set cover problem.

Randomized Algorithms:

Randomized algorithms use randomization as a key component to find

approximate solutions. By introducing randomness, these algorithms

aim to explore different parts of the solution space and increase the

likelihood of finding a good approximation. Randomized rounding

algorithms, such as the randomized rounding technique for linear

programming, are commonly used in approximation algorithms.

PAGE 3

Polynomial-Time Approximation Schemes (PTAS):

PTAS algorithms are designed to provide near-optimal solutions for

certain problems. They achieve an approximation ratio that approaches

1 as the problem size grows larger. PTAS algorithms are typically more

computationally expensive than other approximation algorithms, but

they provide a higher level of accuracy in approximating the optimal

solution.

Heuristic Algorithms:

Heuristic algorithms are practical problem-solving techniques that aim

to find good solutions but make no guarantees about their optimality or

approximation ratio. Heuristics often leverage domain-specific

knowledge or problem-specific characteristics to guide the search for

solutions. While not strictly approximation algorithms, heuristics can

be used in combination with approximation techniques to provide

efficient and acceptable solutions.

Approximation algorithms are widely used in various fields, including

operations research, computer science, and optimization problems in

general. They provide valuable solutions to problems that are

computationally intractable or where finding an optimal solution is

impractical within a reasonable time frame.

It's important to note that the quality of approximation algorithms

depends on the specific problem and the approximation ratio achieved.

Some problems have well-known approximation algorithms with

constant ratios, while others are more challenging and may have

approximation algorithms with higher ratios. The design and analysis of

approximation algorithms require careful consideration of the

problem's characteristics and the trade-offs between solution quality

and computational complexity.

PAGE 4

Well-known approximation algorithms

Here are some of the most common approximation algorithms:

 Greedy algorithm: The greedy algorithm is a simple algorithm that

works by iteratively adding the best solution to the current

solution until no more solutions can be added. The greedy

algorithm is often used to solve problems such as maximum

coverage and minimum spanning tree.

 Primal-dual algorithm: The primal-dual algorithm is a more

complex algorithm that works by iteratively solving two linear

programs. The primal-dual algorithm is often used to solve

problems such as minimum cost flow and maximum flow.

 Local search algorithm: The local search algorithm is a more

sophisticated algorithm that works by iteratively making local

changes to a solution until no more improvements can be made.

The local search algorithm is often used to solve problems such as

traveling salesman problem and quadratic assignment problem.

 Genetic algorithm: The genetic algorithm is a metaheuristic

algorithm that works by iteratively mutating and recombining

solutions. The genetic algorithm is often used to solve problems

such as scheduling and optimization.

 Ant colony optimization algorithm: The ant colony optimization

algorithm is a metaheuristic algorithm that works by iteratively

placing ants on a graph and following a pheromone trail. The ant

colony optimization algorithm is often used to solve problems

such as traveling salesman problem and vehicle routing problem.

These are just a few of the many approximation algorithms that exist.

The best approximation algorithm to use for a particular problem will

depend on the specific problem and the desired level of accuracy.

PAGE 5

Greedy algorithm

The greedy algorithm is a simple algorithm that works by iteratively

adding the best solution to the current solution until no more solutions

can be added. The greedy algorithm is often used to solve problems such

as maximum coverage and minimum spanning tree.

For example, the greedy algorithm for maximum coverage works by

iteratively adding the set with the highest coverage to the current

solution until no more sets can be added.

Greedy algorithms can be used to solve a wide variety of problems,

including:

Maximum coverage problem: The maximum coverage problem is to find

the subset of sets that covers the maximum number of elements. The

greedy algorithm for maximum coverage works by iteratively adding the

set with the highest coverage to the current solution until no more sets

can be added.

Minimum spanning tree problem: The minimum spanning tree problem

is to find the tree that connects all the nodes with the minimum total

weight. The greedy algorithm for minimum spanning tree works by

iteratively adding the edge with the lowest weight to the current tree

until no more edges can be added.

Huffman coding problem: The Huffman coding problem is to find the

optimal code for a given set of symbols. The greedy algorithm for

Huffman coding works by iteratively merging the two symbols with the

lowest frequencies until only one symbol remains.

Job scheduling problem: The job scheduling problem is to find the

schedule that minimizes the total completion time. The greedy

algorithm for job scheduling works by iteratively adding the job with the

earliest deadline to the current schedule until no more jobs can be

added.

PAGE 6

Coin change problem: The coin change problem is to find the minimum

number of coins needed to make a given amount of change. The greedy

algorithm for coin change works by iteratively adding the largest coin

that is less than or equal to the remaining amount of change to the

current solution until the change is made.

Activity selection problem: The activity selection problem is to find the

subset of activities that can be completed without any conflicts. The

greedy algorithm for activity selection works by iteratively adding the

activity with the earliest start time to the current solution until no more

activities can be added.

These are just a few of the many problems that can be solved by greedy

algorithms. The greedy algorithm is a simple and efficient algorithm

that can be used to solve a wide variety of problems. However, it is

important to note that the greedy algorithm does not always find the

optimal solution.

PAGE 7

Primal-dual algorithm

The primal-dual algorithm is a more complex algorithm that works by

iteratively solving two linear programs. The primal-dual algorithm is

often used to solve problems such as minimum cost flow and maximum

flow.

For example, the primal-dual algorithm for minimum cost flow works

by iteratively solving the primal and dual linear programs until the

optimal solution is found.

Primal-dual algorithms are a type of algorithm that can be used to solve

a wide variety of problems, including:

Minimum cost flow problem: The minimum cost flow problem is to find

the flow that minimizes the total cost. The primal-dual algorithm for

minimum cost flow works by iteratively solving the primal and dual

linear programs until the optimal solution is found.

Maximum flow problem: The maximum flow problem is to find the flow

that maximizes the total flow. The primal-dual algorithm for maximum

flow works by iteratively solving the primal and dual linear programs

until the optimal solution is found.

Network flow problem: The network flow problem is to find the flow

that satisfies a set of constraints. The primal-dual algorithm for network

flow works by iteratively solving the primal and dual linear programs

until the optimal solution is found.

Linear programming problem: The linear programming problem is to

find the point that minimizes or maximizes a linear function subject to

a set of linear constraints. The primal-dual algorithm for linear

programming works by iteratively solving the primal and dual linear

programs until the optimal solution is found.

Convex optimization problem: The convex optimization problem is to

find the point that minimizes or maximizes a convex function subject to

PAGE 8

a set of convex constraints. The primal-dual algorithm for convex

optimization works by iteratively solving the primal and dual linear

programs until the optimal solution is found.

These are just a few of the many problems that can be solved by primal-

dual algorithms. Primal-dual algorithms are a powerful tool that can be

used to solve a wide variety of problems. However, it is important to

note that primal-dual algorithms may not always find the optimal

solution.

PAGE 9

Local search algorithm

The local search algorithm is a more sophisticated algorithm that works

by iteratively making local changes to a solution until no more

improvements can be made. The local search algorithm is often used to

solve problems such as traveling salesman problem and quadratic

assignment problem.

For example, the local search algorithm for traveling salesman problem

works by iteratively swapping two cities in the solution until no more

improvements can be made.

Local search algorithms are a type of algorithm that can be used to solve

a wide variety of problems, including:

Traveling salesman problem: The traveling salesman problem is to find

the shortest tour that visits all the cities. The local search algorithm for

traveling salesman problem works by iteratively swapping two cities in

the solution until no more improvements can be made.

Quadratic assignment problem: The quadratic assignment problem is to

find the assignment of tasks to machines that minimizes the total cost.

The local search algorithm for quadratic assignment problem works by

iteratively swapping two tasks in the solution until no more

improvements can be made.

Maximum satisfiability problem: The maximum satisfiability problem is

to find the assignment of variables that satisfies the maximum number

of constraints. The local search algorithm for maximum satisfiability

problem works by iteratively flipping the value of a variable in the

solution until no more improvements can be made.

Bin packing problem: The bin packing problem is to find the minimum

number of bins needed to pack a set of items. The local search algorithm

for bin packing problem works by iteratively moving an item from one

bin to another bin until no more improvements can be made.

PAGE 10

Graph coloring problem: The graph coloring problem is to find the

minimum number of colors needed to color the vertices of a graph so

that no two adjacent vertices have the same color. The local search

algorithm for graph coloring problem works by iteratively changing the

color of a vertex in the solution until no more improvements can be

made.

These are just a few of the many problems that can be solved by local

search algorithms. Local search algorithms are a powerful tool that can

be used to solve a wide variety of problems. However, it is important to

note that local search algorithms may not always find the optimal

solution.

PAGE 11

Genetic algorithm

The genetic algorithm is a metaheuristic algorithm that works by

iteratively mutating and recombining solutions. The genetic algorithm

is often used to solve problems such as scheduling and optimization.

For example, the genetic algorithm for scheduling works by iteratively

mutating and recombining schedules until a schedule with the desired

properties is found.

Genetic algorithms are a type of metaheuristic optimization technique

inspired by the process of natural selection and evolution. They are used

to solve a wide range of problems across various domains. Here is a list

of some problems that can be solved using genetic algorithms:

Traveling Salesman Problem (TSP):

Genetic algorithms can be applied to find near-optimal solutions for the

TSP, where the goal is to determine the shortest possible route that

visits a set of cities and returns to the starting city.

Knapsack Problem:

The knapsack problem involves selecting a subset of items with different

weights and values to maximize the total value while staying within a

given weight constraint. Genetic algorithms can be used to search for

good combinations of items that satisfy the constraint and maximize the

objective function.

Job Scheduling:

Genetic algorithms can be used to optimize job scheduling problems,

where the objective is to assign a set of tasks to resources or machines

in a way that minimizes the overall makespan or total completion time.

Vehicle Routing Problem (VRP):

PAGE 12

The VRP involves determining the optimal routes for a fleet of vehicles

to deliver goods or services to a set of customers. Genetic algorithms can

be used to find efficient solutions that minimize the total distance

traveled or other cost-related objectives.

Feature Selection and Machine Learning:

Genetic algorithms can be applied to feature selection problems in

machine learning, where the goal is to identify a subset of relevant

features from a large feature set. By encoding different feature

combinations as chromosomes and applying genetic operators, genetic

algorithms can search for feature subsets that improve the performance

of machine learning models.

Resource Allocation and Scheduling:

Genetic algorithms can be used to optimize the allocation of limited

resources among multiple activities or projects. This includes problems

such as project scheduling, resource leveling, and task assignment,

where genetic algorithms can help find near-optimal solutions

considering various constraints and objectives.

Neural Network Optimization:

Genetic algorithms can be employed to optimize the structure and

weights of neural networks. By representing neural network

architectures as chromosomes and applying genetic operators, genetic

algorithms can evolve neural networks that achieve better performance

on specific tasks.

Image and Signal Processing:

Genetic algorithms can be used in image and signal processing tasks,

such as image reconstruction, signal denoising, feature extraction, and

image enhancement. They can help find optimal or near-optimal

solutions that satisfy specific criteria or improve the quality of processed

images or signals.

PAGE 13

These are just a few examples of the many problems that can be solved

using genetic algorithms. Genetic algorithms are versatile and can be

applied to a wide range of optimization problems, especially when the

problem space is complex and traditional algorithms may struggle to

find optimal solutions.

PAGE 14

Ant colony optimization algorithm

The ant colony optimization algorithm is a metaheuristic algorithm that

works by iteratively placing ants on a graph and following a pheromone

trail. The ant colony optimization algorithm is often used to solve

problems such as traveling salesman problem and vehicle routing

problem.

For example, the ant colony optimization algorithm for traveling

salesman problem works by iteratively placing ants on a graph and

following a pheromone trail until a tour with the desired properties is

found.

Here is a list of some problems that can be solved using the Ant Colony

Optimization algorithm:

Traveling Salesman Problem (TSP):

ACO is widely used to solve the TSP, where the objective is to find the

shortest possible route that visits a set of cities and returns to the

starting city. The algorithm employs pheromone trails and heuristic

information to guide the search for good solutions.

Vehicle Routing Problem (VRP):

ACO can be applied to solve the VRP, where the goal is to determine

optimal routes for a fleet of vehicles to deliver goods or services to a set

of customers. The algorithm helps identify efficient solutions that

minimize total distance or other cost-related objectives.

Quadratic Assignment Problem (QAP):

The QAP involves assigning facilities to locations in a way that

minimizes the overall cost, taking into account distances between

facilities and the flow between locations. ACO has been applied

successfully to solve QAP instances and obtain near-optimal solutions.

Graph Coloring Problem:

PAGE 15

The graph coloring problem aims to assign colors to vertices of a graph

such that no adjacent vertices share the same color. ACO algorithms can

be used to find feasible or near-optimal colorings by exploiting the

pheromone trails and local information available at each vertex.

Job Shop Scheduling:

ACO can be employed to solve job shop scheduling problems, where the

objective is to determine the optimal order of processing a set of jobs on

multiple machines. The algorithm helps in finding schedules that

minimize makespan or total completion time.

Resource Allocation:

ACO algorithms can be applied to optimize resource allocation

problems, such as assigning resources to tasks or allocating bandwidth

in communication networks. The algorithm helps find efficient

allocation strategies considering various constraints and objectives.

Sensor Network Deployment:

ACO can be used to optimize the deployment of sensors in a network to

achieve desired coverage or connectivity. The algorithm helps in finding

near-optimal solutions that maximize network performance while

minimizing the number of required sensors.

Protein Folding Problem:

The protein folding problem involves predicting the three-dimensional

structure of a protein from its amino acid sequence. ACO has been

applied to explore the conformational space and find low-energy protein

structures.

It's important to note that ACO can be adapted and customized for

different problem domains, and its effectiveness may depend on

problem-specific considerations. These are just a few examples of the

problems that can be tackled using ACO. The algorithm's ability to

explore solution spaces, exploit pheromone trails, and make use of local

PAGE 16

information makes it applicable to a wide range of optimization

problems.

