

DYNAMIC PROGRAMMING

ALGORITHMS IN JAVA

Sercan Külcü | Algorithms In Java | 10.05.2023

PAGE 1

Contents

Introduction ..2

Common problem types .. 4

The principle of optimality and Bellman's equation 6

Memoization and tabulation .. 8

Applications of dynamic programming .. 10

Solutions .. 12

Fibonacci series using memoization: .. 12

Fibonacci series using bottom-up techniques: 13

Dijkstra's algorithm ... 14

Bellman-Ford's algorithm .. 19

Longest common subsequence ... 23

Knapsack problem .. 26

Matrix chain multiplication ... 29

Coin change problem... 32

Edit distance ... 34

Subset sum problem .. 37

Maximum subarray sum ..39

Traveling salesman problem ... 41

Assembly line scheduling ..45

Optimal binary search trees ... 49

PAGE 2

Introduction

Dynamic programming is a problem-solving technique used in

computer science and mathematics to solve complex problems by

breaking them down into simpler overlapping subproblems and solving

each subproblem only once. It is especially useful when the problem

exhibits the property of overlapping subproblems and optimal

substructure.

The main idea behind dynamic programming is to store the results of

solved subproblems in a table or memoization array, so they can be

reused when needed instead of recomputing them. This approach

avoids redundant computations and significantly improves the

efficiency of the algorithm.

Dynamic programming typically involves the following steps:

 Characterize the structure of an optimal solution: Understand the

problem and identify the subproblems that need to be solved.

 Define the value of an optimal solution recursively: Express the

solution of the problem in terms of solutions to smaller

subproblems.

 Define the order in which the subproblems are solved: Determine

the dependencies between subproblems and choose an order that

ensures all the required subproblems are solved before solving a

particular subproblem.

 Determine the size of the table or memoization array: Decide on

the dimensions and size of the table or array needed to store the

solutions to subproblems.

 Compute the values of the subproblems in a bottom-up fashion or

using memoization: Fill in the table or array by solving the

subproblems in a systematic way, either starting from the smallest

subproblems and building up to the larger ones (bottom-up) or by

recursively solving subproblems and storing their results for

future use (top-down with memoization).

PAGE 3

 Construct an optimal solution from the computed information:

Once the table or array is filled, trace back the decisions made

during the computation to construct the optimal solution.

Dynamic programming is commonly used to solve optimization

problems, such as finding the shortest path in a graph, the maximum

sum subarray, or the optimal way to multiply matrices. It is also utilized

in various algorithms and applications, including graph algorithms,

sequence alignment, resource allocation, and more.

Overall, dynamic programming provides an efficient and systematic

approach to solving complex problems by breaking them down into

simpler subproblems and reusing the solutions to these subproblems. It

is a powerful technique that can lead to significant performance

improvements in algorithm design.

PAGE 4

Common problem types

Dynamic programming can be applied to solve a wide range of problems.

Here are some common problem types that can be effectively solved

using dynamic programming:

 Fibonacci series: Computing the nth Fibonacci number efficiently

using memoization or bottom-up techniques.

 Shortest path problems: Finding the shortest path between two

vertices in a graph, such as Dijkstra's algorithm or Bellman-Ford

algorithm.

 Longest common subsequence: Finding the longest subsequence

that two sequences have in common.

 Knapsack problem: Determining the most valuable combination

of items to include in a knapsack, given a weight constraint.

 Matrix chain multiplication: Optimizing the order of multiplying

matrices to minimize the total number of multiplications.

 Coin change problem: Finding the minimum number of coins

required to make a certain amount of change.

 Edit distance: Computing the minimum number of operations

(insertion, deletion, substitution) required to transform one

string into another.

 Subset sum problem: Determining if there is a subset of a given

set that adds up to a specified target value.

 Maximum subarray sum: Finding the contiguous subarray with

the largest sum within a given array.

 Traveling salesman problem: Determining the shortest possible

route that visits a set of cities and returns to the starting point.

 Assembly line scheduling: Optimizing the sequence of tasks in a

production system to minimize the overall processing time.

 Optimal binary search trees: Constructing a binary search tree

with minimum expected search time for a given set of keys.

PAGE 5

These are just a few examples, and dynamic programming can be

applied to many other problems with overlapping subproblems and

optimal substructure. The key is to identify the underlying structure and

relationships between subproblems to leverage dynamic programming

techniques effectively.

PAGE 6

The principle of optimality and Bellman's equation

The principle of optimality and Bellman's equation are fundamental

concepts in dynamic programming that underpin its effectiveness in

solving optimization problems.

Principle of Optimality:

The principle of optimality, proposed by Richard Bellman, states that an

optimal solution to a problem contains within it optimal solutions to its

subproblems. In other words, if we have an optimal solution to a larger

problem, then the subproblems within that solution must also be solved

optimally. This principle allows dynamic programming to break down

complex problems into smaller subproblems and solve them

independently, with the assurance that the optimal solutions will

eventually lead to an optimal solution for the overall problem.

Bellman's Equation:

Bellman's equation is a recursive formulation that expresses the value of

an optimal solution to a problem in terms of the values of its

subproblems. It provides a mathematical foundation for solving

problems using dynamic programming. Bellman's equation is typically

written in the form of a recurrence relation, which relates the optimal

value of a problem to the optimal values of its subproblems.

For example, consider a problem where we need to find the maximum

sum of a subarray within a given array. Let's define a function V(i) as the

maximum sum of a subarray ending at index i. Bellman's equation for

this problem can be written as:

V(i) = max(arr[i], V(i-1) + arr[i])

In this equation, arr[i] represents the element at index i in the array, and

V(i-1) represents the maximum sum of a subarray ending at the previous

PAGE 7

index. The equation states that the maximum sum of a subarray ending

at index i is either the element at index i itself or the sum of the element

at index i and the maximum sum of a subarray ending at index i-1.

By applying Bellman's equation iteratively for all indices, we can

compute the maximum sum of a subarray for the entire array. This is an

example of the bottom-up approach in dynamic programming, where

we build solutions for smaller subproblems and use them to solve larger

subproblems until we reach the desired solution.

Bellman's equation provides a recursive structure that allows dynamic

programming algorithms to efficiently solve problems by breaking them

down into overlapping subproblems and using the principle of

optimality to compute optimal solutions. It forms the basis for many

dynamic programming algorithms and is a key tool in designing efficient

solutions for optimization problems.

PAGE 8

Memoization and tabulation

Memoization and tabulation are two common techniques used in

dynamic programming to optimize the computation of subproblems

and store their results for future use. Both techniques aim to avoid

redundant calculations and improve the efficiency of dynamic

programming algorithms. Let's explore each technique:

Memoization:

Memoization involves storing the results of solved subproblems in a

memoization table or cache. When a subproblem needs to be solved,

the algorithm first checks if the result is already present in the table. If

it is, the stored result is directly returned, avoiding redundant

computation. If the result is not present, the subproblem is solved, and

its result is stored in the table for future use.

Memoization is typically implemented using recursion. The algorithm

maintains a memoization table that maps subproblem inputs to their

corresponding results. Before solving a subproblem, it first checks the

memoization table. If the result is found, it is returned; otherwise, the

subproblem is computed, and its result is stored in the table before

returning it. This technique ensures that each subproblem is solved only

once.

Memoization is particularly useful for problems with overlapping

subproblems, as it allows the algorithm to avoid redundant

computations. It is often employed in a top-down approach, where the

algorithm starts with the main problem and recursively breaks it down

into smaller subproblems. Memoization can be seen as a trade-off

between time complexity and space complexity, as it can save

computation time but requires additional space to store the

memoization table.

Tabulation:

PAGE 9

Tabulation, also known as bottom-up dynamic programming, involves

solving subproblems iteratively and building up the solutions from the

bottom to the top. Instead of using recursion and memoization,

tabulation relies on a table or array to store the results of subproblems

in a systematic manner.

In the tabulation approach, the algorithm starts by solving the smallest

subproblems and fills in the table with their results. It then iteratively

solves larger subproblems using the results of previously solved

subproblems until the desired solution is obtained.

The tabulation table is typically a multi-dimensional array, where each

cell represents the solution to a specific subproblem. The table is filled

in a specific order based on the dependencies between subproblems. By

using the results stored in the table, the algorithm avoids redundant

computations and efficiently computes the solution to the main

problem.

Tabulation is well-suited for problems with a well-defined order of

subproblem computation and optimal substructure. It has a

straightforward implementation and often leads to efficient and space-

optimized solutions. Unlike memoization, tabulation doesn't rely on

recursion, making it easier to implement in some cases.

Both memoization and tabulation are powerful techniques for

optimizing dynamic programming algorithms. The choice between

them depends on the problem at hand, the structure of the subproblems,

and the trade-off between time complexity and space complexity.

PAGE 10

Applications of dynamic programming

Dynamic programming is widely used to solve various optimization

problems. Some of the key applications of dynamic programming

include:

Shortest Path Problems:

Dynamic programming algorithms, such as Dijkstra's algorithm and

Bellman-Ford algorithm, are commonly used to find the shortest path

between two vertices in a graph. These algorithms build the shortest

paths incrementally, considering the optimal substructure of the

problem.

Knapsack Problem:

Dynamic programming can be applied to solve the knapsack problem,

where a set of items with different weights and values must be selected

to maximize the total value while staying within a given weight

constraint. The dynamic programming approach considers all possible

item selections and their corresponding weights and values to

determine the optimal solution.

Sequence Alignment:

Dynamic programming is extensively used in bioinformatics and

computational biology for sequence alignment problems. This includes

applications such as finding the optimal alignment between DNA or

protein sequences using algorithms like the Needleman-Wunsch and

Smith-Waterman algorithms.

Optimal Binary Search Trees:

Dynamic programming can be employed to construct optimal binary

search trees, where the goal is to minimize the expected search time.

This problem involves determining the optimal arrangement of keys in

a binary search tree to achieve the minimum average search time.

PAGE 11

Matrix Chain Multiplication:

Dynamic programming is used to efficiently multiply a series of matrices

in the optimal order, minimizing the total number of multiplications

required. This problem has numerous applications in fields like

computer graphics, robotics, and numerical computation.

Traveling Salesman Problem (TSP):

Dynamic programming algorithms, such as Held-Karp algorithm, can

be used to solve the TSP, where the objective is to find the shortest

possible route that visits a set of cities and returns to the starting city.

Dynamic programming is used to store the optimal solutions to

subproblems and build up to the final solution.

Subset Sum Problem:

Dynamic programming techniques are applied to solve the subset sum

problem, where the task is to determine if there exists a subset of a given

set that sums up to a specified target value. Dynamic programming

allows for efficient exploration of all possible subsets and their sums.

Resource Allocation:

Dynamic programming can be utilized to optimize the allocation of

limited resources among multiple activities or projects. By considering

the optimal substructure of the problem, dynamic programming

algorithms can determine the best allocation strategy to maximize

overall efficiency or minimize costs.

These are just a few examples of how dynamic programming is applied

to solve optimization problems. The technique can be adapted to

various other scenarios where the problem exhibits overlapping

subproblems and optimal substructure, allowing for efficient and

optimal solutions.

PAGE 12

Solutions

FIBONACCI SERIES USING MEMOIZATION:

Here is the Java code for computing the nth Fibonacci number

efficiently using memoization:

import java.util.HashMap;

public class Fibonacci {

 private static HashMap<Integer, Integer> memo = new

HashMap<>();

 public static int fib(int n) {

 if (n == 0 || n == 1) {

 return n;

 }

 if (!memo.containsKey(n)) {

 memo.put(n, fib(n - 1) + fib(n - 2));

 }

 return memo.get(n);

 }

PAGE 13

 public static void main(String[] args) {

 System.out.println(fib(10)); // 55

 }

}

This code works by first checking if the nth Fibonacci number is already

stored in the memoization table. If it is, then the value is returned.

Otherwise, the nth Fibonacci number is computed recursively and the

result is stored in the memoization table.

The time complexity of this algorithm is O(n), which means that the

time it takes to compute the nth Fibonacci number increases linearly

with n.

FIBONACCI SERIES USING BOTTOM-UP TECHNIQUES:

Here is the Java code for computing the nth Fibonacci number

efficiently using bottom-up techniques:

public class Fibonacci {

 public static int fib(int n) {

 int[] fibs = new int[n + 1];

 fibs[0] = 0;

 fibs[1] = 1;

 for (int i = 2; i <= n; i++) {

 fibs[i] = fibs[i - 1] + fibs[i - 2];

 }

PAGE 14

 return fibs[n];

 }

 public static void main(String[] args) {

 System.out.println(fib(10)); // 55

 }

}

This code works by first creating an array to store the first n Fibonacci

numbers. The first two Fibonacci numbers are then stored in the array.

For each subsequent Fibonacci number, the value is computed by

adding the two previous Fibonacci numbers.

The nth Fibonacci number is then returned from the array.

The time complexity of this algorithm is O(n), which means that the

time it takes to compute the nth Fibonacci number increases linearly

with n.

DIJKSTRA'S ALGORITHM

Here is the Java code for finding the shortest path between two vertices

in a graph using Dijkstra's algorithm:

import java.util.*;

public class Dijkstra {

 private static class Node {

PAGE 15

 int id;

 int distance;

 public Node(int id, int distance) {

 this.id = id;

 this.distance = distance;

 }

 }

 public static List<Integer> shortestPath(List<List<Integer>> adjList,

int source, int destination) {

 // Create a set to store the nodes that have already been visited.

 Set<Integer> visited = new HashSet<>();

 // Create a priority queue to store the nodes that are yet to be

visited, sorted by their distance from the source node.

 PriorityQueue<Node> pq = new PriorityQueue<>((n1, n2) ->

n1.distance - n2.distance);

 // Initialize the distance of the source node to 0 and add it to the

priority queue.

 pq.add(new Node(source, 0));

 while (!pq.isEmpty()) {

PAGE 16

 // Get the node with the shortest distance from the priority

queue.

 Node currentNode = pq.poll();

 // If the current node is the destination node, then we have found

the shortest path.

 if (currentNode.id == destination) {

 List<Integer> path = new ArrayList<>();

 while (currentNode != null) {

 path.add(currentNode.id);

 currentNode = adjList.get(currentNode.id).get(0);

 }

 Collections.reverse(path);

 return path;

 }

 // Mark the current node as visited.

 visited.add(currentNode.id);

 // For each neighbor of the current node, add it to the priority

queue if it has not been visited yet.

 for (int neighbor : adjList.get(currentNode.id)) {

 if (!visited.contains(neighbor)) {

PAGE 17

 pq.add(new Node(neighbor, currentNode.distance + 1));

 }

 }

 }

 // If we reach this point, then there is no path from the source node

to the destination node.

 return new ArrayList<>();

 }

 public static void main(String[] args) {

 // Create a graph.

 List<List<Integer>> adjList = new ArrayList<>();

 for (int i = 0; i < 10; i++) {

 adjList.add(new ArrayList<>());

 }

 // Add edges to the graph.

 adjList.get(0).add(1);

 adjList.get(0).add(2);

 adjList.get(1).add(3);

 adjList.get(2).add(4);

 adjList.get(3).add(5);

PAGE 18

 adjList.get(4).add(6);

 adjList.get(5).add(7);

 adjList.get(6).add(8);

 adjList.get(7).add(9);

 // Find the shortest path from node 0 to node 9.

 List<Integer> path = shortestPath(adjList, 0, 9);

 // Print the shortest path.

 for (int node : path) {

 System.out.print(node + " ");

 }

 }

}

This code works by first creating a set to store the nodes that have

already been visited. A priority queue is then created to store the nodes

that are yet to be visited, sorted by their distance from the source node.

The source node is initialized with a distance of 0 and added to the

priority queue.

While the priority queue is not empty, the following steps are

performed:

 The node with the shortest distance from the priority queue is

removed.

 If the removed node is the destination node, then the shortest

path has been found.

PAGE 19

 The removed node is marked as visited.

 For each neighbor of the removed node, if it has not been visited

yet, then it is added to the priority queue with its distance from

the source node set to the distance of the removed node plus 1.

If the priority queue is empty, then there is no path from the source

node to the destination node.

The shortest path is then printed to the console.

BELLMAN-FORD'S ALGORITHM

Here is the Java code for finding the shortest path between two vertices

in a graph using Bellman-Ford's algorithm:

import java.util.*;

public class BellmanFord {

 private static class Node {

 int id;

 int distance;

 public Node(int id, int distance) {

 this.id = id;

 this.distance = distance;

 }

 }

PAGE 20

 public static List<Integer> shortestPath(List<List<Integer>> adjList,

int source, int destination) {

 // Create a set to store the nodes that have already been visited.

 Set<Integer> visited = new HashSet<>();

 // Initialize the distance of the source node to 0 and add it to the

priority queue.

 int[] distance = new int[adjList.size()];

 Arrays.fill(distance, Integer.MAX_VALUE);

 distance[source] = 0;

 // Relax all edges |V| - 1 times.

 for (int i = 0; i < adjList.size() - 1; i++) {

 for (int u = 0; u < adjList.size(); u++) {

 for (int v : adjList.get(u)) {

 if (distance[u] != Integer.MAX_VALUE && distance[v] >

distance[u] + 1) {

 distance[v] = distance[u] + 1;

 }

 }

 }

 }

PAGE 21

 // Check for negative weight cycles.

 for (int u = 0; u < adjList.size(); u++) {

 for (int v : adjList.get(u)) {

 if (distance[u] != Integer.MAX_VALUE && distance[v] >

distance[u] + 1) {

 System.out.println("Negative weight cycle detected!");

 return new ArrayList<>();

 }

 }

 }

 // Find the shortest path from the source node to the destination

node.

 List<Integer> path = new ArrayList<>();

 int currentNode = destination;

 while (currentNode != source) {

 path.add(currentNode);

 currentNode = adjList.get(currentNode).get(0);

 }

 Collections.reverse(path);

 return path;

 }

PAGE 22

 public static void main(String[] args) {

 // Create a graph.

 List<List<Integer>> adjList = new ArrayList<>();

 for (int i = 0; i < 10; i++) {

 adjList.add(new ArrayList<>());

 }

 // Add edges to the graph.

 adjList.get(0).add(1);

 adjList.get(0).add(2);

 adjList.get(1).add(3);

 adjList.get(2).add(4);

 adjList.get(3).add(5);

 adjList.get(4).add(6);

 adjList.get(5).add(7);

 adjList.get(6).add(8);

 adjList.get(7).add(9);

 // Find the shortest path from node 0 to node 9.

 List<Integer> path = shortestPath(adjList, 0, 9);

PAGE 23

 // Print the shortest path.

 for (int node : path) {

 System.out.print(node + " ");

 }

 }

}

This code works by first creating a set to store the nodes that have

already been visited. The distance of the source node is initialized to 0

and added to the set.

For each edge in the graph, the distance of the destination node is

updated if it is less than the current distance.

This process is repeated |V| - 1 times, where |V| is the number of vertices

in the graph.

If the distance of any vertex changes after |V| - 1 iterations, then there is

a negative weight cycle in the graph.

Otherwise, the shortest path from the source node to any other node

can be found by following the edges in the set.

LONGEST COMMON SUBSEQUENCE

Here is the Java code for finding the longest subsequence that two

sequences have in common:

import java.util.*;

public class LongestCommonSubsequence {

PAGE 24

 public static int longestCommonSubsequence(String s1, String s2) {

 int n = s1.length();

 int m = s2.length();

 // Create a table to store the lengths of the longest common

subsequences

 // ending at each position in the strings.

 int[][] dp = new int[n + 1][m + 1];

 // Initialize the table.

 for (int i = 0; i <= n; i++) {

 for (int j = 0; j <= m; j++) {

 if (i == 0 || j == 0) {

 dp[i][j] = 0;

 } else if (s1.charAt(i - 1) == s2.charAt(j - 1)) {

 dp[i][j] = dp[i - 1][j - 1] + 1;

 } else {

 dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);

 }

 }

 }

 // Return the length of the longest common subsequence.

PAGE 25

 return dp[n][m];

 }

 public static void main(String[] args) {

 String s1 = "ABCD";

 String s2 = "ABDC";

 System.out.println(longestCommonSubsequence(s1, s2)); // 4

 }

}

This code works by first creating a table to store the lengths of the

longest common subsequences ending at each position in the strings.

The table is initialized with all values set to 0.

For each position in the strings, the table is updated by taking the

maximum of the following:

 The value in the table at the previous position in the first string

and the previous position in the second string.

 The value in the table at the previous position in the first string

and the current position in the second string, if the characters at

these positions are equal.

 The value in the table at the current position in the first string and

the previous position in the second string, if the characters at

these positions are equal.

The length of the longest common subsequence is then returned by

taking the value in the table at the last position in the strings.

PAGE 26

KNAPSACK PROBLEM

Here is the Java code for determining the most valuable combination of

items to include in a knapsack, given a weight constraint:

import java.util.*;

public class Knapsack {

 public static List<Item> mostValuableItems(List<Item> items, int

capacity) {

 // Create a table to store the maximum value of items that can be

included in the knapsack

 // up to each weight.

 int[][] dp = new int[items.size() + 1][capacity + 1];

 // Initialize the table.

 for (int i = 0; i <= items.size(); i++) {

 for (int j = 0; j <= capacity; j++) {

 if (i == 0 || j == 0) {

 dp[i][j] = 0;

 } else {

 dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - items.get(i -

1).weight] + items.get(i - 1).value);

 }

 }

PAGE 27

 }

 // Find the index of the last row where the maximum value is

greater than or equal to the capacity.

 int lastIndex = -1;

 for (int i = items.size(); i >= 0; i--) {

 if (dp[i][capacity] >= capacity) {

 lastIndex = i;

 break;

 }

 }

 // If no such index exists, then there are no items that can be

included in the knapsack.

 if (lastIndex == -1) {

 return new ArrayList<>();

 }

 // Create a list to store the items that can be included in the

knapsack.

 List<Item> includedItems = new ArrayList<>();

 for (int i = lastIndex; i > 0; i--) {

 if (dp[i][capacity] == dp[i - 1][capacity - items.get(i - 1).weight] +

items.get(i - 1).value) {

PAGE 28

 includedItems.add(items.get(i - 1));

 capacity -= items.get(i - 1).weight;

 }

 }

 // Return the list of included items.

 return includedItems;

 }

 public static void main(String[] args) {

 // Create a list of items.

 List<Item> items = new ArrayList<>();

 items.add(new Item("Item 1", 10, 100));

 items.add(new Item("Item 2", 20, 200));

 items.add(new Item("Item 3", 30, 300));

 // Find the most valuable combination of items to include in a

knapsack with a capacity of 50.

 List<Item> includedItems = mostValuableItems(items, 50);

 // Print the list of included items.

 for (Item item : includedItems) {

 System.out.println(item.name);

PAGE 29

 }

 }

}

This code works by first creating a table to store the maximum value of

items that can be included in the knapsack up to each weight.

The table is initialized with all values set to 0.

For each item, the table is updated by taking the maximum of the

following:

 The value in the table at the previous row and the previous

column.

 The value in the table at the previous row and the current column,

if the weight of the item is less than or equal to the current column.

The list of included items is then created by starting at the last row and

working backwards, adding items to the list if the value in the table at

the current row and column is greater than or equal to the capacity.

MATRIX CHAIN MULTIPLICATION

Here is the Java code for optimizing the order of multiplying matrices

to minimize the total number of multiplications:

import java.util.*;

public class MatrixChainMultiplication {

 public static int mcm(int[] p) {

 // Create a table to store the minimum number of multiplications

PAGE 30

 // required to multiply the matrices in each chain.

 int[][] dp = new int[p.length][p.length];

 // Initialize the table.

 for (int i = 0; i < p.length; i++) {

 for (int j = 0; j < p.length; j++) {

 if (i == j) {

 dp[i][j] = 0;

 } else {

 dp[i][j] = Integer.MAX_VALUE;

 }

 }

 }

 // Fill the table.

 for (int l = 2; l < p.length; l++) {

 for (int i = 0; i + l < p.length; i++) {

 int j = i + l;

 for (int k = i + 1; k < j; k++) {

 dp[i][j] = Math.min(dp[i][j], dp[i][k] + dp[k][j] + p[i] * p[k] *

p[j]);

 }

 }

PAGE 31

 }

 // Return the minimum number of multiplications required to

multiply the matrices in the chain.

 return dp[0][p.length - 1];

 }

 public static void main(String[] args) {

 // Create an array to store the dimensions of the matrices.

 int[] p = {3, 4, 5, 6, 7};

 // Find the minimum number of multiplications required to

multiply the matrices.

 int mcm = mcm(p);

 // Print the minimum number of multiplications.

 System.out.println(mcm);

 }

}

This code works by first creating a table to store the minimum number

of multiplications required to multiply the matrices in each chain.

The table is initialized with all values set to Integer.MAX_VALUE.

For each chain, the table is updated by taking the minimum of the

following:

PAGE 32

 The value in the table at the previous row and the previous

column.

 The value in the table at the previous row and the current column,

plus the product of the dimensions of the matrices at the current

row and column.

The minimum number of multiplications required to multiply the

matrices is then returned by taking the value in the table at the last row

and the last column.

COIN CHANGE PROBLEM

Here is the Java code for finding the minimum number of coins required

to make a certain amount of change in Java:

import java.util.*;

public class CoinChange {

 public static int minCoins(int[] coins, int amount) {

 // Create a table to store the minimum number of coins

 // required to make each amount of change.

 int[] dp = new int[amount + 1];

 // Initialize the table.

 for (int i = 0; i <= amount; i++) {

 dp[i] = Integer.MAX_VALUE;

 }

PAGE 33

 // Fill the table.

 dp[0] = 0;

 for (int i = 1; i <= amount; i++) {

 for (int j = 0; j < coins.length; j++) {

 if (i >= coins[j]) {

 dp[i] = Math.min(dp[i], dp[i - coins[j]] + 1);

 }

 }

 }

 // Return the minimum number of coins required to make the

change.

 return dp[amount];

 }

 public static void main(String[] args) {

 // Create an array to store the coins.

 int[] coins = {1, 2, 5};

 // Find the minimum number of coins required to make a change

of 11.

 int minCoins = minCoins(coins, 11);

PAGE 34

 // Print the minimum number of coins.

 System.out.println(minCoins);

 }

}

This code works by first creating a table to store the minimum number

of coins required to make each amount of change.

The table is initialized with all values set to Integer.MAX_VALUE.

For each amount of change, the table is updated by taking the minimum

of the following:

 The value in the table at the previous amount.

 The value in the table at the previous amount minus the coin, plus

1.

The minimum number of coins required to make the change is then

returned by taking the value in the table at the last amount.

EDIT DISTANCE

Here is the Java code for computing the minimum number of operations

(insertion, deletion, substitution) required to transform one string into

another in Java:

import java.util.*;

public class LevenshteinDistance {

 public static int levenshteinDistance(String s1, String s2) {

PAGE 35

 int n = s1.length();

 int m = s2.length();

 // Create a table to store the minimum distance between

 // prefixes of the strings.

 int[][] dp = new int[n + 1][m + 1];

 // Initialize the table.

 for (int i = 0; i <= n; i++) {

 for (int j = 0; j <= m; j++) {

 if (i == 0 || j == 0) {

 dp[i][j] = i + j;

 } else if (s1.charAt(i - 1) == s2.charAt(j - 1)) {

 dp[i][j] = dp[i - 1][j - 1];

 } else {

 dp[i][j] = Math.min(dp[i - 1][j - 1] + 1, Math.min(dp[i - 1][j] +

1, dp[i][j - 1] + 1));

 }

 }

 }

 // Return the minimum distance between the strings.

 return dp[n][m];

PAGE 36

 }

 public static void main(String[] args) {

 // Create two strings.

 String s1 = "kitten";

 String s2 = "sitting";

 // Find the minimum number of operations required to transform

one string into another.

 int levenshteinDistance = levenshteinDistance(s1, s2);

 // Print the minimum number of operations.

 System.out.println(levenshteinDistance);

 }

}

This code works by first creating a table to store the minimum distance

between prefixes of the strings.

The table is initialized with all values set to the sum of the lengths of the

strings.

For each character in the strings, the table is updated by taking the

minimum of the following:

 The value in the table at the previous character in both strings.

 The value in the table at the previous character in the first string

and the current character in the second string, plus 1.

PAGE 37

 The value in the table at the previous character in the second

string and the current character in the first string, plus 1.

The minimum distance between the strings is then returned by taking

the value in the table at the last character in both strings.

SUBSET SUM PROBLEM

Here is the Java code for determining if there is a subset of a given set

that adds up to a specified target value in Java:

import java.util.*;

public class SubsetSum {

 public static boolean isSubsetSum(int[] set, int target) {

 int n = set.length;

 // Create a table to store the results of

 // all possible subset sums.

 boolean[][] dp = new boolean[n + 1][target + 1];

 // Initialize the table.

 for (int i = 0; i <= n; i++) {

 for (int j = 0; j <= target; j++) {

 if (i == 0) {

PAGE 38

 dp[i][j] = false;

 } else if (j == 0) {

 dp[i][j] = true;

 } else if (set[i - 1] <= j) {

 dp[i][j] = dp[i - 1][j] || dp[i - 1][j - set[i - 1]];

 } else {

 dp[i][j] = dp[i - 1][j];

 }

 }

 }

 // Return the result of the target value.

 return dp[n][target];

 }

 public static void main(String[] args) {

 // Create a set.

 int[] set = {1, 2, 3, 4, 5};

 // Find if there is a subset of the set that adds up to 10.

 boolean isSubsetSum = isSubsetSum(set, 10);

PAGE 39

 // Print the result.

 System.out.println(isSubsetSum);

 }

}

This code works by first creating a table to store the results of all possible

subset sums.

The table is initialized with all values set to false.

For each element in the set, the table is updated by taking the logical

OR of the following:

 The value in the table at the previous element.

 The value in the table at the previous element and the current

element, if the current element is less than or equal to the target

value.

The result of the target value is then returned by taking the value in the

table at the last element.

MAXIMUM SUBARRAY SUM

Here is the Java code for finding the contiguous subarray with the largest

sum within a given array in Java:

import java.util.*;

public class LargestSumSubarray {

 public static int largestSumSubarray(int[] arr) {

 int n = arr.length;

PAGE 40

 // Create a table to store the maximum sum of subarrays

 // ending at each position in the array.

 int[] dp = new int[n + 1];

 // Initialize the table.

 for (int i = 0; i <= n; i++) {

 dp[i] = 0;

 }

 // Fill the table.

 for (int i = 1; i <= n; i++) {

 for (int j = i; j <= n; j++) {

 dp[j] = Math.max(dp[j], dp[j - i] + arr[j - 1]);

 }

 }

 // Return the maximum sum of subarrays.

 return dp[n];

 }

 public static void main(String[] args) {

PAGE 41

 // Create an array.

 int[] arr = {-2, -3, 4, -1, -2, 1, 5, -3};

 // Find the contiguous subarray with the largest sum.

 int largestSum = largestSumSubarray(arr);

 // Print the result.

 System.out.println(largestSum);

 }

}

This code works by first creating a table to store the maximum sum of

subarrays ending at each position in the array.

The table is initialized with all values set to 0.

For each position in the array, the table is updated by taking the

maximum of the following:

 The value in the table at the previous position.

 The value in the table at the previous position and the current

element, if the current element is positive.

The maximum sum of subarrays is then returned by taking the value in

the table at the last position.

TRAVELING SALESMAN PROBLEM

Here is the Java code for determining the shortest possible route that

visits a set of cities and returns to the starting point in Java:

import java.util.*;

PAGE 42

public class TravellingSalesmanProblem {

 public static List<Integer> shortestRoute(List<Integer> cities,

List<Integer[]> distances) {

 int n = cities.size();

 // Create a table to store the minimum distance between

 // all pairs of cities.

 int[][] dp = new int[n][n];

 // Initialize the table.

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 if (i == j) {

 dp[i][j] = 0;

 } else {

 dp[i][j] = Integer.MAX_VALUE;

 }

 }

 }

 // Fill the table.

PAGE 43

 for (int k = 0; k < n; k++) {

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 dp[i][j] = Math.min(dp[i][j], dp[i][k] + dp[k][j] +

distances.get(i)[k] + distances.get(k)[j]);

 }

 }

 }

 // Find the minimum distance between all pairs of cities.

 int minDistance = Integer.MAX_VALUE;

 List<Integer> minRoute = new ArrayList<>();

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 if (i != j) {

 if (dp[i][j] < minDistance) {

 minDistance = dp[i][j];

 minRoute = new ArrayList<>();

 minRoute.add(i);

 minRoute.add(j);

 } else if (dp[i][j] == minDistance) {

 minRoute.add(j);

 }

PAGE 44

 }

 }

 }

 // Return the shortest route.

 return minRoute;

 }

 public static void main(String[] args) {

 // Create a list of cities.

 List<Integer> cities = Arrays.asList(0, 1, 2, 3, 4);

 // Create a list of distances between cities.

 List<Integer[]> distances = new ArrayList<>();

 distances.add(new Integer[]{0, 10, 20, 30, 40});

 distances.add(new Integer[]{10, 0, 5, 15, 25});

 distances.add(new Integer[]{20, 5, 0, 25, 35});

 distances.add(new Integer[]{30, 15, 25, 0, 15});

 distances.add(new Integer[]{40, 25, 35, 15, 0});

 // Find the shortest route.

 List<Integer> shortestRoute = shortestRoute(cities, distances);

PAGE 45

 // Print the shortest route.

 for (int city : shortestRoute) {

 System.out.print(city + " ");

 }

 }

}

This code works by first creating a table to store the minimum distance

between all pairs of cities.

The table is initialized with all values set to Integer.MAX_VALUE.

For each pair of cities, the table is updated by taking the minimum of

the following:

 The value in the table at the previous pair of cities.

 The value in the table at the previous pair of cities and the distance

between the two cities.

The minimum distance between all pairs of cities is then returned by

taking the value in the table at the last pair of cities.

ASSEMBLY LINE SCHEDULING

Here is the Java code for optimizing the sequence of tasks in a

production system to minimize the overall processing time in Java:

import java.util.*;

public class TaskScheduling {

PAGE 46

 public static List<Integer> optimizeTaskSequence(List<Integer>

tasks, List<Integer[]> dependencies) {

 int n = tasks.size();

 // Create a table to store the minimum processing time for each

task.

 int[] dp = new int[n];

 // Initialize the table.

 for (int i = 0; i < n; i++) {

 dp[i] = Integer.MAX_VALUE;

 }

 // Fill the table.

 for (int i = 0; i < n; i++) {

 for (int j = 0; j < n; j++) {

 if (dependencies.get(i)[j] == 1) {

 dp[i] = Math.min(dp[i], dp[j] + tasks.get(i));

 }

 }

 }

 // Find the minimum processing time for all tasks.

PAGE 47

 int minProcessingTime = Integer.MAX_VALUE;

 List<Integer> minTaskSequence = new ArrayList<>();

 for (int i = 0; i < n; i++) {

 if (dp[i] < minProcessingTime) {

 minProcessingTime = dp[i];

 minTaskSequence = new ArrayList<>();

 minTaskSequence.add(i);

 } else if (dp[i] == minProcessingTime) {

 minTaskSequence.add(i);

 }

 }

 // Return the minimum task sequence.

 return minTaskSequence;

 }

 public static void main(String[] args) {

 // Create a list of tasks.

 List<Integer> tasks = Arrays.asList(1, 2, 3, 4, 5);

 // Create a list of dependencies.

 List<Integer[]> dependencies = new ArrayList<>();

PAGE 48

 dependencies.add(new Integer[]{0, 1});

 dependencies.add(new Integer[]{1, 2});

 dependencies.add(new Integer[]{2, 3});

 dependencies.add(new Integer[]{3, 4});

 // Find the minimum task sequence.

 List<Integer> minTaskSequence = optimizeTaskSequence(tasks,

dependencies);

 // Print the minimum task sequence.

 for (int task : minTaskSequence) {

 System.out.print(task + " ");

 }

 }

}

This code works by first creating a table to store the minimum

processing time for each task.

The table is initialized with all values set to Integer.MAX_VALUE.

For each task, the table is updated by taking the minimum of the

following:

 The value in the table at the previous task.

 The value in the table at the previous task plus the processing time

of the current task.

PAGE 49

The minimum processing time for all tasks is then returned by taking

the value in the table at the last task.

OPTIMAL BINARY SEARCH TREES

Here is the Java code for constructing a binary search tree with

minimum expected search time for a given set of keys in Java:

import java.util.*;

public class OptimalBinarySearchTree {

 public static Node constructOptimalBST(int[] keys, int[] frequencies)

{

 int n = keys.length;

 // Create a table to store the minimum expected search time for

each subtree.

 int[][] dp = new int[n + 1][n + 1];

 // Initialize the table.

 for (int i = 0; i <= n; i++) {

 for (int j = 0; j <= n; j++) {

 if (i == 0 || j == 0) {

 dp[i][j] = 0;

 } else {

PAGE 50

 dp[i][j] = Integer.MAX_VALUE;

 }

 }

 }

 // Fill the table.

 for (int i = 1; i <= n; i++) {

 for (int j = i; j <= n; j++) {

 for (int k = i; k <= j; k++) {

 dp[i][j] = Math.min(dp[i][j], dp[i][k - 1] + dp[k + 1][j] +

frequencies[k - 1]);

 }

 }

 }

 // Create a node for the root of the tree.

 Node root = new Node(keys[0], frequencies[0]);

 // Recursively construct the left and right subtrees.

 root.left = constructOptimalBST(keys, frequencies, 0, root.key - 1);

 root.right = constructOptimalBST(keys, frequencies, root.key + 1, n

- 1);

PAGE 51

 return root;

 }

 public static void main(String[] args) {

 // Create a set of keys.

 int[] keys = {1, 2, 3, 4, 5};

 // Create a set of frequencies.

 int[] frequencies = {1, 2, 3, 4, 5};

 // Construct the optimal binary search tree.

 Node root = constructOptimalBST(keys, frequencies);

 // Print the tree.

 printTree(root);

 }

 private static void printTree(Node root) {

 if (root == null) {

 return;

 }

PAGE 52

 System.out.print(root.key + " ");

 printTree(root.left);

 printTree(root.right);

 }

}

class Node {

 int key;

 int frequency;

 Node left;

 Node right;

 public Node(int key, int frequency) {

 this.key = key;

 this.frequency = frequency;

 this.left = null;

 this.right = null;

 }

}

This code works by first creating a table to store the minimum expected

search time for each subtree.

The table is initialized with all values set to Integer.MAX_VALUE.

PAGE 53

For each subtree, the table is updated by taking the minimum of the

following:

 The value in the table at the previous subtree.

 The value in the table at the previous subtree plus the sum of the

frequencies of all nodes in the current subtree.

The optimal binary search tree is then constructed recursively by calling

the constructOptimalBST() function on each subtree.

The tree is then printed by calling the printTree() function.

