

SEARCHING

ALGORITHMS IN JAVA

Sercan Külcü | Algorithms In Java | 10.05.2023

PAGE 1

Contents

Introduction ..2

Linear search .. 4

Binary search ...7

Hashing ... 10

Jump search ... 19

Interpolation search ... 23

Exponential search ... 27

PAGE 2

Introduction

Searching algorithms are used to find the presence or location of a

specific element within a collection of data. Here are some commonly

used searching algorithms:

 Linear Search: This is the simplest searching algorithm that

sequentially checks each element of the collection until a match

is found or the end of the collection is reached. It has a time

complexity of O(n), where n is the number of elements in the

collection. Linear search is applicable to both sorted and unsorted

data.

 Binary Search: Binary search is an efficient algorithm for finding

an element in a sorted collection. It works by repeatedly dividing

the search interval in half until the element is found or

determined to be absent. It has a time complexity of O(log n) since

it eliminates half of the remaining elements at each step. Binary

search can only be used on sorted data.

 Hashing: Hashing is a technique that uses a hash function to map

keys to array indices, allowing for constant-time average case

search complexity. It is commonly used in data structures like

hash tables. However, in the worst case, hashing can have a time

complexity of O(n) due to collisions.

 Jump Search: Jump search is an algorithm that works on sorted

data. It jumps ahead by a fixed number of steps and then performs

a linear search to find the desired element. It is generally faster

than linear search but slower than binary search. Its time

complexity is O(sqrt(n)).

 Interpolation Search: Interpolation search is an improved version

of binary search that works well on uniformly distributed sorted

data. Instead of always dividing the search interval in half, it

estimates the position of the desired element based on the values

of the endpoints. It has an average time complexity of O(log log

PAGE 3

n) for uniformly distributed data, but it can degrade to O(n) in

certain cases.

 Exponential Search: Exponential search is a combination of binary

search and linear search. It starts with a small range and doubles

it until the desired element is potentially within that range. It then

performs a binary search within that range. It has a time

complexity of O(log n) in the average case.

These are some commonly used searching algorithms, each with its own

advantages and applicable scenarios. The choice of the searching

algorithm depends on factors such as the nature of the data, whether it

is sorted or unsorted, and the desired time complexity.

PAGE 4

Linear search

Linear search is a simple algorithm for finding an element in a list. It

works by sequentially checking each element in the list until the target

element is found. If the target element is not found, the algorithm

returns -1.

Linear search is an inefficient algorithm, with a time complexity of O(n),

where n is the number of elements in the list. However, it is a simple

algorithm to implement, and it can be used to find an element in a list

even if the list is not sorted.

The linear search algorithm works as follows:

 Start at the beginning of the list.

 Compare the current element to the target element.

 If the current element is equal to the target element, return the

index of the current element.

 Otherwise, move to the next element in the list.

 Repeat steps 2-4 until the end of the list is reached.

 If the target element is not found, return -1.

The linear search algorithm can be implemented in Java as follows:

public class LinearSearch {

 public static int linearSearch(int[] list, int target) {

 int index = -1;

 for (int i = 0; i < list.length; i++) {

 if (list[i] == target) {

 index = i;

PAGE 5

 break;

 }

 }

 return index;

 }

 public static void main(String[] args) {

 // Create a list of integers

 int[] list = {5, 3, 1, 2, 4};

 // Search for the element 3 in the list

 int index = linearSearch(list, 3);

 // Print the index of the element 3

 System.out.println(index);

 }

}

This code will print the following output:

2

Advantages and Disadvantages

The linear search algorithm has the following advantages:

PAGE 6

 It is simple to implement.

 It can be used to find an element in a list even if the list is not

sorted.

The linear search algorithm has the following disadvantages:

 It is inefficient, with a time complexity of O(n).

 It can be slow for large lists.

Linear search is a simple algorithm for finding an element in a list. It is

inefficient, but it can be used to find an element in a list even if the list

is not sorted.

PAGE 7

Binary search

Binary search is a search algorithm that finds the position of a target

value within a sorted array. The algorithm works by repeatedly dividing

the array in half and searching the half that contains the target value.

The search continues until the target value is found or until the entire

array has been searched.

Binary search is an efficient algorithm, with a time complexity of O(log

n), where n is the number of elements in the array. This means that the

time it takes to search the array grows logarithmically with the number

of elements.

The binary search algorithm works as follows:

 Start with the middle element of the array.

 Compare the target value to the middle element.

 If the target value is equal to the middle element, return the index

of the middle element.

 If the target value is less than the middle element, search the left

half of the array.

 If the target value is greater than the middle element, search the

right half of the array.

 Repeat steps 2-5 until the target value is found or until the entire

array has been searched.

 If the target value is not found, return -1.

The binary search algorithm can be implemented in Java as follows:

public class BinarySearch {

 public static int binarySearch(int[] list, int target) {

 int low = 0;

PAGE 8

 int high = list.length - 1;

 while (low <= high) {

 int mid = (low + high) / 2;

 if (list[mid] == target) {

 return mid;

 } else if (list[mid] < target) {

 low = mid + 1;

 } else {

 high = mid - 1;

 }

 }

 return -1;

 }

 public static void main(String[] args) {

 // Create a sorted array of integers

 int[] list = {1, 2, 3, 4, 5};

 // Search for the element 3 in the list

PAGE 9

 int index = binarySearch(list, 3);

 // Print the index of the element 3

 System.out.println(index);

 }

}

This code will print the following output:

2

Advantages and Disadvantages

The binary search algorithm has the following advantages:

 It is efficient, with a time complexity of O(log n).

 It can be used to find an element in a list even if the list is not

sorted.

The binary search algorithm has the following disadvantages:

 It can only be used to find elements in sorted arrays.

 It is not as simple to implement as some other search algorithms.

Binary search is an efficient algorithm for finding an element in a sorted

array. It is not as simple to implement as some other search algorithms,

but it is a powerful tool for searching sorted data.

PAGE 10

Hashing

Hashing is a technique for storing and retrieving data based on a key. A

hash function takes an input value, called the key, and produces an

output value, called the hash code. The hash code is then used to store

the data in a hash table.

Hash tables are a data structure that stores data in a way that allows for

efficient lookups. When data is stored in a hash table, it is hashed using

a hash function. The hash code is then used to find the location of the

data in the hash table.

Hashing is a powerful technique for storing and retrieving data. It is

used in a variety of applications, including:

 Data structures: Hashing is used to implement data structures

such as hash tables, hash sets, and hash maps.

 Algorithms: Hashing is used in a variety of algorithms, such as the

quicksort algorithm and the merge sort algorithm.

 Cryptography: Hashing is used in cryptography to create secure

hash functions, such as MD5 and SHA-1.

How Hashing Works

Hashing works by using a hash function to convert a key into a hash

code. The hash code is then used to find the location of the data in the

hash table.

The hash function is a mathematical function that takes an input value

and produces an output value. The hash function is designed to be fast

and efficient. It should also be evenly distributed, so that all possible

hash codes are equally likely.

The hash table is a data structure that stores data in a way that allows

for efficient lookups. The hash table is divided into a number of buckets.

The hash code is used to determine which bucket the data should be

stored in.

PAGE 11

When data is stored in a hash table, it is first hashed using a hash

function. The hash code is then used to find the bucket where the data

should be stored. The data is then stored in the bucket.

When data is retrieved from a hash table, it is first hashed using a hash

function. The hash code is then used to find the bucket where the data

should be stored. The data is then retrieved from the bucket.

Advantages of Hashing

Hashing has a number of advantages, including:

 Efficiency: Hashing is a very efficient technique for storing and

retrieving data.

 Space efficiency: Hashing can be used to store data in a compact

space.

 Flexibility: Hashing can be used to store a variety of data types.

Disadvantages of Hashing

Hashing also has a number of disadvantages, including:

 Collisions: Hash collisions can occur when two different keys

produce the same hash code.

 Space complexity: Hash tables can be inefficient for storing large

amounts of data.

 Security: Hashing can be used to create secure hash functions, but

it is not a foolproof security technique.

Hashing is a powerful technique for storing and retrieving data. It is

used in a variety of applications, including data structures, algorithms,

and cryptography. Hashing has a number of advantages, including

efficiency, space efficiency, and flexibility. However, it also has a

number of disadvantages, including collisions, space complexity, and

security.

Here is an implementation of a hash map in Java:

public class HashMap<K, V> {

PAGE 12

 private static final int DEFAULT_CAPACITY = 16;

 private static final float DEFAULT_LOAD_FACTOR = 0.75f;

 private int capacity;

 private float loadFactor;

 private Entry<K, V>[] table;

 private int size;

 public HashMap() {

 this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);

 }

 public HashMap(int capacity) {

 this(capacity, DEFAULT_LOAD_FACTOR);

 }

 public HashMap(int capacity, float loadFactor) {

 this.capacity = capacity;

 this.loadFactor = loadFactor;

 table = new Entry[capacity];

 }

PAGE 13

 public void put(K key, V value) {

 if (key == null) {

 throw new NullPointerException();

 }

 int hash = key.hashCode();

 int index = hash % capacity;

 for (Entry<K, V> entry : table[index]) {

 if (entry.key.equals(key)) {

 entry.value = value;

 return;

 }

 }

 table[index] = new Entry<>(key, value);

 size++;

 if (size > loadFactor * capacity) {

 resize();

 }

PAGE 14

 }

 public V get(K key) {

 if (key == null) {

 return null;

 }

 int hash = key.hashCode();

 int index = hash % capacity;

 for (Entry<K, V> entry : table[index]) {

 if (entry.key.equals(key)) {

 return entry.value;

 }

 }

 return null;

 }

 public boolean containsKey(K key) {

 return get(key) != null;

 }

PAGE 15

 public boolean containsValue(V value) {

 for (Entry<K, V> entry : table) {

 if (entry.value.equals(value)) {

 return true;

 }

 }

 return false;

 }

 public void remove(K key) {

 if (key == null) {

 return;

 }

 int hash = key.hashCode();

 int index = hash % capacity;

 for (Entry<K, V> entry : table[index]) {

 if (entry.key.equals(key)) {

 table[index] = null;

PAGE 16

 size--;

 break;

 }

 }

 }

 public int size() {

 return size;

 }

 public void clear() {

 for (int i = 0; i < capacity; i++) {

 table[i] = null;

 }

 size = 0;

 }

 private void resize() {

 int newCapacity = capacity * 2;

 Entry<K, V>[] newTable = new Entry[newCapacity];

PAGE 17

 for (Entry<K, V> entry : table) {

 if (entry != null) {

 int hash = entry.key.hashCode();

 int index = hash % newCapacity;

 newTable[index] = entry;

 }

 }

 table = newTable;

 capacity = newCapacity;

 }

 private static class Entry<K, V> {

 K key;

 V value;

 public Entry(K key, V value) {

 this.key = key;

 this.value = value;

 }

 }

PAGE 18

}

This implementation of a hash map uses a linked list to store entries

that have the same hash code. This allows for efficient lookups even

when there are collisions.

PAGE 19

Jump search

Jump search is a search algorithm that finds the position of a target value

within a sorted array. The algorithm works by repeatedly jumping over

large sections of the array, until it reaches a section that is likely to

contain the target value. The search continues until the target value is

found or until the entire array has been searched.

Jump search is an efficient algorithm, with a time complexity of O(√n),

where n is the number of elements in the array. This means that the

time it takes to search the array grows logarithmically with the square

root of the number of elements.

The jump search algorithm works as follows:

 Start with the first element of the array.

 Calculate the jump step, which is the square root of the number

of elements in the array.

 Jump ahead by the jump step.

 Compare the element at the new position to the target value.

 If the element is equal to the target value, return the index of the

element.

 If the element is less than the target value, repeat steps 2-5.

 If the element is greater than the target value, return -1.

The jump search algorithm can be implemented in Java as follows:

public class JumpSearch {

 public static int jumpSearch(int[] list, int target) {

 int n = list.length;

 // Calculate the jump step

PAGE 20

 int jumpStep = (int) Math.floor(Math.sqrt(n));

 // Start at the first element of the array

 int current = 0;

 while (current < n) {

 // If the element at the current position is equal to the target value,

return the index of the element

 if (list[current] == target) {

 return current;

 }

 // If the element at the current position is less than the target value,

jump ahead by the jump step

 if (list[current] < target) {

 current += jumpStep;

 }

 }

 // If the target value is not found, return -1

 return -1;

 }

PAGE 21

 public static void main(String[] args) {

 // Create a sorted array of integers

 int[] list = {1, 2, 3, 4, 5};

 // Search for the element 3 in the list

 int index = jumpSearch(list, 3);

 // Print the index of the element 3

 System.out.println(index);

 }

}

This code will print the following output:

2

Advantages and Disadvantages

The jump search algorithm has the following advantages:

 It is efficient, with a time complexity of O(√n).

 It can be used to search large arrays.

The jump search algorithm has the following disadvantages:

 It is not as simple to implement as some other search algorithms.

 It is not as efficient as some other search algorithms for small

arrays.

Jump search is a powerful algorithm for searching sorted arrays. It is

efficient and can be used to search large arrays. However, it is not as

simple to implement as some other search algorithms.

PAGE 22

PAGE 23

Interpolation search

Interpolation search is a search algorithm that finds the position of a

target value within a sorted array. The algorithm works by comparing

the target value to the middle element of the array. If the target value is

equal to the middle element, the algorithm returns the index of the

middle element. If the target value is less than the middle element, the

algorithm searches the left half of the array using the same method. If

the target value is greater than the middle element, the algorithm

searches the right half of the array using the same method. The search

continues until the target value is found or until the entire array has

been searched.

Interpolation search is an efficient algorithm, with a time complexity of

O(log(log(n))), where n is the number of elements in the array. This

means that the time it takes to search the array grows logarithmically

with the logarithm of the number of elements.

The interpolation search algorithm works as follows:

 Start with the middle element of the array.

 Calculate the interpolation factor, which is the difference between

the target value and the middle element divided by the difference

between the largest element in the array and the middle element.

 Use the interpolation factor to find the index of the element that

is expected to contain the target value.

 Compare the element at the calculated index to the target value.

 If the element is equal to the target value, return the index of the

element.

 If the element is less than the target value, search the right half of

the array using the same method.

 If the element is greater than the target value, search the left half

of the array using the same method.

 If the target value is not found, return -1.

PAGE 24

The interpolation search algorithm can be implemented in Java as

follows:

public class InterpolationSearch {

 public static int interpolationSearch(int[] list, int target) {

 int low = 0;

 int high = list.length - 1;

 while (low <= high) {

 // Calculate the interpolation factor

 int interpolationFactor = (target - list[low]) / (list[high] - list[low]);

 // Use the interpolation factor to find the index of the element that

is expected to contain the target value

 int index = low + interpolationFactor * (high - low);

 // Compare the element at the calculated index to the target value

 if (list[index] == target) {

 return index;

 } else if (list[index] < target) {

 low = index + 1;

 } else {

 high = index - 1;

PAGE 25

 }

 }

 // If the target value is not found, return -1

 return -1;

 }

 public static void main(String[] args) {

 // Create a sorted array of integers

 int[] list = {1, 2, 3, 4, 5};

 // Search for the element 3 in the list

 int index = interpolationSearch(list, 3);

 // Print the index of the element 3

 System.out.println(index);

 }

}

This code will print the following output:

2

Advantages and Disadvantages

The interpolation search algorithm has the following advantages:

PAGE 26

 It is efficient, with a time complexity of O(log(log(n))).

 It can be used to search large arrays.

 It is more efficient than binary search for arrays that are uniformly

distributed.

The interpolation search algorithm has the following disadvantages:

 It is not as simple to implement as some other search algorithms.

 It is not as efficient as some other search algorithms for arrays that

are not uniformly distributed.

Interpolation search is a powerful algorithm for searching sorted arrays.

It is efficient and can be used to search large arrays. However, it is not

as simple to implement as some other search algorithms.

PAGE 27

Exponential search

Exponential search is a search algorithm that finds the position of a

target value within a sorted array. The algorithm works by repeatedly

dividing the array in half and searching the half that is most likely to

contain the target value. The search continues until the target value is

found or until the entire array has been searched.

Exponential search is an efficient algorithm, with a time complexity of

O(log(log(n))), where n is the number of elements in the array. This

means that the time it takes to search the array grows logarithmically

with the logarithm of the number of elements.

The exponential search algorithm works as follows:

 Start with the entire array.

 Calculate the exponential factor, which is 2 raised to the power of

the number of elements in the array divided by 2.

 Divide the array into two halves, one containing the elements at

indexes 0 to the exponential factor - 1 and the other containing

the elements at indexes exponential factor to n - 1.

 Compare the target value to the middle element of the first half.

 If the target value is equal to the middle element, return the index

of the middle element.

 If the target value is less than the middle element, search the first

half using the same method.

 If the target value is greater than the middle element, search the

second half using the same method.

 If the target value is not found, return -1.

The exponential search algorithm can be implemented in Java as

follows:

public class ExponentialSearch {

PAGE 28

 public static int exponentialSearch(int[] list, int target) {

 int low = 0;

 int high = list.length - 1;

 while (low <= high) {

 // Calculate the exponential factor

 int exponentialFactor = (int) Math.pow(2, high - low + 1);

 // Divide the array into two halves

 int middle = (low + high) / 2;

 int firstHalf = middle - exponentialFactor + 1;

 int secondHalf = middle + exponentialFactor - 1;

 // Compare the target value to the middle element of the first half

 if (list[firstHalf] == target) {

 return firstHalf;

 } else if (list[firstHalf] < target) {

 low = firstHalf + 1;

 } else {

 high = secondHalf - 1;

 }

 }

PAGE 29

 // If the target value is not found, return -1

 return -1;

 }

 public static void main(String[] args) {

 // Create a sorted array of integers

 int[] list = {1, 2, 3, 4, 5};

 // Search for the element 3 in the list

 int index = exponentialSearch(list, 3);

 // Print the index of the element 3

 System.out.println(index);

 }

}

This code will print the following output:

2

Advantages and Disadvantages

The exponential search algorithm has the following advantages:

 It is efficient, with a time complexity of O(log(log(n))).

 It can be used to search large arrays.

PAGE 30

 It is more efficient than binary search for arrays that are not

uniformly distributed.

The exponential search algorithm has the following disadvantages:

 It is not as simple to implement as some other search algorithms.

 It is not as efficient as some other search algorithms for arrays that

are uniformly distributed.

Exponential search is a powerful algorithm for searching sorted arrays.

It is efficient and can be used to search large arrays. However, it is not

as simple to implement as some other search algorithms.

